Public Affairs 818
Professor Wallace
Fall 2010

Midterm \#1 Review Sheet

You will not be provided with any formulas

- Probability Rules
o $\quad P(A \cap B)=P(A \mid B) \cdot P(B)=P(B \mid A) \cdot P(A)$
o $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$

0

$$
\begin{gathered}
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cup B)-P(A \cup C) \\
-P(B \cup C)+P(A \cap B \cap C)
\end{gathered}
$$

- Bayes' Theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
$$

- Counting Rules form Combinations and Permutations
$0 \quad{ }_{n} C_{k}=\binom{n}{k}=\frac{n!}{k!(n-k!)}$
$0 \quad{ }_{n} P_{k}=\frac{n!}{(n-k)!}$
- Discrete Random Variables
o The distinction between discrete and continuous RVs
o The probability function $f(x)=P(X=x)$
o The cumulative distribution function $F(x)=P(X \leq x)$
o How to calculate the expected value of a discrete RV

$$
E(x)=\mu_{x}=\sum x_{i} f\left(x_{i}\right)
$$

o How to calculate the variance of a discrete RV

$$
\operatorname{Var}(x)=\sum\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
$$

- Properties of Expectation and Variance
$0 \quad E(a \cdot x)=a \cdot E(x)$
O $E(a \cdot x+b)=a \cdot E(x)+b$
$0 \quad E(x+y)=E(x)+E(y)$
o $\operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}=E\left(x^{2}\right)-\mu^{2}$
o $\operatorname{Var}(a \cdot x)=a^{2} \cdot \operatorname{Var}(x)$
$0 \operatorname{Var}(a \cdot x+b)=a^{2} \cdot \operatorname{Var}(x)$
$0 \quad \operatorname{Var}(x+y)=\operatorname{Var}(x)+\operatorname{Var}(y)+2 \cdot \operatorname{Cov}(x, y)$
$0 \operatorname{Var}(x-y)=\operatorname{Var}(x)+\operatorname{Var}(y)-2 \cdot \operatorname{Cov}(x, y)$

- Binomial Experiments

o Be able to identify
o Be able to calculate the probabilities of outcomes of binomial experiments. You will need to remember the binomial probability function, but you will need to remember how to use it.

$$
f(x)=\binom{n}{x} p^{x} \cdot(1-p)^{n-x}
$$

o The mean and variance of binomial RVs

$$
\begin{aligned}
& E(x)=n p \\
& \operatorname{Var}(x)=n p(1-p)
\end{aligned}
$$

- The Hypergeometric Distribution

o Be able to identify hypergeometric RVs - Make sure that you understand the distinction between hypergeometric RVs and Binomial RVs.
o Be able to calculate the probabilities associated with hypergeometric random variables.
o You will need to remember the hypergeometric probability function

$$
\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}
$$

- Continuous RVs
o Be able to distinguish continuous RVs from discrete RVs.
o Know that $P(X=x)=0$ for all X
o The area under the probability density function over a certain interval [x_{0}, x_{1}] equals $P\left(x_{0}<X<x_{1}\right)$
o The cumulative distribution function $F(x)=P(X \leq x)$
- Uniform Distribution

1. Be able to the probability that a uniformly distributed RV falls in a specified range.
2. You will need to know the uniform pdf

$$
f(x)=\frac{1}{b-a} \quad \text { for } a \leq x \leq b
$$

3. The expected value of a uniform RV

$$
E(x)=\frac{(b+a)}{2}
$$

- The Normal Distribution

o Important Properties of

- Symmetry
- Highest Point of the normal pdf is the mean and median
- There are infinitely many normal distributions differentiated by the values of μ and σ^{2}.
o Important Properties of Normal Random Variables
- A liner transformation of a normal of a normal RV is a normal RV
- The sum of two normal random variables is normal
o How to turn any normal RV into a standard normal. If $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ then $Z=\frac{X-\mu_{X}}{\sigma_{X}} \sim N(0,1)$
o Be comfortable using the normal table that is on the second page of the text.
- Chapter 7 - Sampling Theory
o Understand the implications and power of the Central Limit Theorem.
o Know the sampling distributions of \bar{x} and \bar{p} when the assumptions of the Central Limit Theorem are met

$$
\begin{aligned}
& \bar{x} \sim N\left(\mu, \frac{\sigma_{x}^{2}}{n}\right) \\
& \bar{p} \sim N\left(p, \frac{p(1-p)}{n}\right)
\end{aligned}
$$

0 At this point you should understand that drawing a random sample of size n to obtain a sample proportion is a binomial experiment with n trials. The outcome of this experiment is the number of success obtained. The number of successes divided by the number of trials is the sample proportion \bar{p}.
o Understand why knowing the distributions of \bar{x} and \bar{p} are important. You should be able to reason through the exercises that we did in class were we assumed a specific population mean (proportion) and then determined if the sample mean (proportion) we obtained was likely given the population mean (proportion) that we assumed.

- Chapter 8 - Interval Estimation

o Be able to construct 90,95 , and 99 percent confidence intervals in the cases where the Central Limit Theorem is applicable.
o Understand how to construct 90, 95, and 99 percent confidence intervals when the Central Limit Theorem is not applicable
o If the population is normal you can construct confidence intervals using the t -table (if σ is unknown and must be estimated by s) or the standard normal table (if σ is known)).
o Be able to find the sample size needed to insure a specific margin of error for a specified confidence level.

- Chapter 9 - Hypothesis Testing

o The sampling distributions of \bar{x} and \bar{p}
o The distinction between Type I and Type II errors.
o One and two tailed hypothesis test for population means and proportions.
o Be able to describe and provide intuition for the hypothesis testing procedure in words.
o Understand power and be able to do power calculations.

