Chapter 17: Consumption ${ }^{1}$

1 Exercise: Two-period Fisher Model of Consumption

Consider a consumer that lives for two periods, $t=0$ and $t=1$. This consumer wants to maximize utility over his or her lifetime, which is given by the function $U\left(c_{0}, c_{1}\right)$, where c_{0} is consumption at time $t=0$ and c_{1} is consumption at time $t=1$. With this lifetime utility function, assume that the consumer wants to uniformly smooth consumption across time. The consumer receives income y_{0} at $t=0$ and y_{1} at $t=1$, which is known ahead of time with certainty. The gross rate of return is $(1+R)$, so $\$ 1$ saved at $t=0$ yields $\$(1+R)$ at $t=1 ; R$ is the real interest rate.
There are two consumers, Albert and Beatrice, who receive the following fixed income independent of R :

	y_{0}	y_{1}
Albert	$\$ 100$	$\$ 100$
Beatrice	$\$ 0$	$\$ 210$

a) You observe consumption levels:

	c_{0}	c_{1}
Albert	$\$ 100$	$\$ 100$
Beatrice	$\$ 100$	$\$ 100$

Solve for R. (hint: use the budget constraint)
b) Suppose that the interest rate increases. What will happen to c_{0} and c_{1} for Albert? Is he better or worse off as a result of the change in R ?
c) Again, suppose that the interest rate increases. What will happen to c_{0} and c_{1} for Beatrice? Is she better or worse off as a result of the change in R ?

2 Exercise: Consumption Function

Let's go though a few alternatives to the Keynesian consumption function, $C=\bar{C}+M P C(Y-T)$.
a) Define $W=$ current wealth; $R=$ years to retirement; $Y=$ yearly income; $T=$ remaining years of life. Write Modigliani's life-cycle consumption function and average propensity to consume.
b) Define $Y^{P}=$ permanent income; $Y^{T}=$ transitory income; $\alpha=$ fraction of Y^{P} consumed annually. Write Friedman's permanent income consumption function and average propensity to consume.
c) Assume: $\bar{C}=0, T=0.2 Y ; W=0, T=R+10 ; Y^{P}=0.75 Y$. You observe that $\frac{C}{Y}=0.35$ in aggregate data for households. Solve for MPC, R, and α.

[^0]
3 Exercise: Intertemporal Consumption (optional)

Consider a consumer that lives for two periods, $t=0$ and $t=1$. This consumer wants to maximize utility over his or her lifetime, which is given by the following function.
Lifetime utility:

$$
\begin{equation*}
U\left(c_{0}, c_{1}\right)=c_{0}^{\frac{1}{2}}+\beta c_{1}^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

where c_{0} is consumption at time $t=0$ and c_{1} is consumption at time $t=1.0<\beta<1$ is some constant less than one; the consumer is impatient, preferring to consume today (β is called the discount factor).
The consumer receives income y_{0} at $t=0$ and y_{1} at $t=1$, which is known ahead of time with certainty. The gross rate of return is $(1+R)$, so $\$ 1$ saved at $t=0$ yields $\$(1+R)$ at $t=1 ; R$ is the real interest rate. This means that we can write c_{1} in terms of y_{0}, y_{1}, and c_{0}; all the income that is left over at time $t=1$ is consumed.
Budget constraint:

$$
(1+R)\left(y_{0}-c_{0}\right)+y_{1}=c_{1}
$$

Since $\left(y_{0}-c_{0}\right)$ is saved in the first period, $(1+R)\left(y_{0}-c_{0}\right)$ plus new income y_{1} can be used for consumption in the second period. Because you want to maximize utility, you'll consume all of your income in the second period.
a) Let $\beta=1+R=1$. Write out the utility function and budget constraint under this assumption. Argue that $c_{0}=c_{1}=\frac{y_{0}+y_{1}}{2}$ (complete consumption smoothing) is best in terms of maximizing utility. How did you arrive at your answer? (hint: think about what happens if $c_{0} \neq c_{1}$)
b) Consider the general case with no assumptions on β or $(1+R)$. First, let's use the budget constraint to eliminate c_{1} as something you have to choose. Write out $U\left(c_{0}\right)$, lifetime utility as a function of only c_{0} and income. (hint: substitute the budget constraint into the utility function for c_{1})
c) Maximize $U\left(c_{0}\right)$ with respect to c_{0} and solve for the utility-maximizing $\left(c_{0}^{*}, c_{1}^{*}\right)$ as a function of income. (hint: set $U^{\prime}\left(c_{0}\right)=0$ and solve for c_{0}, then solve for c_{1} using the budget constraint; you don't need to simplify)
d) Compute partial derivatives $\frac{\partial c_{0}^{*}}{\partial \beta}$ and $\frac{\partial c_{0}^{*}}{\partial R}$. Can you sign them? Interpret. (hint: again, either write c_{0}^{*} as a product and use the product rule or keep c_{0}^{*} as a fraction and use the quotient rule)
e) A typical Keynesian consumption function of form $C_{t}=\bar{C}+M P C\left(Y_{t}-T_{t}\right)$ at time t has consumption today depending only on current disposable income. Using your previous results, discuss why this is incomplete if consumers are intertemporal utility-maximizers. Propose an alternative. (hint: what did utility-maximizing consumption depend on in the previous parts?)

[^0]: ${ }^{1}$ Econ 302, Week 15 (last week!), 12/11/2009; UW-Madison. TAs Lihan Liu and Scott Swisher.

