The Empirical Human Capital Model

Simple Version

For the simplest version of the model

$$
w_{i}=A_{0} \cdot \exp \left(r_{s} \cdot S_{i}+v_{i}\right)
$$

where $w_{i}=$ wage rate, $S_{i}=$ years of schooling, and v_{i} is a random disturbance. This model implies
(1) $\ln w_{i}=\ln \left(A_{0}\right)+r_{s} \cdot S_{i}+v_{i}=\beta_{0}+\beta_{S} \cdot S_{i}+v_{i}$

The following results are run on just the 1979 male sample in CPSORG.

More Realistic

We might think of allowing for other variables to enter the this human capital model. For instance, it is though that increases in labor market experience increase human capital and, thus, wages
(2) $\quad \ln w_{i}=\beta_{0}+\beta_{S} \cdot S_{i}+\beta_{\mathrm{ex}} \cdot \mathrm{ex}_{i}+v_{i}$

Source \|	SS	df	MS		$\begin{aligned} & \text { Number of obs } \\ & \text { F(} 2,3093) \\ & \text { Prob }>\mathrm{F} \end{aligned}$	$=3096$	
						$=411.49$	
Model \|	137.83928	2	68.9196402			$=0.0000$	
Residual \|	518.044167	3093	. 167489223		R -squared	$=0.2102$	
					Adj R-squared	$=0.2096$	
Total \|	655.883447	3095	. 211917107		Root MSE	$=.40925$	
lnwage \|	Coef	Std.	Err	P>\|t		[95\% Conf.	Interval]
ed \|	. 0697895	. 0026	817 26.02	0.000	. 0645315	. 0750476	
ex \|	. 0121608	. 0005	$903 \quad 20.60$	0.000	. 0110034	. 0133183	
_cons \|	1.719942	. 0396	79843.35	0.000	1.642141	1.797744	

One of the problems with the above model is that returns to labor market experience are constant when we think there are many reasons to believe they are not. The fix for this is to allow for the rate of return to a year of labor market experience to depend on how much experience you actually have. This can be done by including an experience squared term in the above regression equation
(3) $\ln w_{i}=\beta_{0}+\beta_{s} \cdot S_{i}+\beta_{e x} \cdot \mathrm{ex}_{i}+\beta_{\mathrm{ex} s q} \cdot\left(e x_{i}\right)^{2}+v_{i}$

Source	SS	df MS			Number of obs $=3096$	
					F (3, 3092)	339.40
Model	162.480273	354	160091		Prob > F	$=0.0000$
Residual	493.403174	3092.15	574118		R-squared	0.2477
					Adj R-squared	$=0.2470$
Total	655.883447	3095.21	917107		Root MSE	$=.39947$
lnwage	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
ed	. 0629068	. 0026755	23.51	0.000	. 0576609	. 0681528
ex	. 036022	. 0020048	17.97	0.000	. 0320912	. 0399528
exsq	-. 0005437	. 0000438	-12.43	0.000	-. 0006295	-. 0004579
_cons	1.644259	. 0392069	41.94	0.000	1.567385	1.721133

One Step Closer To Reality

One problem with the latest version of the model is our estimates of the expected wage conditional on educational attainment and labor market experience is the same for blacks, whites, and Hispanics. We could relax this by allowing different intercepts for individuals from different racial or ethnic groups. These different intercepts could reflect different average levels of initial human capital $\left(A_{0}\right)$ or the effects of discrimination.

$$
\begin{equation*}
\ln w_{i}=\beta_{0}+\beta_{\text {black }} \cdot \text { black }_{i}+\beta_{\text {hisp }} \cdot \operatorname{Hisp}_{i}+\beta_{s} \cdot S_{i}+\beta_{\text {ex }} \cdot \mathrm{ex}_{i}+\beta_{\mathrm{ex} s q} \cdot\left(e x_{i}\right)^{2}+v_{i} \tag{4}
\end{equation*}
$$

In this model the variables black and Hisp are know as dummy variables or indicator variables.

In model (4) there are effectively three intercept terms.
Intercept for whites: β_{0}
Intercept for blacks: $\beta_{0}+\beta_{\text {black }}$
Intercept for Hispanics: $\beta_{0}+\beta_{\text {Hisp }}$
An equivalent model in terms of information content would be

$$
\begin{align*}
\ln w_{i}= & \alpha_{\text {white }} \cdot \text { white }_{i}+\alpha_{\text {black }} \cdot \text { black }_{i}+\alpha_{\text {hisp }} \cdot \text { Hisp }_{i}+\beta_{s} \cdot S_{i} \\
& +\beta_{\text {ex }} \cdot \mathrm{ex}_{i}+\beta_{\mathrm{ex} s q} \cdot\left(e x_{i}\right)^{2}+v_{i} \tag{5}
\end{align*}
$$

In this model the intercept for whites is

Intercept for whites: $\alpha_{\text {white }}$

Intercept for blacks: $\alpha_{\text {black }}$

Intercept for Hispanics: $\alpha_{\text {Hisp }}$

The results from the model (4) estimation are
. reg lnwage black hisp ed ex exsq

And the results from the model (5) specification
. reg lnwage black white hisp ed ex exsq, nocon

Note the relationship between the model (4) and model (5) coefficients.

