ENDOGENOUS SELECTION BIAS: THE PROBLEM OF CONDITIONING ON A COLLIDER VARIABLE

Felix Elwert (elwert@wisc.edu)
University of Wisconsin–Madison

Christopher Winship (cwinship@wjh.harvard.edu)
Harvard University

Forthcoming: Annual Review of Sociology 2014

Penultimate version—prior to proofs

Corresponding Author
Felix Elwert, Dept. of Sociology, University of Wisconsin–Madison, 1180 Observatory Dr., Madison, Wi 53706.

Word count: 9,924

1 We thank Miguel Hernán and Jamie Robins for inspiration, Jennie Brand, David Harding, Kristian Karlson, Therese Leung, Steve Morgan, Robert Mare, Chris Muller, Gabriel Rossman, Nora Cate Schaeffer, Michael Sobel, Tyler VanderWeele, James Walker, Geoffrey Wodtke, and Elizabeth Wrigley Field for discussions and advice. Laurie Silverberg, Genevieve Butler, and Janet Clear provided editorial assistance.
1. Introduction

A large literature in economics, sociology, epidemiology, and statistics deals with sample selection bias. Sample selection bias occurs when the selection of observations into a sample is not independent of the outcome (Winship & Mare 1992:328). For example, estimates of the effect of education on wages will be biased if the sample is restricted to low earners (Hausman & Wise 1977); and estimates for the effect of motherhood on wages will be biased if the sample is restricted to employed women (Gronau 1974; Heckman 1974).

Surveys of sample selection bias in sociology tend to emphasize examples where selection is affected by the treatment or the outcome, i.e., where sample selection occurs after treatment (Berk 1983; Stolzenberg & Relles 1997; Fu, Winship & Mare 1992; Winship, & Mare 2004). The underlying problem, which we call endogenous selection bias, however, is more general than this, in two respects. First, bias can also arise if sample selection occurs prior to treatment. Second, bias can occur from simple conditioning (e.g., controlling or stratifying) on certain variables even if no observations are discarded from the population (i.e., if no “sample” is “selected”).

Recognizing endogenous selection bias can be difficult, especially when sample selection occurs prior to treatment, or when no “selection” (in the sense of discarding observations) takes place. This article introduces sociologists to a new, purely graphical, way of characterizing endogenous selection bias that subsumes all of these scenarios. The goal is to facilitate recognition of the problem in its many forms in practice. In contrast to previous surveys, which primarily draw on algebraic formulations from econometrics, our presentation draws on graphical approaches from computer science (Pearl 1995, 2009, 2010) and epidemiology.
This paper makes five points:

First, we present a definition of endogenous selection bias. Broadly, endogenous selection bias results from conditioning on a variable that is causally affected by two other variables along some path connecting treatment and outcome (Hernán et al. 2002, 2004), i.e., a “common outcome” or “endogenous” variable. An endogenous variable in this sense may occur before or after the treatment and before or after the outcome.\(^2\) In the graphical approach introduced below, such endogenous variables are called “collider” variables.

Second, we describe the difference between confounding, or omitted variable bias, and endogenous selection bias (Pearl 1995; Greenland et al. 1999; Hernán et al. 2002, 2004). Confounding originates from common causes, whereas endogenous selection originates from common outcomes. Confounding bias results from failing to control for a common cause variable that one should have controlled for, whereas endogenous selection bias results from controlling for a common outcome variable that one should not have controlled for.

Third, we highlight the importance of endogenous selection bias for causal inference by noting that all nonparametric identification problems can be classified as one of three underlying problems (Pearl 1988): over-control bias, confounding bias, and endogenous selection bias.

\(^2\) We avoid the simpler term “selection bias” because it has multiple meanings across literatures. “Endogenous selection bias” as defined in section 4 of this paper encompasses “sample selection bias” from econometrics (Vella 1998), and “Berkson’s (1946) bias” and “M-bias” (Greenland 2003) from epidemiology. Our definition is identical to those of “collider stratification bias” (Greenland 2003), “selection bias” (Hernan et al 2004), “explaining away effect” (Kim & Pearl 1983), and “conditioning bias” (Morgan & Winship 2007).
Endogenous selection captures the common underlying structure of a large number of biases usually known by different names, including selective non-response, ascertainment bias, attrition bias, informative censoring, Heckman selection bias, sample selection bias, homophily bias, and others.

Fourth, we illustrate that the commonplace advice not to select (i.e., condition) on the dependent variable of an analysis is too narrow. Endogenous selection bias can originate in many places. Endogenous selection can result from conditioning on an outcome, but it can also result from conditioning on variables that have been affected by the outcome, variables that temporally precede the outcome, and even variables that temporally precede the treatment (Greenland 2003).

Fifth, and perhaps most importantly, we illustrate the ubiquity of endogenous selection bias by reviewing numerous examples from stratification research, cultural sociology, social network analysis, social demography, and the sociology of education.

The specific methodological points of this paper have been made before in various places in econometrics, statistics, biostatistics, and computer science. Our innovation lies in offering a unified graphical presentation of these points for sociologists. Specifically, our presentation relies on direct acyclic graphs (DAGs) (Pearl 1995, 2009; Elwert 2013), a generalization of conventional linear path diagrams (Blalock 1994; Bollen 1989) that is entirely nonparametric (making no distributional or functional form assumptions). DAGs are formally rigorous yet accessible because they rely on graphical rules instead of algebra. We hope that this presentation

3 The equivalence of DAGs and nonparametric structural equation models is discussed in Pearl (2009, 2010). The relationship between DAGs and conventional structural equation models is discussed by Bollen & Pearl (2013).
may empower even sociologists with little mathematical training to recognize and understand precisely when and why endogenous selection bias may trouble an empirical investigation.

We begin by reviewing the required technical material. Section 2 describes the notion of nonparametric identification. Section 3 introduces DAGs. Section 4 explains the three structural sources of association between two variables—causation, confounding, and endogenous selection—and describes how DAGs can be used to distinguish causal associations from spurious associations. Section 5—the heart of this article—examines a large number of applied examples in which endogenous selection is a problem. Section 6 concludes by reflecting on dealing with endogenous selection bias in practice.

2. IDENTIFICATION VS. ESTIMATION

We investigate endogenous selection bias as a problem for the identification of causal effects. Following the modern literature on causal inference, we define causal effects as contrasts between potential outcomes (Rubin 1974, Morgan & Winship 2007). Recovering causal effects from data is difficult since causal effects can never be observed directly (Holland 1986). Rather, causal effects have to be inferred from observed associations, which are generally a mixture of the desired causal effect and various noncausal, or spurious, components. Determining the possibility of neatly dividing associations into causal and spurious components is the task of identification analysis. A causal effect is said to be identified if it is possible, with ideal data (infinite sample size and no measurement error), to purge an observed association of all noncausal components such that only the causal effect of interest remains.

Identification analysis requires a theory (i.e., a model, or assumptions) of how the data were generated. Consider, for example, the identification of the causal effect of education on
wages. If one assumes that aptitude positively influences both education and wages then the observed marginal (i.e., unadjusted) association between education and wages does not identify the causal effect of education on wages. But if one can assume that aptitude is the only factor influencing both education and wages, then the conditional association between education and wages after perfectly adjusting for aptitude would identify the causal effect of education on wages. Unfortunately, the analyst’s theory of data generation can never fully be tested empirically (Robins & Wasserman 1999). Therefore, it is important that the analyst’s theory of data generation is stated explicitly for other scholars to inspect and judge. This paper uses DAGs to clearly state the data-generating model.

Throughout, we focus on nonparametric identification, i.e., identification results that can be established solely from qualitative causal assumptions about the data-generating process without relying on parametric assumptions about the distribution of variables or the functional form of causal effects. We consider this nonparametric focus an important strength since cause-effect statements are claims about social reality that sociologists deal with on a daily basis, whereas distributional and functional form assumptions often lack sociological justification.

