Chapter 11: Applying the IS / LM Model

Consider the IS / LM model.
Consumption function:

$$
\begin{equation*}
C=a+b(Y-T) \tag{1}
\end{equation*}
$$

Investment function:

$$
\begin{equation*}
I=c-d r \tag{2}
\end{equation*}
$$

Real money demand:

$$
\begin{equation*}
L(r, Y)=l_{1} Y-l_{2} r \tag{3}
\end{equation*}
$$

Parameters:
$a>0,0<b<1, c>0, d>0, l_{1}>0, l_{2}>0$

Given the information above, please answer the following questions:
a) Given equations (1) and (2), solve for Y as a function of r, G, T, and parameters (IS curve).

$$
\begin{gathered}
Y=C+I+G \\
Y=(a+b(Y-T))+(c-d r)+G \\
Y(1-b)=a-b T+c-d r+G \\
Y=\frac{1}{1-b}[a-b T+c-d r+G]
\end{gathered}
$$

b) How does the slope of the IS curve depend on d, the interest rate sensitivity of investment?

$$
\begin{aligned}
& m_{I S} \equiv \frac{\partial Y}{\partial r}=\frac{-d}{1-b} \\
& \frac{\partial}{\partial d} m_{I S}=\frac{-1}{1-b}<0
\end{aligned}
$$

c) Which will cause a larger horizontal shift in the IS curve, a $\$ 100$ tax cut or a $\$ 100$ increase in government spending?

$$
\begin{gathered}
\left|\frac{\partial Y}{\partial T}\right|=\left|\frac{-b}{1-b}\right|=\frac{b}{1-b} \\
\left|\frac{\partial Y}{\partial G}\right|=\left|\frac{1}{1-b}\right|=\frac{1}{1-b} \\
0<b<1 \Rightarrow\left|\frac{\partial Y}{\partial G}\right|>\left|\frac{\partial Y}{\partial T}\right|
\end{gathered}
$$

Provided that $\Delta G=-\Delta T, \Delta G$ shifts the $I S$ curve more than ΔT.
d) Given equation (3), solve for r as a function of Y, M, P, and parameters (LM curve).

$$
\begin{gathered}
\left(\frac{M}{P}\right)^{d}=L(r, Y)=l_{1} Y-l_{2} r \\
\left(\frac{M}{P}\right)^{s}=\frac{M}{P} \\
\left(\frac{M}{P}\right)^{d}=\left(\frac{M}{P}\right)^{s} \Rightarrow l_{1} Y-l_{2} r=\frac{M}{P} \\
r=\frac{1}{l_{2}}\left[l_{1} Y-\frac{M}{P}\right]
\end{gathered}
$$

e) Using your answer from the previous part, how does the slope of the LM curve depend on l_{2}, the interest rate sensitivity of real money demand?

$$
\begin{aligned}
m_{L M} & \equiv \frac{\partial r}{\partial Y}=\frac{l_{1}}{l_{2}} \\
\frac{\partial}{\partial l_{2}} m_{L M} & =-\frac{l_{1}}{\left(l_{2}\right)^{2}}<0
\end{aligned}
$$

$l_{2} \uparrow \Rightarrow m_{L M} \downarrow$ (flatter)
$l_{2} \uparrow \Rightarrow$ money demand more sensitive to real interest rates $\Rightarrow r$ responds less strongly to changes in income to achieve money market equilibrium; with some ΔY, smaller Δr needed to return to equilibrium
f) How does the size of the shift in the LM curve resulting from a $\$ 100$ increase in M depend on l_{1} ? What about l_{2} ?

$$
\begin{gathered}
\mu \equiv \frac{\partial r}{\partial M}=-\frac{1}{P l_{2}} \\
\frac{\partial}{\partial l_{1}} \mu=0 \\
\frac{\partial}{\partial l_{2}} \mu=\frac{1}{P\left(l_{2}\right)^{2}}>0
\end{gathered}
$$

g) Use your answers from parts (a) and (d) to derive an expression for the aggregate demand curve. You should solve for Y as a function of P, M, G, T, and parameters; the resulting expression should not depend on r.

From part (a):

$$
Y=\frac{1}{1-b}[a-b T+c-d r+G]
$$

From part (d):

$$
r=\frac{1}{l_{2}}\left[l_{1} Y-\frac{M}{P}\right]
$$

AD curve (substitute LM curve into IS curve):

$$
\begin{gathered}
Y=\frac{1}{1-b}\left[a-b T+c-\frac{d}{l_{2}}\left(l_{1} Y-\frac{M}{P}\right)+G\right] \\
Y\left(1+\frac{d l_{1}}{l_{2}}-b\right)=a-b T+c+\frac{d M}{P l_{2}}+G \\
Y=\frac{1}{1+\frac{d l_{1}}{l_{2}}-b}\left[a-b T+c+\frac{d M}{P l_{2}}+G\right]
\end{gathered}
$$

h) Using your answer from the previous part, show that the aggregate demand curve is downwardsloping (negative slope).

$$
\frac{\partial Y}{\partial P}=-\frac{d M}{\left(1+\frac{d l_{1}}{l_{2}}-b\right) P^{2} l_{2}}<0
$$

$\frac{\partial Y}{\partial P}<0 \Rightarrow$ aggregate demand curve is downward-sloping
i) Use your answer from part (g) to show that increases in G and M, and decreases in T, shift the aggregate demand curve to the right. How does this result change if parameter $l_{2}=0$ (real money demand does not depend on the real interest rate)?

Case $l_{2} \neq 0$:

$$
\begin{gathered}
\frac{\partial Y}{\partial M}=\frac{d}{\left(1+\frac{d l_{1}}{l_{2}}-b\right) P l_{2}}=\frac{d}{P\left((1-b) l_{2}+d l_{1}\right)}=\frac{1}{P\left(l_{1}+\frac{1-b}{d} l_{2}\right)}>0 \\
\frac{\partial Y}{\partial G}=\frac{1}{1+\frac{d l_{1}}{l_{2}}-b}=\frac{l_{2}}{d l_{1}+(1-b) l_{2}}>0 \\
\frac{\partial Y}{\partial T}=\frac{-b}{1+\frac{d l_{1}}{l_{2}}-b}=\frac{-b l_{2}}{d l_{1}+(1-b) l_{2}}<0
\end{gathered}
$$

Case $l_{2} \rightarrow 0$:

$$
\begin{gathered}
\frac{\partial Y}{\partial M} \rightarrow \frac{1}{P l_{1}}>0 \\
\frac{\partial Y}{\partial G} \rightarrow 0 \\
\frac{\partial Y}{\partial T} \rightarrow 0
\end{gathered}
$$