(Hypothesis) Test Involving More than Just One Coefficient Value (The F-test)

Note that
(3) $\ln w_{i}=\beta_{0}+\beta_{s} \cdot S_{i}+\beta_{e x} \cdot \mathrm{ex}_{i}+\beta_{\mathrm{ex} s q} \cdot\left(e x_{i}\right)^{2}+v_{i}$
is just a restricted version of
(4) $\ln w_{i}=\beta_{0}+\beta_{\text {black }} \cdot$ black $_{i}+\beta_{\text {hisp }} \cdot \operatorname{Hisp}_{i}+\beta_{s} \cdot S_{i}+\beta_{e x} \cdot \mathrm{ex}_{i}+\beta_{\text {ex } s q} \cdot\left(e x_{i}\right)^{2}+v_{i}$

Basically model (3) is equivalent to model (4) with the values of $\beta_{\text {black }}=\beta_{\text {Hisp }}=0$.
The F-test provides a way of testing these and other linear restrictions. The F-test is based on the test statistic

$$
F=\frac{\frac{S S E^{*}-S S E}{\frac{r}{n S E}}}{\frac{S-(k+1)}{}} \sim F(r, n-(k+1))
$$

where

$$
r=\text { the number of restrictions (the number of equal signs) }
$$

$S S E^{*}=$ the error sum of squares from a restricted model
$S S E=$ the error sum of squares from the unrestricted model
If we had the error sum of squares from the restricted and unrestricted models we could compute the value of the test statistic. It turns out that there is a much easier way to compute the value of the test statistic. If I divide both the numerator and denominator of the F-statistic by SST (Total Sum of Squares) we get

$$
F=\frac{\frac{1}{r}\left[\frac{S S E^{*}}{S S T}-\frac{S S E}{S S T}\right]}{\frac{1}{n-(k+1)}\left[\frac{S S E}{S S T}\right]}=\frac{\frac{1}{r}\left[1-R_{*}^{2}-\left(1-R^{2}\right)\right]}{\left(\frac{1-R^{2}}{n-(k+1)}\right)}=\frac{\left(\frac{R^{2}-R_{*}^{2}}{r}\right)}{\left(\frac{1-R^{2}}{n-(k+1)}\right)}
$$

Basically all I need to do to conduct the test is estimate both the restricted and the unrestricted models, get the R-squared terms from these regressions, form the F-statistic and go to the tables.

It is now possible to test the restrictions implied by model (3) given only the output from the regression table provided in this handout.

$$
F=\frac{\left(\frac{R^{2}-R_{*}^{2}}{r}\right)}{\left(\frac{1-R^{2}}{n-(k+1)}\right)}=\frac{\left(\frac{0.2541-0.2477}{2}\right)}{\left(\frac{1-0.2541}{3090}\right)} \approx 13.26
$$

The p-value associated with this test statistic is infinitesimal \Rightarrow reject the restrictions.
It turns out there are is also a very easy way to compute this test statistic (and associated p-value) using STATA's post estimation commands.

Simply estimate the model

After estimating the model you can use the test command to get a variety of test statistics

```
. test black=0
( 1) black = 0.0
    F( 1, 3090) = 21.79
        Prob > F = 0.0000
```

This is the test statistic associated with the hypothesis that the coefficient on black is equal to zero.

```
. test hisp=0, accum
(1) black = 0.0
( 2) hisp = 0.0
    F( 2, 3090) = 13.20
        Prob > F = 0.0000
```

This is a test statistic associated with testing the restrictions implied by model (3) (i.e. $\beta_{\text {black }}=\beta_{\text {Hisp }}=0$). Note the use of the accum option.

Another Example

Suppose we thought that returns to school vary by race. We could estimate a model that allowed returns to school to vary by race by including race-schooling interaction variables into the model (4) specification.

$$
\begin{align*}
\ln w_{i}= & \beta_{0}+\beta_{\text {black }} \cdot \text { black }_{i}+\beta_{\text {hisp }} \cdot \text { Hisp }_{i}+\beta_{\text {black } \cdot \mathrm{S}} \cdot\left(\text { black }_{i} \cdot S_{i}\right)+\beta_{\text {Hisp } \cdot S} \cdot\left(\text { Hisp }_{i} \cdot S_{i}\right) \\
& +\beta_{s} \cdot S_{i}+\beta_{e x} \cdot \mathrm{ex}_{i}+\beta_{\text {exsq }} \cdot\left(e x_{i}\right)^{2}+v_{i} \tag{6}
\end{align*}
$$

In this model the rate of return to a year of school for whites is β_{S}. For blacks and Hispanics the rates of return to a year of schooling $\beta_{s}+\beta_{\text {black.S }}$ and $\beta_{S}+\beta_{\text {Hisp. }}$ respectively.

Note that model (4) is just a restricted version of this model. The restrictions implied by (4) are $\beta_{\text {black.S }}=\beta_{\text {Hisp.S }}=0$

We can test these restrictions using the F-Statistic. As with the previous example there are two approaches

1. Estimate the restricted and unrestricted models, obtain the R-squared terms, and construct the test statistic. (You will need to be able to do this for the exam).
2. Estimate the unrestricted model and use STATA's test command.

I will use the second approach

. test black_ed=0
(1) black_ed $=0.0$
$F(1,3088)=1.23$
Prob $>F=0.2673$
. test hisp_ed=0, accum
(1) black_ed $=0.0$
(2) hisp_ed $=0.0$
$F(2,3088)=0.63$ Prob $>F=0.5306$

On the basis of this test statistic we cannot reject restrictions implied by model (4).
As an additional exercise you should compute the value of the test statistic manually. If it is not approximately equal to 0.63 you did something wrong.

