The Empirical Human Capital Model

Simple Version

reg lnwage ed

.

For the simplest version of the model

 $w_i = A_0 \cdot \exp(r_s \cdot S_i + v_i)$

where w_i = wage rate, S_i = years of schooling, and v_i is a random disturbance. This model implies

(1)
$$\ln w_i = \ln(A_0) + r_s \cdot S_i + v_i = \beta_0 + \beta_s \cdot S_i + v_i$$

The following results are run on just the 1979 male sample in CPSORG.

```
      Source
      SS
      df
      M5

      Model
      66.7595844
      1
      66.7595844
      Prob > F
      =
      0.0000

      Model
      66.7595844
      1.90408488
      R-squared
      =
      0.1018

 -----
  Residual | 589.123863 3094 .190408488
  Adj R-squared = 0.1015
     Total | 655.883447 3095 .211917107
                                              Root MSE
                                                        = .43636
  _____
                                            _____
   lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
  ed | .0499781 .0026691 18.72 0.000 .0447447
_cons | 2.202434 .0341515 64.49 0.000 2.135472
                                                         .0552115
                                                          2.269396
                  _____
_____
             ____
```

More Realistic

We might think of allowing for other variables to enter the this human capital model. For instance, it is though that increases in labor market experience increase human capital and, thus, wages

(2)
$$\ln w_i = \beta_0 + \beta_s \cdot S_i + \beta_{ex} \cdot ex_i + v_i$$

. reg lnwage ed ex

Source	SS	df	MS		Number of obs	=	3096
Model Residual Total	137.83928 518.044167 655.883447	2 68 3093 .10 3095 .23	.9196402 67489223 		Prob > F R-squared Adj R-squared Root MSE	= = =	411.49 0.0000 0.2102 0.2096 .40925
lnwage	Coef.	Std. Err	. t	P> t	[95% Conf.	In	terval]
ed ex _cons	.0697895 .0121608 1.719942	.0026817 .0005903 .0396798	26.02 20.60 43.35	0.000 0.000 0.000	.0645315 .0110034 1.642141	1	0750476 0133183 .797744

One of the problems with the above model is that returns to labor market experience are constant when we think there are many reasons to believe they are not. The fix for this is to allow for the rate of return to a year of labor market experience to depend on how much experience you actually have. This can be done by including an experience squared term in the above regression equation

(3) $\ln w_i = \beta_0 + \beta_s \cdot S_i + \beta_{ex} \cdot \operatorname{ex}_i + \beta_{ex \, sq} \cdot (ex_i)^2 + v_i$

Source	SS	df	MS		Number of obs $E(2, 2, 0, 0, 2)$	= 3096
Model Residual	162.480273 493.403174	3 54 3092 .15	1.160091 59574118		Prob > F R-squared	= 0.0000 = 0.2477 = 0.2470
Total	655.883447	3095 .21	1917107		Root MSE	= .39947
lnwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ed	.0629068	.0026755	23.51	0.000	.0576609	.0681528
ex	.036022	.0020048	17.97	0.000	.0320912	.0399528
exsq	0005437	.0000438	-12.43	0.000	0006295	0004579
_cons	1.644259	.0392069	41.94	0.000	1.567385	1.721133

One Step Closer To Reality

One problem with the latest version of the model is our estimates of the expected wage conditional on educational attainment and labor market experience is the same for blacks, whites, and Hispanics. We could relax this by allowing different intercepts for individuals from different racial or ethnic groups. These different intercepts could reflect different average levels of initial human capital (A_0) or the effects of discrimination.

(4)
$$\ln w_i = \beta_0 + \beta_{black} \cdot black_i + \beta_{hisp} \cdot Hisp_i + \beta_s \cdot S_i + \beta_{ex} \cdot ex_i + \beta_{ex\,sq} \cdot (ex_i)^2 + v_i$$

In this model the variables *black* and *Hisp* are know as **dummy variables** or indicator variables.

In model (4) there are effectively three intercept terms.

```
Intercept for whites: \beta_0
Intercept for blacks: \beta_0 + \beta_{black}
Intercept for Hispanics: \beta_0 + \beta_{Hisp}
```

An equivalent model in terms of information content would be

(5)
$$\ln w_{i} = \alpha_{white} \cdot white_{i} + \alpha_{black} \cdot black_{i} + \alpha_{hisp} \cdot Hisp_{i} + \beta_{s} \cdot S_{i} + \beta_{ex} \cdot ex_{i} + \beta_{ex\,sq} \cdot (ex_{i})^{2} + v_{i}$$