Identification (assuming ideal data) is a necessary precondition for unbiased estimation (with real data). Since there is, at present, no universal solution to estimating causal effects in the presence of endogenous selection (Stolzenberg & Relles 1997:495), we focus here on identification and deal with estimation only in passing. Reviews of the large econometric literature on estimating causal effects under various scenarios of endogenous selection can be found in Pagan & Ullah (1997), Vella (1998), Grasdal (2001), and Christofides et al. (2003), which cover Hausman & Wise’s (1977) truncated regression model, Heckman’s (1976, 1979) classic two-step estimator, as well as numerous extensions. Bareinboim & Pearl (2012) discuss
estimation under endogenous selection within the graphical framework adopted here. A growing literature in epidemiology and biostatistics builds on Robins (1984, 1994, 1999) to deal with the endogenous selection problems that occur with time-varying treatments.

3. DAGS IN BRIEF

DAGs encode the analyst’s qualitative causal assumptions about the data generating process in the population (thus abstracting from sampling variability).\(^4\) Collectively, these assumptions comprise the model, or theory, on which the analyst can base her identification analysis. DAGs consist of three elements (Fig. 1). First, letters represent random variables, which may be observed or unobserved. Variables can have any distribution (continuous or discrete). Second, arrows represent direct causal effects.\(^5\) Direct effects may have any functional form (linear or nonlinear), they may differ in magnitude across individuals (effect heterogeneity), and—within certain constraints (Elwert 2013)—they may vary with the value of other variables (effect interaction or modification). Since the future cannot cause the past, the arrows order pairs of variables in time such that DAGs do not contain directed cycles. Third, missing arrows represent the sharp assumption of no causal effect between variables. In the parlance of economics, missing arrows represent exclusion restrictions. For example, Fig. 1 excludes the arrows U\(\rightarrow\)T and X\(\rightarrow\)Y among others. Missing arrows are essential for inferring causal information from data.

\[\text{[FIG. 1 ABOUT HERE]}\]

\(^4\) See Pearl (2009) for technical details. This and the following section draw on Elwert’s (2013) survey of DAGs for social scientists.

\(^5\) Strictly speaking, arrows represent possible (rather than certain) causal effects (see Elwert 2013). This distinction is not important for the purposes of this paper and we neglect it below.
For clarity, and without infringing upon our conceptual points, we assume that the DAGs in this paper display all observed and unobserved common causes in the process under investigation. Note that this assumption implies that all other inputs into variables must be marginally independent, i.e. all variables have independent error terms. These independent error terms need not be displayed in the DAG because they never help nonparametric identification (we occasionally display them below when they harm identification).

A path is a sequence of arrows connecting two variables regardless of the direction of the arrowheads. A path may traverse a given variable at most once. A causal path between treatment and outcome is a path in which all arrows point away from the treatment and toward the outcome. Assessing existence and magnitude of causal paths is the object of causal testing and causal estimation, respectively. The set of all causal paths between a treatment and an outcome comprise the total causal effect. Unless specifically stated otherwise, this paper is concerned with the identification of total causal effects (average or other). In Fig. 1, the total causal effect of T on Y comprises the causal paths T→Y and T→C→Y. All other paths between treatment and outcome are called noncausal (or spurious) paths, e.g., T→C←U→Y and T←X←U→Y.

If two arrows along a path both point directly into the same variable, the variable is called a collider variable on the path (collider, for short). Otherwise, the variable is called a noncollider. Note that the same variable may be a collider on one path and a noncollider on another path. In Fig. 1, C is a collider on the path T→C←U and a noncollider on the path T→C→Y.

We make extensive reference to “conditioning on a variable.” Most broadly, conditioning refers to introducing information about a variable into the analysis by some means. In sociology, conditioning usually takes the form of controlling for a variable in a regression model, but it
could also take the form of stratifying on a variable, performing a group-specific analysis (thus conditioning on group membership), or collecting data selectively (e.g., excluding children, prisoners, retirees, or non-respondents from a survey). We denote conditioning graphically by drawing a box around the conditioned variable. [EDITOR: WE CANNOT DRAW BOXES IN THE BODY OF THE TEXT AND USE UNDERSCORE INSTEAD.]

4. SOURCES OF ASSOCIATION: CAUSATION, CONFOUNDING, AND ENDOGENOUS SELECTION

The Building Blocks: Causation, Confounding, and Endogenous Selection

The power of DAGs lies in their ability to reveal all marginal and conditional associations and independences implied by a qualitative causal model (Pearl 2009). This enables the analyst to discern which observable associations are solely causal and which ones are not—in other words, to conduct a formal nonparametric identification analysis. Absent sampling variation (i.e. chance), all observable associations originate from just three elementary configurations: chains (A → B, A → C → B, etc), forks (A ← C → B), and inverted forks (A → C ← B) (Pearl 1988, 2009; Verma & Pearl 1988). Conveniently, these three configurations correspond exactly to the sources of causation, confounding bias, and endogenous selection bias. 6

First, two variables are associated if one variable directly or indirectly causes the other. In Fig. 2a, A indirectly causes B via C. In data generated according to this DAG, the observed marginal association between A and B would reflect pure causation—in other words, the marginal association between A and B identifies the causal effect of A on B. By contrast,

conditioning on the intermediate variable C in Fig. 2b blocks the causal path and hence “controls away” the causal effect of A on B. Thus, the conditional association between A and B given C (which is zero in this DAG) does not identify the causal effect of A on B (which is non-zero). We say that conditioning on a variable on a causal path from treatment to outcome induces over-control bias.

[FIG. 2 HERE]

Second, two variables are associated if they share a common cause. In Fig. 3a, A and B are only associated because they are both caused by C. This is the familiar situation of common-cause confounding—the marginal association between A and B does not identify the causal effect of A on B. Conditioning on C in Fig. 3b eliminates this spurious association. Therefore, the conditional association between A and B given C identifies the causal effect of A on B (which, in this DAG, is zero).

[FIG. 3 HERE]

The third reason why two variables may be associated with each other is less widely known, but it is central to this article: conditioning on the common outcome of two variables (i.e., a collider) induces a new association between them. We call this phenomenon endogenous selection. In Fig. 4a, A and B are marginally independent because they do not cause each other and do not share a common cause. Thus, the marginal association between A and B identifies the causal effect (which, in this DAG, is zero). In Fig. 4b, by contrast, conditioning on the collider C induces an association between its causes A and B. Therefore, the conditional association between A and B given C is biased for the causal effect of A on B. A dotted line denotes the
spurious association induced between two variables by conditioning on a collider. Conditioning on a variable that is caused by a collider (a “descendant” of the collider) has qualitatively the same consequence as conditioning on the collider itself (Fig. 4c) because the descendant is a proxy measure of the collider.

[FIG. 4 HERE]

Since endogenous selection is not obvious and can be difficult to understand in the abstract, we first offer an intuitive hypothetical example to illustrate Fig. 4. Consider the relationships between talent, A, beauty, B, and Hollywood success, C. Suppose, for argument’s sake, that beauty and talent are unassociated in the general population (i.e., beauty does not cause talent, talent does not cause beauty, and beauty and talent do not share a common cause). Suppose further that beauty and talent are separately sufficient for becoming a successful Hollywood actor. Given these assumptions, success clearly is a collider variable. Now condition on the collider, for example, by looking at the relationship between beauty and talent only among successful Hollywood actors. Under our model of success, knowing that a talentless person is a successful actor implies that the person must be beautiful. Conversely, knowing that a less than beautiful person is a successful actor implies that the person must be talented. Either way, conditioning on the collider (success) has created a spurious association between beauty and talent among the successful. This spurious association is endogenous selection bias.

