Type II Error and Power Calculations

Recall that in hypothesis testing you can make two types of errors

- **Type I Error** – rejecting the null when it is true.
- **Type II Error** – failing to reject the null when it is false.

The probability of a Type I Error in hypothesis testing is predetermined by the significance level.

The probability of a Type II Error cannot generally be computed because it depends on the population mean which is unknown. It can be computed at, however, for given values of μ, σ^2, and n.

The **power** of a hypothesis test is nothing more than 1 minus the probability of a Type II error. Basically the power of a test is the probability that we make the right decision when the null is not correct (i.e. we correctly reject it).

Example: Consider the following hypothesis test

$$H_0 : \mu \geq 30$$
$$H_a : \mu < 30$$

Assume you have prior information so that in a sample of 100

$$\sigma^2 = 10,000$$

$$\sigma^2 = \frac{\sigma^2}{n} = \frac{10,000}{100} = 100 \Rightarrow \sigma_x = \frac{\sigma}{\sqrt{n}} = 10$$

What we would like to now is calculate the probability of a Type II error conditional on a particular value of μ. Let's assume that $\mu = 26$, but we could choose any value such that the null is not correct. Let's also assume that the significance level for the test is 0.05.

We know
1. This is a left tailed test
2. We will fail to reject the null (commit a Type II error) if we get a Z statistic greater than -1.64.
3. This -1.64 Z-critical value corresponds to some X critical value ($X_{critical}$), such that

$$P(z \text{ stat} \geq -1.64) = P\left(\frac{X \geq X_{critical}}{\sigma_X} = -1.64\right) = 0.95$$

We can find the value of $X_{critical}$ by solving the following equation
\[-1.64 = Z_{critical} = \frac{\bar{X}_{critical} - \mu_0}{\sigma_{\bar{X}}} \Rightarrow \]
\[-1.64 = \frac{\bar{X}_{critical} - 30}{10} \Rightarrow \bar{X}_{critical} = 13.6 \]

So I will incorrectly fail to reject the null as long as I draw a sample mean that is greater than 13.6. To complete the problem, what I now need to do is compute the probability of drawing a sample mean greater than 13.6 given \(\mu = 26 \) and \(\sigma_{\bar{X}} = 10 \). Thus, the probability of a Type II error is given by

\[P \left(\bar{X} > 13.6 \left| \mu = 26, \sigma_{\bar{X}} = 10 \right. \right) = P \left(Z > \frac{13.6 - 26}{10} \right) = P(Z > -1.24) = 0.8925 \]

and the power of the test is 0.1075.