In this model the intercept for whites is

Intercept for whites: α_{white}

Intercept for blacks: α_{black}

Intercept for Hispanics: α_{Hisp}

The results from the model (4) estimation are

. reg lnwage black hisp ed ex exsq

Source	SS	df 	MS		Number of obs	= 3096 = 210 53
Model Residual	166.661253 489.222194	5 33 3090 .1	3.3322506 .58324335		Prob > F R-squared	= 0.0000 = 0.2541 = 0.2529
Total	655.883447	3095 .2	211917107		Root MSE	= .3979
lnwage	Coef.	Std. Err	z. t	P> t	[95% Conf.	Interval]
black hisp ed ex exsq _cons	1330717 0836429 .0602155 .0362958 0005539 1.691663	.0285048 .0328886 .0027439 .0019979 .0000437 .0405569	$\begin{array}{cccc} & -4.67 \\ & -2.54 \\ 21.95 \\ 18.17 \\ & -12.68 \\ 41.71 \end{array}$	0.000 0.011 0.000 0.000 0.000 0.000	1889619 1481287 .0548355 .0323783 0006395 1.612142	0771816 0191571 .0655955 .0402132 0004682 1.771185

And the results from the model (5) specification

. reg lnwage black white hisp ed ex exsq, nocon

Source	SS +	df 	MS		Number of obs $F(6, 3090)$	= 3096 =26182.05
Model Residual	24871.5301 489.222194	6 414 3090 .15	5.25502 8324335		Prob > F R-squared	= 0.0000 = 0.9807 = 0.9807
Total	25360.7523	3096 8.1	9145747		Root MSE	= .3979
lnwage	Coef.	Std. Err.	t 	₽> t	[95% Conf.	Interval]
black white hisp ed ex exsq	1.558592 1.691663 1.608021 .0602155 .0362958 0005539	.0460419 .0405569 .0457152 .0027439 .0019979 .0000437	33.85 41.71 35.17 21.95 18.17 -12.68	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	1.468316 1.612142 1.518385 .0548355 .0323783 0006395	1.648868 1.771185 1.697656 .0655955 .0402132 0004682

Note the relationship between the model (4) and model (5) coefficients.

(Hypothesis) Test Involving More than Just One Coefficient Value (The F-test)

Note that

(3)
$$\ln w_i = \beta_0 + \beta_s \cdot S_i + \beta_{ex} \cdot \operatorname{ex}_i + \beta_{\operatorname{ex} sq} \cdot (ex_i)^2 + v_i$$

is just a restricted version of

(4)
$$\ln w_i = \beta_0 + \beta_{black} \cdot black_i + \beta_{hisp} \cdot Hisp_i + \beta_s \cdot S_i + \beta_{ex} \cdot ex_i + \beta_{exsq} \cdot (ex_i)^2 + v_i$$

Basically model (3) is equivalent to model (4) with the values of $\beta_{black} = \beta_{Hisp} = 0$.

The F-test provides a way of testing these and other linear restrictions. The F-test is based on the test statistic

$$F = \frac{\frac{SSE^* - SSE}{r}}{\frac{SSE}{n - (k + 1)}} \sim F(r, n - (k + 1))$$

where

r = the number of restrictions (the number of equal signs) SSE^* = the error sum of squares from a restricted model SSE = the error sum of squares from the unrestricted model

If we had the error sum of squares from the restricted and unrestricted models we could compute the value of the test statistic. It turns out that there is a much easier way to compute the value of the test statistic. If I divide both the numerator and denominator of the F-statistic by *SST* (Total Sum of Squares) we get

$$F = \frac{\frac{1}{r} \left[\frac{SSE^*}{SST} - \frac{SSE}{SST} \right]}{\frac{1}{n - (k+1)} \left[\frac{SSE}{SST} \right]} = \frac{\frac{1}{r} \left[1 - R_*^2 - \left(1 - R^2\right) \right]}{\left(\frac{1 - R^2}{n - (k+1)} \right)} = \frac{\left(\frac{R^2 - R_*^2}{r} \right)}{\left(\frac{1 - R^2}{n - (k+1)} \right)}$$

Basically all I need to do to conduct the test is estimate both the restricted and the unrestricted models, get the R-squared terms from these regressions, form the F-statistic and go to the tables.

It is now possible to test the restrictions implied by model (3) given only the output from the regression table provided in this handout.

$$F = \frac{\left(\frac{R^2 - R_*^2}{r}\right)}{\left(\frac{1 - R^2}{n - (k + 1)}\right)} = \frac{\left(\frac{0.2541 - 0.2477}{2}\right)}{\left(\frac{1 - 0.2541}{3090}\right)} \approx 13.26$$

The p-value associated with this test statistic is infinitesimal \Rightarrow reject the restrictions.

It turns out there are is also a very easy way to compute this test statistic (and associated p-value) using STATA's post estimation commands.