This example may lack sociological nuance, but it illustrates the logic of endogenous selection bias that conditioning on a common outcome distorts the association between its

7 This dotted line functions like a regular path segment when tracing paths between variables. Note that one does not draw a dotted line for the spurious association induced by common-cause confounding.
causes. To achieve greater realism, one could loosen assumptions and, for example, allow that A causes B (maybe because talented actors invest less in self-beautification). The problem of endogenous selection, however, would not go away. The observed conditional association between talent and beauty given Hollywood success would remain biased for the true causal effect of talent on beauty. (Adding arrows to an existing set of variables never helps nonparametric identification [Pearl 2009]). Unfortunately, sign and magnitude of endogenous selection bias cannot generally be predicted outside of constrained settings or without strong parametric assumptions (Hausman & Wise 1981; Berk 1983; VanderWeele & Robins 2009a).

In sum, over-control bias, confounding bias, and endogenous selection bias are distinct phenomena: they arise from different causal structures, and they call for different remedies. The contrast between Figs. 2-4 neatly summarizes this difference. Over-control bias results from conditioning on a variable on a causal path between treatment and outcome; the remedy is not to condition on variables on a causal path. Confounding bias arises from failure to condition on a common cause of treatment and outcome; the remedy is to condition on the common cause. Finally, endogenous selection bias results from conditioning on a (descendant of a) collider on a path (causal or noncausal) between treatment and outcome; the remedy is not to condition on such colliders. All three biases originate from analytical mistakes, albeit from different ones:

Conditioning on a collider always changes the association between its causes within at least one value of the collider, except for pathological situations, e.g., when the two effects going into the collider cancel each other out exactly. In real life, the probability of exact cancellation is zero, and we disregard this possibility henceforth. The technical literature refers to this as the “faithfulness” assumption (Spirtes et al. 1993).
with confounding, the analyst did not condition although he should have; and with over-control and endogenous selection, he did condition although he should not have.

Identification in general DAGs

All DAGs are built from chains, forks, and inverted forks. Therefore, understanding the associational implications of chains (causation), forks (confounding), and inverted forks (endogenous selection) is sufficient for conducting nonparametric identification analyses in arbitrarily complicated DAGs. The so-called *d-separation* rule summarizes these implications (Pearl 1988, 1995, Verma & Pearl 1988):

First, note that all associations in a DAG are transmitted along paths, but that not all paths transmit association. A path between two variables, A and B, does not transmit association and is said to be *blocked, closed, or d-separated* if

1. The path contains a noncollider, C, that has been conditioned on, A→C→B, or A←C→B; or if
2. The path contains a collider, C, and neither the collider nor any of its descendants have been conditioned on, A→C←B.

Paths that are not d-separated do transmit association and are said to be *open, unblocked, or d-connected*. Two variables that are d-separated along all paths are statistically independent. Conversely, two variables that are d-connected along at least one path are statistically dependent, i.e., associated (Verma & Pearl 1988).

Note that conditioning on a variable has opposite consequences depending on whether the variable is a collider or a noncollider: Conditioning on a noncollider blocks the flow of association along a path, whereas conditioning on a collider opens the flow of association.
One way of conducting a formal nonparametric identification analysis then reduces to blocking all noncausal paths between treatment and outcome (by conditioning on suitably chosen variables) while keeping all causal paths between treatment and outcome open. For example, in Fig. 1, the total causal effect of T on Y can be identified by conditioning on X because this blocks the two noncausal paths between T and Y, $T \leftarrow X \leftrightarrow U \rightarrow Y$ and $T \leftarrow X \leftrightarrow U \rightarrow C \rightarrow Y$ that would otherwise be open. (A third noncausal path between T and Y, $T \rightarrow C \leftrightarrow U \rightarrow Y$, is blocked without conditioning because it contains the collider C. Conditioning on C would ruin identification for two reasons: first, it would induce endogenous selection bias by opening the noncausal path $T \rightarrow C \leftrightarrow U \rightarrow Y$; second, it would induce over-control bias because C sits on a causal path from T to Y, $T \rightarrow C \rightarrow Y$)

The motivation for this paper is that it is all too easy to open noncausal paths between treatment and outcome inadvertently by conditioning on a collider, thus inducing endogenous selection bias.

5. Examples of Endogenous Selection Bias in Sociology

Endogenous selection bias may originate from conditioning on a collider at any point in a causal process. Endogenous selection bias can be induced by conditioning on a collider that occurs after the outcome; by conditioning on a collider that is an intermediate variable that occurs between the treatment and the outcome; and by conditioning on a collider that occurs before the treatment.

9 This is the logic of “identification by adjustment,” which underlies identification in regression analysis. Pearl’s do-calculus is a complete nonparametric graphical identification criterion built on d-separation that includes all types of nonparametric identification as special cases (Pearl 1995).
(Greenland 2003). Therefore, we organize the following sociological examples of endogenous selection bias according to the timing of the collider relative to the treatment and the outcome.

Conditioning on a (post-)outcome collider

It is well known that outright selection on the outcome, as well as conditioning on a variable affected by the outcome, can lead to bias (e.g., Berkson 1946, Gronau 1974; Heckman 1974, 1976, 1979). Nevertheless, both problems continue to occur in empirical sociological research, where they may result from non-random sampling schemes in the data selection stage of a study or from seemingly compelling choices in the data analysis stage. Here, we present canonical and more recent examples, explicating them as endogenous selection bias due to conditioning on a collider.

Sample Truncation Bias

Hausman & Wise’s (1977) influential discussion of sample truncation bias furnishes a classic example of endogenous selection bias. They consider the problem of estimating the effect of education on income from a sample selected (truncated) to contain only low earners. Fig. 5 describes the heart of the problem. Income, I, is affected by education, E, as well as by other factors traditionally subsumed in the error term, U. Assume, for clarity and without loss of generality, that E and U are independent in the population (i.e., share no common causes and do not cause each other). Then, the marginal association between E and I in the population would identify the causal effect E → I. The DAG shows, however, that I is a collider variable on the path between treatment and the error term, E → I ← U. Restricting the sample to low earners amounts to conditioning on this collider. As a result, there are now two sources of association between E and
I: the causal path $E \rightarrow I$, which represents the causal effect of interest, and the newly induced noncausal path $E \rightarrow U \rightarrow I$. Sample truncation has induced endogenous selection bias so that the association between E and I in the truncated sample does not identify the causal effect of E on I.

[FIG. 5 ABOUT HERE]

This example illustrates an important general point: if a treatment, T, has an effect on the outcome, Y, $T \rightarrow Y$, then the outcome is a collider variable on the path between the treatment and the outcome’s error term, U, $T \rightarrow Y \leftarrow U$. Therefore, outright selection on an outcome, or selection on a variable affected by the outcome, is always potentially problematic.

Nonresponse bias

The same basic causal structure that leads to truncation bias also underlies nonresponse bias in retrospective studies—except that nonresponse is better understood as conditioning on a variable affected by the outcome rather than conditioning on the outcome itself. Consider a simplified version of the example discussed by Lin, Schaeffer, & Seltzer (1999), who investigate the consequences of nonresponse bias for estimating the effect of divorced fathers’ income on their child support payments (Fig. 6). Divorced father’s income, I, and the amount of child support he pays, P, both influence whether a father responds to the study, R. (Without loss of generality, we neglect that I and P may share common causes). Response behavior thus is a collider along a noncausal path between treatment and outcome, $I \rightarrow R \leftarrow P$, Analyzing only completed interviews by dropping nonresponding fathers (listwise deletion) amounts to conditioning on this collider, which induces a noncausal association between fathers’ income and the child support they pay, i.e., endogenous selection bias.

[FIG. 6 ABOUT HERE]
Ascertainment bias

Sociological research on elite achievement sometimes employs non-random samples when collecting data on the entire population is too expensive or drawing a random sample is infeasible. Such studies may sample all individuals, organizations, or cultural products that have achieved a certain elite status (e.g., sitting on the supreme court, qualifying for the Fortune 500, or receiving critical accolades) and a control group of individuals, organizations, or cultural products that have distinguished themselves in some other manner (e.g., sitting on the Federal bench, posting revenues in excess of $100 million, or being commercially successful). The logic of this approach is to compare the most outstandingly successful cases to somewhat less outstandingly successful cases in order to understand what sets them apart. The problem is that studying the causes of success in a sample selected for success invites endogenous selection bias.

We suspect that this sampling strategy may account for a surprising recent finding about the determinants of critical success in the music industry (Schmutz 2005; see also Allen and Lincoln 2004; Schmutz & Faupel 2010). The study aimed, among other goals, to identify the effects of a music album’s commercial success on its chances of inclusion in Rolling Stone magazine’s vaunted list of 500 Greatest Albums of All Time. The sample included roughly 1700 albums: all albums in the Rolling Stone 500 and 1200 additional albums, all of which had earned some other elite distinction, such as topping the Billboard charts or winning a critics’ poll. Among the tens of thousands of albums released in the United States over the decades, the 1700 sampled albums clearly represent a subset that is heavily selected for success. A priori, one might expect that outstanding commercial success (i.e., topping the Billboard charts) should increase an album’s chances of inclusion in the Rolling Stone 500 (because the experts compiling
the list can only consider albums that they know, probably know all chart toppers, and cannot possibly know all albums ever released). Surprisingly, however, a logistic regression of the analytic sample indicated that topping the Billboard charts was strongly negatively associated with inclusion in the *Rolling Stone 500*.

[FIG. 7 ABOUT HERE]

How come? As the authors noted, this result should be interpreted with caution (Schmutz 2005:1520; Schmutz & Faupel 2010:705). We hypothesize that the finding is due to endogenous selection bias. The DAG in Fig. 7 illustrates the argument. (For clarity, we do not consider additional explanatory variables in the study.) The outcome is an album’s inclusion in the *Rolling Stone 500*, R. The treatment is topping the Billboard charts, B, which presumably has a positive effect on R in the population of all albums. By construction, both R and B have a strong, strictly positive effect on inclusion in the sample, S. Analyzing this sample means that the analysis conditions on inclusion in the sample, S, which is a collider on a noncausal path between treatment and outcome, B→S←R. Conditioning on this collider changes the association between its immediate causes, R and B, and induces endogenous selection bias. If the sample is sufficiently selective of the population of all albums, then the bias may be large enough to reverse the sign on the estimated effect of B on R, producing a negative estimate for a causal effect that may in fact be positive.

Table 1 makes the same point. For binary B and R, B=1 denotes topping the Billboard charts, R=1 denotes inclusion in the *Rolling Stone 500*, and 0 otherwise. The cell counts a, b, c, and d, define the population of all albums. In the absence of common-cause confounding (as encoded in Fig. 7), the population odds ratio $\text{OR}_{\text{population}} = \frac{ad}{bc}$ gives the true causal effect of B on R. Now note that the great majority of albums ever released neither topped the charts nor won
inclusion in the *Rolling Stone 500*. In order to reduce the data collection burden, the study then samples on success by including all albums with R=1 and all albums with B=1 in the analysis and severely under-samples less successful albums, \(a_{\text{Sample}} < a \). The odds ratio from the logistic regression of R on B in this selected sample would then be downward biased compared to the true population odds ratio, and possibly flip directions, since \(\text{OR}_{\text{Sample}} = \frac{a_{\text{Sample}}}{b_{\text{Sample}}} < \frac{ad}{bc} = \text{OR}_{\text{Population}} \).

[TABLE 1 ABOUT HERE]

We note that the recovery of causal information despite direct selection on the outcome is sometimes possible if certain constraints can be imposed on the data. This is the domain of the epidemiological literature on case-control studies (Rothman, Greenland, & Lash 2008) and the econometric literature on response- or choice-based sampling (Manski 2003: chapter 6). A key rule in case-control studies, however, is that observations should not be sampled (“ascertained”) as a function of both the treatment and the outcome. The consequence of violating this rule is known as *ascertainment bias* (Rothman et al. 2008). The endogenous selection bias in the present example is ascertainment bias, because control albums are sampled as a function of (a) exclusion from the *Rolling Stone 500* and (b) commercial success.\(^{10}\)

Heckman selection bias

Heckman selection bias—perhaps the best-known selection bias in the social sciences—can be explicated as endogenous selection bias. A classic example is the effect of motherhood (i.e.,

\(^{10}\) Greenland, Robins & Pearl. (1999) and Hernán et al. (2004) use DAGs to discuss ascertainment bias as endogenous selection bias in a number of interesting biomedical case-control studies.
having a child), \(M\), on the wages offered to women by potential employers, \(W_O\) (Gronau 1974, Heckman 1974). Fig. 8 displays the relevant DAGs. Following standard labor market theory, assume that motherhood will affect a woman’s reservation wage, \(W_R\), i.e., the wage that would be necessary to draw her out of the home and into the workforce. Employment, \(E\), is a function both of the wage offer and the reservation wage because a woman will only accept the job if the wage offer meets or exceeds her reservation wage. Therefore, employment is a collider on the path \(M \rightarrow W_R \rightarrow E \leftarrow W_O\) between motherhood and offer wages. (For simplicity, assume that \(M\) and \(W_O\) share no common cause.)

[FIG. 8 ABOUT HERE]

Many social science datasets include information on motherhood, \(M\), but they typically do not include information on women’s reservation wage, \(W_R\). Importantly, the data typically only include information on offer wages, \(W_O\), for those women who are actually employed. If the analyst restricts the analysis to employed women, he will thus condition on the collider \(E\), unblock the noncausal path from motherhood to offer wages, \(M \rightarrow W_R \rightarrow E \leftarrow W_O\), and induce endogenous selection bias. The analysis would thus indicate an association between motherhood and wages even if the causal effect of motherhood on wages is in fact zero (Fig. 8a).

If motherhood has no effect on offer wages, as in Fig. 8a, the endogenous selection problem is bad enough. Further complications are introduced by permitting the possibility that motherhood may indeed have an effect on offer wages (e.g., because of mothers’ differential productivity compared to childless women, or because of employer discrimination). This is shown in Fig. 8b by adding the arrow \(M \rightarrow W_O\). This slight modification of the DAG creates a second endogenous selection problem. Since, as noted above, all outcomes are colliders on the path between treatment and the error term if treatment has an effect on the outcome, conditioning
on E now further amounts to conditioning on the descendant of the collider \(W_O \) on the path \(M \rightarrow W_O \leftarrow \epsilon \). This induces a noncausal association between motherhood and the error term on offer wages, \(M \leftarrow \epsilon \rightarrow W_O \). Note that this second—but not the first—endogenous selection problem persists even if the non collider \(W_R \) is measured and controlled.

The distinction between these two endogenous selection problems affords a fresh opportunity for inference that, to our knowledge, has not yet been exploited in the applied literature on the motherhood wage penalty. In either DAG of Fig. 8, the analyst could test the causal Null hypothesis of no effect of motherhood on offer wages by observing and controlling women’s reservation wages: observing that \(M \) and \(W_O \) are not associated after conditioning on \(W_R \) and \(E \) implies that there is no causal effect of \(M \) on \(W_O \) under the model of Fig. 8.

Nonparametric identification of the magnitude of the causal effect \(M \rightarrow W_O \), however, is made impossible by its very existence, as seen in Fig. 8.b: even if \(W_R \) is observed and controlled (thus blocking the flow of association along the noncausal path \(M \rightarrow W_R \leftarrow E \rightarrow W_O \)), conditioning on \(E \) would still create the noncausal path \(M \leftarrow \epsilon \rightarrow Y \). Therefore, the strength of the association between \(M \) and \(W_O \) after conditioning on \(W_R \) and \(E \) would be biased for the true strength of the causal effect.