Simply estimate the model

reg lnwage black hisp ed ex exsg

	· · · · · · · · · · · · · · · · · · ·					
Source	SS	df	MS		Number of obs	= 3096
Model Residual	+ 166.661253 489.222194	5 33 3090 .1	.3322506 58324335		F(5, 3090) Prob > F R-squared	= 210.53 = 0.0000 = 0.2541 = 0.2529
Total	655.883447	3095 .2	11917107		Root MSE	= .3979
lnwage	Coef.	Std. Err	. t	₽> t	[95% Conf.	Interval]
black hisp ed ex exsq _cons	1330717 0836429 .0602155 .0362958 0005539 1.691663	.0285048 .0328886 .0027439 .0019979 .0000437 .0405569	-4.67 -2.54 21.95 18.17 -12.68 41.71	$\begin{array}{c} 0.000\\ 0.011\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	1889619 1481287 .0548355 .0323783 0006395 1.612142	0771816 0191571 .0655955 .0402132 0004682 1.771185

After estimating the model you can use the test command to get a variety of test statistics

```
. test black=0
```

(1) black = 0.0 F(1, 3090) = 21.79 Prob > F = 0.0000

This is the test statistic associated with the hypothesis that the coefficient on *black* is equal to zero.

```
. test hisp=0, accum
( 1) black = 0.0
( 2) hisp = 0.0
F( 2, 3090) = 13.20
Prob > F = 0.0000
```

This is a test statistic associated with testing the restrictions implied by model (3) (i.e. $\beta_{black} = \beta_{Hisp} = 0$). Note the use of the accum option.

Another Example

Suppose we thought that returns to school vary by race. We could estimate a model that allowed returns to school to vary by race by including race-schooling **interaction variables** into the model (4) specification.

(6)
$$\ln w_{i} = \beta_{0} + \beta_{black} \cdot black_{i} + \beta_{hisp} \cdot Hisp_{i} + \beta_{black \cdot S} \cdot (black_{i} \cdot S_{i}) + \beta_{Hisp \cdot S} \cdot (Hisp_{i} \cdot S_{i}) + \beta_{s} \cdot S_{i} + \beta_{ex} \cdot ex_{i} + \beta_{ex sq} \cdot (ex_{i})^{2} + v_{i}$$

In this model the rate of return to a year of school for whites is β_s . For blacks and Hispanics the rates of return to a year of schooling $\beta_s + \beta_{black \cdot s}$ and $\beta_s + \beta_{Hisp \cdot s}$ respectively.

Note that model (4) is just a restricted version of this model. The restrictions implied by (4) are $\beta_{black \cdot S} = \beta_{Hisp \cdot S} = 0$

We can test these restrictions using the F-Statistic. As with the previous example there are two approaches

- 1. Estimate the restricted and unrestricted models, obtain the R-squared terms, and construct the test statistic. (You will need to be able to do this for the exam).
- 2. Estimate the unrestricted model and use STATA's test command.

I will use the second approach

- . gen black_ed=black*ed
- . gen hisp_ed=hisp*ed
- . reg lnwage black hisp black_ed hisp_ed ed ex exsq

Source	SS	df	MS			Number of obs	=	3096
+						F(7, 3088)	=	150.53
Model	166.862028	7	23.83	74325		Prob > F	=	0.0000
Residual	489.02142	3088	.1583	61859		R-squared	=	0.2544
+						Adj R-squared	=	0.2527
Total	655.883447	3095	.2119	17107		Root MSE	=	.39795
l							 -	11
Inwage	Coer.	Sta.	Err.	τ	P> t	[95% Conf.	1n	terval]
black	2529284	.1115	613	-2.27	0.023	4716703		0341866
hisp	1117459	.0983	421	-1.14	0.256	3045685		0810766
black ed	.0104171	.0093	896	1.11	0.267	0079934		0288275
hisp_ed	.0025325	.0088	625	0.29	0.775	0148444		0199094
ed	.0592706	.0029	542	20.06	0.000	.0534781		.065063
ex	.0362238	.002	003	18.09	0.000	.0322966		0401511
exsq	0005515	.0000	438	-12.58	0.000	0006375		0004656
_cons	1.703744	.0427	701	39.83	0.000	1.619884	1	.787605

. test black_ed=0

```
( 1) black_ed = 0.0
```

F(1, 3088) = 1.23 Prob > F = 0.2673

. test hisp_ed=0, accum

```
( 1) black_ed = 0.0
( 2) hisp_ed = 0.0
F( 2, 3088) = 0.63
Prob > F = 0.5306
```

On the basis of this test statistic we cannot reject restrictions implied by model (4).

As an additional exercise you should compute the value of the test statistic manually. If it is not approximately equal to 0.63 you did something wrong.