One can predict the direction of the bias under additional assumptions, specifically that the causal effects in Fig. 8 are in the same direction for all women (VanderWeele & Robins 2009a). If, for example, motherhood decreases the chances of employment (by increasing reservation wages), and if higher offer wages increase the chances of accepting employment for all women, then employed mothers must on average have received higher wage offers than employed childless women. Consequently, an empirical analysis of motherhood on offer wages that is restricted to working women would underestimate the motherhood wage penalty. This is

Conditioning on an intermediate variable

Methodologists have long warned that conditioning on an intermediate variable that has been affected by the treatment can lead to bias (e.g., Heckman 1976; Berk 1983; Rosenbaum 1984; Holland 1988; Robins 1989, 2001, 2003; Smith 1990; Angrist & Krueger 1999; Sobel 2008; Wooldridge 2005). This bias appears in many guises. It is the source of informative censoring and attrition bias in longitudinal studies, and it is a central problem of mediation analysis in the search for social mechanisms and the estimation of direct, and indirect effects. Following Pearl (1998), Robins (2001) and Cole & Hernán (2002), we use DAGs to explicate the problem of conditioning on intermediate variables as endogenous selection bias.

Informative/dependent censoring and attrition bias in longitudinal studies

Most prospective longitudinal (panel) studies experience attrition over time. Participants that were enrolled at baseline may die, move away, or simply refuse to answer in subsequent waves of data collection. Over time, the number of cases available for analysis decreases, sometimes drastically so (e.g., Behr, Bellgardt, Rendtel 2005; Alderman et al. 2001). When faced with incomplete follow up, some sociological analyses simply analyze the available cases. Event-history or survival-analytic approaches follow cases until they drop out (censoring), while other analytic approaches may disregard incompletely followed cases altogether. Either practice can lead to endogenous selection bias.

[FIG. 9 ABOUT HERE]
Building on Hill’s (1997) analysis of attrition bias, consider estimating the effect of poverty, P, on divorce, D, in a prospective study with attrition, C. Fig. 9 displays various assumptions about the attrition process. Fig. 9a shows the most benevolent situation. Here, P affects D but neither variable is causally related to C—attrition is assumed to be completely random with respect to both treatment and outcome. If this assumption is correct, then analyzing complete cases only, i.e., conditioning on not having attrited, is entirely unproblematic—the causal effect $P \rightarrow D$ is identified without any adjustments for attrition. In Fig. 9b, poverty is assumed to affect the risk of dropping out, $P \rightarrow C$. Nevertheless, the causal effect of $P \rightarrow D$ remains identified. As in Fig. 9a, conditioning on C in Fig. 9b does not lead to bias because conditioning on C does not open any noncausal paths between P and D.11 If, however, there are unmeasured factors, such as marital distress, U, that jointly affect attrition and divorce, as in Fig. 9c, then C becomes a collider along the noncausal path between poverty and divorce, $P \rightarrow C \leftarrow U \rightarrow D$, and conditioning on C will unblock this path and distort the association between poverty and divorce. Attrition bias thus is nothing other than endogenous selection bias. Note that even sizeable attrition per se is not necessarily a problem for the identification of causal effects. Rather, attrition is problematic if conditioning on attrition opens a noncausal path between treatment and outcome, as in Fig. 9c.12

11 One may ask whether conditioning on C in Panel (b) would threaten the identification of the population-average causal effect if the effect of P on D varies in the population. Under the model of Fig. 9b, this is not the case because the DAG implies that the effect of P on D does not vary systematically with C (VanderWeele & Robins 2007b).

12 For more elaborate attrition scenarios, see Hernán et al. (2004).
Imperfect Proxy Measures Affected by the Treatment

Much social research studies the effects of schooling on outcomes such as cognition (e.g., Coleman, Hoffer, & Kilgore et al. 1982), marriage (e.g., Gullickson 2006; Raymo & Iwasawa 2005), and wages (e.g., Grilliches & Mason 1972; Leigh and Ryan 2008; Amin 2011).

Schooling, of course, is not randomly assigned to students: on average, individuals with higher innate ability are both more likely to obtain more schooling and to achieve more favorable outcomes later in life regardless of their level of schooling. Absent convincing measures to control for confounding by innate ability, researchers often resort to proxies for innate ability, such as IQ-type cognitive test scores. Using DAGs, we elaborate econometric discussions of this proxy-control strategy (e.g., Angrist and Krueger 1999; Wooldridge 2002:63-70) by differentiating between three separate problems, including endogenous selection bias.

[FIG. 10 ABOUT HERE]

To be concrete, consider the effect of schooling, S, on wages, W. Fig. 10a starts by positing the usual assumption that innate ability, U, confounds the effect of schooling on wages via the unblocked noncausal path S←U→W. Since true innate ability is unobserved, the path cannot be blocked and the effect S→Y is not identified. Next, one might control for measured test scores, Q, as a proxy for the unobserved U, as shown in Fig. 10b. To the extent that U strongly affects Q, Q is a valid proxy for U. But to the extent that Q does not perfectly measure U, the effect of S on W remains partially confounded—this is the first problem of proxy-control: the familiar issue of residual confounding when an indicator (i.e., test scores) imperfectly captures the desired underlying construct (i.e., ability). Nevertheless, under the assumptions of Fig. 10b, controlling for Q will remove at least some of the confounding bias exerted by U, and not introduce any new biases.
The second problem, endogenous selection bias, enters the picture in Fig. 10c. Cognitive test scores, Q, are sometimes measured after the onset of schooling. This is a problem because schooling is known to affect students’ test scores (Winship & Korenman 1997), as indicated by the addition of the arrow S→Q. This makes Q into collider along the noncausal path from schooling to wages, S→Q←U→W. Conditioning on Q will open this noncausal path and thus lead to endogenous selection bias.

The third distinct problem results from the possibility that Q may itself exert a direct causal effect on W, Q→W, perhaps because employers may use test scores in the hiring process and reward high test scores with better pay regardless of the applicant’s schooling. If so, the causal effect of schooling on wages would be partially mediated by test scores along the causal path S→Q→W, and controlling for Q would block this causal path, leading to over-control bias.

The confluence of these three problems leaves the analyst in a quandary. If Q is measured after the onset of schooling, should she control for Q to remove (by proxy) some of the confounding owed to U? Or should she not control for Q to avoid inducing endogenous selection bias and over-control bias? Absent detailed knowledge of the relative strengths of all effects in the DAG—which is rarely available, especially where unobserved variables are involved—it is difficult to determine which problem will dominate empirically, and hence which course of action should be taken.

Direct effects, indirect effects, causal mechanisms, and mediation analysis

13 If Q is measured before the onset of schooling, then the analyst can probably assume the DAG in Fig. 10b (and certainly rule out Figs. 10c and 10d). If Fig. 10b is true, then conditioning on Q is safe and advisable.
Common approaches to estimating direct and indirect effects (Baron & Kenny 1986) are highly susceptible to endogenous selection bias. We first look at the estimation of *direct effects*. To fix ideas, consider an analysis of the Project STAR class-size experiment that asks whether class size in first grade, T, has a direct effect on high school graduation, Y, via some mechanism other than boosting student achievement in third grade, M (Finn, Gerber, & Boyd-Zaharias 2005). Fig. 11a gives the basic corresponding DAG. Since class size is randomized, the total effect of treatment, T, on the outcome, Y, is identified by their marginal association because T and Y share no common cause. The post-treatment mediator, M, however, is not randomized and may therefore share an unmeasured cause, U, with the outcome, Y. Candidates for U in the present example might include parental education, student motivation, and any other confounders of M and Y not explicitly controlled in the study. The existence of such a variable U would make M a collider variable along the noncausal path $T \rightarrow M \leftarrow U \rightarrow Y$ between treatment and outcome. Conditioning on M (e.g., in a regression of Y on T and M) in order to estimate the direct causal effect $T \rightarrow Y$ unblocks this noncausal path and induces endogenous selection bias. Hence, the direct effect of T on Y is not identified.\(^{14}\)

\[\text{FIG. 11 ABOUT HERE}\]

Attempts to detect the presence of *indirect*, or *mediated*, effects by comparing estimates for the total effect of T on Y and estimates for the direct effect of T on Y (Baron & Kenny 1986), are similarly susceptible to endogenous selection bias. Suppose, for argument’s sake, that

\(^{14}\)In this DAG, it is similarly impossible to nonparametrically identify the direct effect $T \rightarrow Y$ from an estimate of the total causal effect of T on Y minus estimates for the product of the direct effects $T \rightarrow M$ and $M \rightarrow Y$. This difference-method would fail because the effect $M \rightarrow Y$ is confounded by U and hence not identified in its own right.
achievement in third grade has no causal effect on high school graduation (Fig. 11b). The total effect of T on Y would then be identical with the direct effect of T on Y because no indirect effect of T on Y via M exists. The total effect is identified by the marginal association between T and Y. The conditional association between T and Y given M, however, would differ from the total effect of T on Y because M is a collider, and conditioning on the collider induces a noncausal association between T and Y via $T \rightarrow M \leftarrow U \rightarrow Y$. Thus, the (correct) estimate for the total causal effect and the (naïve and biased) estimate for the direct effect of T on Y would differ, and the analysts would falsely conclude that an indirect effect exists even if it does not.

The endogenous selection problem of mediation analysis is of particular concern for current empirical practice in sociology because conventional efforts to control for unobserved confounding typically focus on the confounders of the main treatment, but not on the confounders of the mediator. The new literature on causal mediation analysis discusses estimands and nonparametric identification conditions (Robins & Greenland 1992; Pearl 2001, 2012; Sobel 2008; Shpitser & VanderWeele 2011) as well as parametric and nonparametric estimation strategies (VanderWeele 2009c, 2011a; Imai, Keele, & Yamamoto 2010; Pearl 2012).

Conditioning on a pre-treatment collider

Controlling for pre-treatment variables can sometimes increase rather than decrease bias. One class of pre-treatment variables that analysts should approach with caution is pre-treatment colliders (Pearl 1995; Greenland, Robins & Pearl 1999; Hernán et al. 2002; Greenland 2003; Hernán et al. 2004; Elwert 2013).

Homophily bias in social network analysis
A classic problem of causal inference in social networks is that socially connected individuals may exhibit similar behaviors not because one individual influences the other (causation) but because individuals who are similar tend to form social ties with each other (homophily) (Farr 1858). Distinguishing between homophily and interpersonal causal effects (also called peer effects, social contagion, network influence, induction, or diffusion) is especially challenging if the sources of homophily are unobserved (latent). Shalizi & Thomas (2011) recently showed that latent homophily bias constitutes a previously unrecognized example of endogenous selection bias, where the social tie itself plays the role of the pre-treatment collider.

Consider, for example, the spread of civic engagement between friends in dyads generically indexed \((i, j)\) (Fig. 12). The question is whether Igor’s civic engagement at time \(t\), \(Y_i(t)\) causes Jane’s subsequent civic engagement, \(Y_j(t+1)\). For expositional clarity, assume that civic engagement does not spread between friends (i.e., no arrow \(Y_i(t) \rightarrow Y_j(t+1)\)). Instead, each person’s civic engagement is caused by their own characteristics, \(U\), such as altruism, which are at least partially unobserved (giving arrows \(Y_i(t) \leftarrow U_i \rightarrow Y_i(t+1)\) and \(Y_j(t) \leftarrow U_j \rightarrow Y_j(t+1)\)). Tie formation is homophilous, such that altruistic people form preferential attachments, \(U_i \rightarrow F_{ij} \leftarrow U_j\). Hence, \(F_{ij}\) is a collider. The problem, then, is that the very act of computing the association between individuals \(i\) and \(j\) in a sample of dyads \((i, j)\) means that the analysis conditions on the existence of the social tie, \(F_{ij}=1\). Conditioning on \(F_{ij}\) opens a noncausal path between treatment and outcome, \(Y_i(t) \leftarrow U_i \rightarrow F_{ij} \leftarrow U_j \rightarrow Y_j(t+1)\), which results in an association between Igor’s and Jane’s civic engagement even if one does not cause the other.

In sum, if tie formation or tie dissolution are affected by unobserved variables that are, respectively, associated with the treatment variable in one individual and the outcome variable in
another individual, then searching for interpersonal effects will induce a spurious association between individuals in the network, i.e., endogenous selection bias.

One solution to this problem is to model tie-formation (and dissolution) explicitly (Shalizi & Thomas 2011). In the model of Fig. 12, this can be accomplished by measuring and conditioning on the tie-forming characteristics of either Igor, U_i, or Jane, U_j, or both. Other approaches to latent homophily bias are proliferating in the literature. For example, Elwert & Christakis (2008) introduce a proxy strategy to measure and subtract homophily bias; Ver Steeg & Galstyan (2011) develop a formal test for latent homophily; VanderWeele (2011b) introduces a formal sensitivity analysis; and O’Malley et al. (2013) explore instrumental variables solutions; VanderWeele & An (2013) provide an extensive survey.

What Pre-Treatment Variables Should be Controlled?

Pre-treatment colliders have practical and conceptual implications beyond social network analysis. Empirical examples exist where controlling for pre-treatment variables demonstrably increases rather than decreases bias. For example, Steiner et al. (2010) report a within-study comparison between an observational study and an experimental benchmark of the effect of an educational intervention on student test scores. In the observational study, the bias in the estimated effect of treatment on math scores increased by about 30 percent when controlling only for pre-treatment psychological disposition or only for pre-treatment vocabulary test scores. Furthermore, they found that although controlling for additional pre-treatment variables generally reduced bias, sometimes including additional controls increased bias. It is possible that these increases in bias resulted from controlling for pre-treatment colliders.
This raises larger questions about control-variable selection in observational studies. Which pre-treatment variables should an analyst control, and which pre-treatment variables are better left alone? An inspection of the DAGs in Fig. 13 demonstrates that these questions cannot be settled without recourse to a theory of how the data were generated. Start by comparing the DAGs in Figs. 13a and 13b. In both models, the pre-treatment variable X meets the commonsense, purely associational, definition of confounding: (i) X temporally precedes treatment, T; (ii) X is associated with the treatment; and (iii) X is associated with the outcome, Y. The conventional advice would be to condition on X in both situations.

But this conventional advice is incorrect. The proper course of action differs sharply depending on how the data were generated (Greenland & Robins 1986; Weinberg 1993; Cole & Hernán 2002; Hernán et al. 2002; Pearl 2009). In Fig. 13a, X is indeed a common-cause confounder as it sits on an open noncausal path between treatment and outcome, T←X→Y. Conditioning on X will block this noncausal path and identify the causal effect of T on Y. By contrast, in Fig. 13b, X is a collider that blocks the noncausal path between treatment and outcome, T←U₁→X←U₂→Y. Conditioning on X would open this noncausal path and induce endogenous selection bias. Therefore, the analyst should condition on X if the data were generated according to Fig. 13a, but she should not condition on X if the data were generated according to Fig. 13b.

If U₁ and U₂ are unobserved, the analyst cannot distinguish empirically between Figs. 13a and 13b because both models have identical observational implications: in both models, all combinations of X, T, and Y are marginally and conditionally associated with each other. Therefore, the only way to decide whether or not to control for X is to decide on a priori grounds, which of the two causal models accurately represents the data-generating process. In
other words, the selection of control variables requires a theoretical commitment to a model of data generation.

In practice, sociologists may lack a fully articulated theory of data generation. It turns out, however, that partial theory suffices to determine the proper set of pre-treatment control variables. If the analyst is willing to assume that controlling for some combination of observed pre-treatment variables is sufficient to identify the total causal effect of treatment, then it is sufficient to control for all variables that (directly or indirectly) either cause treatment or outcome or both (VanderWeele & Shpitser 2011).

The virtue of this advice is that it prevents the analyst from conditioning on a pre-treatment collider. In Fig. 13a, it accurately counsels controlling for X (because X is a cause of both treatment and outcome), and in Fig. 13b it accurately counsels not controlling for X (because X causes neither treatment nor outcome).

Nevertheless, the advice is still conditional on some theory of data generation, however coarsely articulated, specifically that there exists some sufficient set of observed controls. Note that no such set exists in Fig. 13c. Here, X is both a confounder (on the noncausal paths $T \leftarrow X \leftarrow U_1 \rightarrow Y$ and $T \leftarrow X \leftarrow U_2 \rightarrow Y$) and a collider (on the noncausal path $T \leftarrow U_1 \rightarrow X \leftarrow U_1 \rightarrow Y$). Controlling for X would remove confounding but induce endogenous selection, and not controlling for X would do the opposite. In short, there exists no set of pre-treatment controls that is sufficient for identifying the causal effect of T on Y, and hence the VanderWeele-Shpitser (2011) rule does not apply.
When all variables in the DAG are binary, Greenland (2003) suggests that controlling for a variable that is both a confounder and a collider, as in Fig. 13c, likely (but not necessarily) removes more bias than it creates.\(^{15}\)

6. DISCUSSION AND CONCLUSION

In this paper, we have argued that understanding endogenous selection bias is central for understanding the identification of causal effects in sociology. Drawing on recent work in theoretical computer science (Pearl 1995, 2009) and epidemiology (Hernán et al. 2004), we have explicated endogenous selection as \textit{conditioning on a collider variable} in a DAG. Interrogating the simple steps necessary for separating causal from noncausal associations, we next saw that endogenous selection bias is logically on par with confounding bias and over-control bias in the sense that \textit{all} nonparametric identification problems can be reduced to either confounding (i.e., not conditioning on a common cause), over-control (i.e., conditioning on a variable on the causal pathway), or endogenous selection (i.e., conditioning on a collider), or a mixture of the three (Verma & Pearl 1988).

Methodological warnings are most useful if they are phrased in an accessible language (Pearl 2009:352). We hope that DAGs may provide such a language because they focus the analyst’s attention on what matters for nonparametric identification of causal effects: qualitative assumptions about the causal relationships between variables. This in no way denies the place of

\(^{15}\) Causal inference for time-varying treatments often encounters variables that are both colliders and confounders (Pearl & Robins 1995). See Elwert (2013), Sharkey & Elwert (2011) and Wodtke, Harding, & Elwert (2011) for sociological examples from neighborhood effects research that have statistical solutions (Robins 1999).
algebra and parametric assumptions in social science methodology. But inasmuch as algebraic presentations present themselves as barriers to entry for applied researchers, phrasing methodological problems graphically may increase awareness of these problems in practice.

In the main part of this paper, we have shown how numerous problems in causal inference can be explicated as endogenous selection bias. A key insight is that conditioning on an endogenous variable (a collider variable), no matter where it temporally falls relative to treatment and outcome, can induce new, noncausal, associations, which are likely to result in biased estimates. We have distinguished three groups of endogenous selection problems by the timing of the collider relative to treatment and outcome. The most general advice to be derived from the first two groups—post-outcome and intermediate collider examples—is straightforward: when estimating total causal effects, avoid conditioning on post-treatment variables (Rosenbaum 1984). Of course, this advice can be hard to follow in practice when conditioning is implicit in the data-collection scheme or the result of selective nonresponse and attrition. Even where it is easy to follow, it can be hard to swallow if the avowed scientific interest concerns the identification of causal mechanisms, mediation, direct, or indirect effects, which require peering into the post-treatment black box. New solutions for the estimation of causal mechanisms that rely on a combination of great conceptual care, a new awareness of underlying assumptions, and powerful sensitivity analyses, however, are fast becoming available (e.g., Robins & Greenland 1992; Pearl 2001; Frangakis & Rubin 2002; Sobel 2008; Imai et al. 2010; VanderWeele 2008b, 2009a, 2010; Shpitser & VanderWeele 2011).

Advice for handling pre-treatment colliders is harder to come by. If it is known that the pre-treatment collider is not also a confounder then the solution is not to condition on it when possible (this is not possible in social network analysis where conditioning on the pre-treatment...
social tie is implicit in the research question). If the pre-treatment collider is also a confounder, then conditioning on it may, but need not, remove more bias than it induces (Greenland 2003). In some circumstances, instrumental variable estimation may be feasible, though researchers should be aware of its limitations (Angrist et al. 1996).

One of the remaining difficulties in dealing with endogenous selection (if it cannot be entirely avoided) is that sign and size of the bias are difficult to predict. Absent strong parametric assumptions, size and sign of the bias will depend on the exact structure of the DAG, the sizes of the effects and their variation across individuals, and the distribution of the variables (Greenland 2003). Conventional intuition about size and sign of bias in causal systems can break down in unpredictable ways outside of the stylized assumptions of linear models. Nevertheless, statisticians have in recent years derived important (and often complicated) results that have proven quite powerful in applied work. For example, VanderWeele & Robins (2007a, 2009a, 2009b) derive the sign of endogenous selection bias for DAGs with binary variables and

16 The same difficulties pertain to nonparametrically predicting size and sign of confounding bias (e.g., VanderWeele, Hernán, & Robins 2008; VanderWeele 2008a). The conventional omitted variables formula in linear regression merely obscures these difficulties via the assumptions of linearity and constant effects (e.g., Wooldridge 2002).

17 For example, the sign of direct effects is not always transitive (VanderWeele et al. 2008). In the DAG A\(\rightarrow\)B\(\rightarrow\)C, the average causal effects A\(\rightarrow\)B and the average causal effect B\(\rightarrow\)C may both be positive and yet the average causal effect A\(\rightarrow\)C could be negative. Sign transitivity in conventional structural equation models (Alwin & Hauser 1975) relies on linearity and constant effects.
monotonic effects with and without interactions. Hudson et al. (2008) apply these results productively in a study of familial coaggregation of diseases.

Greenland (2003), in particular, has derived useful analytic results and approximations for the relative size of endogenous selection bias and confounding bias in DAGs with binary variables (see also Kaufman, Kaufman, & MacLenose 2009). His three general rules of thumb match nicely to our examples of post-outcome, intermediate, and pre-treatment colliders. First, conditioning on post-outcome colliders that are affected by treatment and outcome, \(T \rightarrow C \leftarrow Y \) induces the same bias as would the corresponding confounding bias if the direction of the arrows into the collider were reversed, \(T \leftarrow C \rightarrow Y \). Second, conditioning on an intermediate collider may lead to bias that is larger than the effects pointing into the collider, although the bias will usually be smaller than those effects if the intermediate collider does not itself exert a causal effect on the outcome. Finally, conditioning on a pre-treatment collider (as in Figs. 12-13) will usually lead to a small bias, which is why recognizing latent homophily bias as endogenous selection bias (as opposed to confounding bias) should be good news to network analysts. Furthermore, if the pre-treatment variable is both a collider and a confounder (as in Fig. 13c), then conditioning on it may remove more bias than it induces, even though nonparametric point-identification is still not feasible. We note, however, that these rules of thumb for binary-variable DAGs do not necessarily generalize to DAGs with differently distributed variables. More research is needed to understand the direction and magnitude of endogenous selection bias in realistic social science settings.

Empirical research in sociology pursues a variety of goals of description, including interpretation, and causal inference. Since assumption-free causal inference is impossible, sociologists must rely on theory, prudent substantive judgment, and well-founded prior
knowledge to assess the threat of bias. Using DAGs, sociologists can formally analyze the consequences of their theoretical assumptions and determine whether causal inference is possible. Such analyses will strengthen confidence in a causal claim when it is warranted and explicitly indicate sources of potential bias—including endogenous selection bias—when a causal claim is not appropriate.
Literature Cited

Heckman JJ. 1976. The common structure of statistical models of truncation, sample selection, and limited dependent variables and a simple estimator for such models. *Ann. Econ. Soc. Meas.* 5:475--92

Kim JH, Pearl J. 1983. A computational model for combined causal and diagnostic reasoning in

VanderWeele TJ. 2009c. Marginal structural models for the estimation of direct and indirect effects. Epidemiology 20:18--26

Table of Contents

1. Introduction
2. Identification vs. Estimation
3. DAGs In Brief
4. Sources of Association: Causation, Confounding, and Endogenous Selection
 Identification in general DAGs
5. Examples of Endogenous Selection Bias in Sociology
 Conditioning on a (post-)outcome collider
 Conditioning on an intermediate variable
 Conditioning on a pre-treatment collider
6. Discussion and Conclusion
Keywords

Causality
 Directed acyclic graphs
 Identification
 Confounding
Abstract

Endogenous selection bias is a central problem for causal inference. Recognizing the problem, however, can be difficult in practice. This article introduces a purely graphical way of characterizing endogenous selection bias and understanding its consequences (Hernán et al 2002). We use causal graphs (DAGs) to highlight that endogenous selection bias stems from conditioning (e.g., controlling, stratifying, or selecting) on a so-called “collider” variable, i.e., a variable that is itself caused by two other variables—one that is associated with the treatment and another that is associated with the outcome. Endogenous selection can result from conditioning on the dependent variable, a post-outcome variable, a post-treatment variable, and even a pre-treatment variable. We highlight the difference between endogenous selection bias and common-cause confounding and discuss examples from social stratification, cultural sociology, social network analysis, social demography, and the sociology of education.

(139 words)
Figure Captions

Figure 1. A directed acyclic graph (DAG).

Figure 2. (a) A and B are associated by causation. The marginal association between A and B identifies the causal effect of A on B. (b) A and B are conditionally independent given C. The conditional association between A and B given C does not identify the causal effect of A on B (over-control bias).

Figure 3. (a) A and B are associated by common cause. The marginal association does not identify the causal effect of A on B (confounding bias). (b) A and B are conditionally independent given C. The conditional association does identify the causal effect of A on B (which is zero in this model).

Figure 4. (a) A and B are marginally independent. The marginal association identifies the causal effect of A on B (which is zero in this model). (b) A and B are associated conditional on their common outcome, C (collider). The conditional association between A and B given C does not identify the causal effect of A on B (endogenous selection bias). (c) Conditioning on a descendant, D, of a collider, C, also induces an association between the causes of the collider.

Figure 5. Endogenous selection bias due to outcome truncation. E: education (treatment). I: income (outcome, truncated at 1.5 times poverty threshold). U: error term on education.

Figure 6. Endogenous selection bias due to listwise deletion. I: father’s income (treatment). P: child support payments (outcome). R: survey response. Conditioning on the post-outcome variable response-behavior R (listwise deletion of missing data) induces a noncausal association between father’s income I and his child support payments P.

Figure 7. Endogenous selection bias due sample selection. B: topping the Billboard charts (treatment). R: inclusion in the Rolling Stone 500 (outcome). S: Sample selection.

Table 1. Simplified representation of the sampling scheme of a study of the effect of topping the Billboard charts (B) on a record’s inclusion in the Rolling Stone 500 (R).

Figure 9. Attrition and dependent/informative censoring in panel studies. P: poverty (treatment); D: divorce (outcome); C: censoring/attrition; U: unmeasured marital distress. (a) Censoring is random with respect to poverty and divorce. (b) Censoring is affected by poverty. (c) Censoring is affected by treatment and shares a common cause with the outcome. Only in (c) does attrition lead to endogenous selection bias.
Figure 10. Proxy control. S: schooling (treatment). W: wages (outcome). U: unmeasured ability. Q: test scores. (a) U confounds the effect of S on W. (b) Q is a valid proxy for U. (c) Q is affected by S; conditioning on Q also induces endogenous selection bias. (d) Q is affected by S and affects W; conditioning on Q also induced over-control bias.

Figure 11. Endogenous selection bias in mediation analysis. T: class size (randomized treatment); M: student achievement; Y: high school graduation (outcome); U: unobserved factors such as student motivation. (a) M mediates the indirect effect of T on Y. (b) M is not a mediator.

Figure 12. Endogenous selection bias due to latent homophily in social network analysis (Shalizi and Thomas 2011). (i,j) index a generic dyad of individuals. Y: civic engagement; U: altruism; F: friendship tie.

Figure 13. (a) X is a common cause of the effect of treatment T on outcome Y; conditioning on X removes confounding bias. (b) X is a pre-treatment collider on a noncausal path linking treatment and outcome; conditioning on X induces endogenous selection bias. (c) X is both a confounder and a collider; neither conditioning nor not-conditioning on X identifies the causal effect of T on Y. If U₁ and U₂ are unobserved, the DAGs in (a-c) are observationally indistinguishable.
Figures

Figure 1. A directed acyclic graph (DAG).

(a) \hspace{2cm} (b)
\begin{align*}
A & \rightarrow C & B \\
A & \rightarrow C & B
\end{align*}

Figure 2. (a) A and B are associated by causation. The marginal association between A and B identifies the causal effect of A on B. (b) A and B are conditionally independent given C. The conditional association between A and B given C does not identify the causal effect of A on B (over-control bias).

(a) \hspace{2cm} (b)
\begin{align*}
C & \leftarrow A & B \\
C & \leftarrow A & B
\end{align*}

Figure 3. (a) A and B are associated by common cause. The marginal association does not identify the causal effect of A on B (confounding bias). (b) A and B are conditionally independent given C. The conditional association does identify the causal effect of A on B (which is zero in this model).
Figure 4. (a) A and B are marginally independent. The marginal association identifies the causal effect of A on B (which is zero in this model). (b) A and B are associated conditional on their common outcome, C (collider). The conditional association between A and B given C does not identify the causal effect of A on B (endogenous selection bias). (c) Conditioning on a descendant, D, of a collider, C, also induces an association between the causes of the collider.

Figure 5. Endogenous selection bias due to outcome truncation. E: education (treatment). I: income (outcome, truncated at 1.5 times poverty threshold). U: error term on education.

Figure 6. Endogenous selection bias due to listwise deletion. I: father’s income (treatment). P: child support payments (outcome). R: survey response. Conditioning on the post-outcome variable response-behavior R (listwise deletion of missing data) induces a noncausal association between father’s income I and his child support payments P.
Figure 7. Endogenous selection bias due sample selection. B: topping the Billboard charts (treatment). R: inclusion in the Rolling Stone 500 (outcome). S: Sample selection.

<table>
<thead>
<tr>
<th></th>
<th>R=0</th>
<th>R=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B=0</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>B=1</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Table 1. Simplified representation of the sampling scheme of a study of the effect of topping the Billboard charts (B) on a record’s inclusion in the *Rolling Stone* 500 (R).

Figure 9. Attrition and dependent/informative censoring in panel studies. P: poverty (treatment); D: divorce (outcome); C: censoring/attrition; U: unmeasured marital distress. (a) Censoring is random with respect to poverty and divorce. (b) Censoring is affected by poverty. (c) Censoring is affected by treatment and shares a common cause with the outcome. Only in (c) does attrition lead to endogenous selection bias.
Figure 10. Proxy control. S: schooling (treatment). W: wages (outcome). U: unmeasured ability. Q: test scores. (a) U confounds the effect of S on W. (b) Q is a valid proxy for U. (c) Q is affected by S; conditioning on Q also induces endogenous selection bias. (d) Q is affected by S and affects W; conditioning on Q also induced over-control bias.
Figure 11. Endogenous selection bias in mediation analysis. T: class size (randomized treatment); M: student achievement; Y: high school graduation (outcome); U: unobserved factors such as student motivation. (a) M mediates the indirect effect of T on Y. (b) M is not a mediator.

Figure 12. Endogenous selection bias due to latent homophily in social network analysis (Shalizi and Thomas 2011). (i,j) index a generic dyad of individuals. Y: civic engagement; U: altruism; F: friendship tie.
Figure 13. (a) X is a common cause of the effect of treatment T on outcome Y; conditioning on X removes confounding bias. (b) X is a pre-treatment collider on a noncausal path linking treatment and outcome; conditioning on X induces endogenous selection bias. (c) X is both a confounder and a collider; neither conditioning nor not-conditioning on X identifies the causal effect of T on Y. If U₁ and U₂ are unobserved, the DAGs in (a-c) are observationally indistinguishable.