Chapter 10: Goods Market and IS / LM Model

Consider the IS / LM model.
Consumption function:

$$
\begin{equation*}
C=200+0.25(Y-T) \tag{1}
\end{equation*}
$$

Investment function:

$$
\begin{equation*}
I=150+0.25 Y-1000 i \tag{2}
\end{equation*}
$$

Fiscal policy:

$$
\begin{align*}
G & =250 \tag{3}\\
T & =200 \tag{4}
\end{align*}
$$

Real money demand:

$$
\begin{equation*}
\left(\frac{M}{P}\right)^{d}=2 Y-8000 i \tag{5}
\end{equation*}
$$

Real money supply:

$$
\begin{equation*}
\frac{M}{P}=1600 \tag{6}
\end{equation*}
$$

Given the information above, please answer the following questions:
a) Derive the IS curve.

Use the market-clearing condition for the goods market. Alternatively, this is just the GDP accounting equation (expenditure approach).

$$
A E=C+I+G=Y
$$

We want to graph the $I S$ curve in i versus Y space, so write i as a function of Y.

$$
\begin{gathered}
200+0.25(Y-T)+150+0.25 Y-1000 i+250=Y \\
1000 i=600+0.5 Y-0.25(200)-Y=550-0.5 Y \\
i=0.55-\frac{1}{2000} Y
\end{gathered}
$$

b) Derive the LM curve.

Use the market-clearing condition for the money market.

$$
\left(\frac{M}{P}\right)^{d}=\frac{M}{P}
$$

We want to graph the LM curve in i versus Y space, so write i as a function of Y.

$$
2 Y-8000 i=1600
$$

$$
\begin{gathered}
8000 i=2 Y-1600 \\
i=\frac{1}{4000} Y-0.2
\end{gathered}
$$

c) Solve for Y^{*}.

For (c) and (d), solve for the intersection point $\left(i^{*}, Y^{*}\right)$ of the $I S$ and LM curves.

$$
\begin{aligned}
0.55-\frac{1}{2000} Y^{*} & =\frac{1}{4000} Y^{*}-0.2 \\
\frac{3}{4000} Y & =0.75 \\
Y^{*} & =1000
\end{aligned}
$$

d) \quad Solve for i^{*}.

$$
i^{*}=0.55-\frac{1}{2000} Y^{*}=0.55-\frac{1}{2000}(1000)=0.55-0.5=0.05=5 \%
$$

e) \quad Solve for C^{*}, I^{*}.

$$
\begin{gathered}
C^{*}=200+0.25\left(Y^{*}-T\right)=200+0.25(1000-200)=400 \\
I^{*}=150+0.25 Y^{*}-1000 i^{*}=150+0.25(1000)-1000(0.05)=150+250-50=350
\end{gathered}
$$

f) Let $\frac{M}{P}=1840\left(\frac{M}{P} \uparrow\right)$; repeat parts (a) through (e). Comment on the direction of movement for equilibrium variables relative to the initial case $\frac{M}{P}=1600$.

IS curve:

$$
i=0.55-\frac{1}{2000} Y
$$

LM curve:

$$
\begin{gathered}
\left(\frac{M}{P}\right)^{d}=\frac{M}{P} \\
2 Y-8000 i=1840 \\
i=\frac{1}{4000} Y-0.23
\end{gathered}
$$

This equation is consistent with the LM curve shifting to the right (down).
Equilibrium:

$$
\begin{aligned}
0.55-\frac{1}{2000} Y^{*} & =\frac{1}{4000} Y^{*}-0.23 \\
\frac{3}{4000} Y & =0.78
\end{aligned}
$$

$$
\begin{gathered}
Y^{*}=1040 \\
i^{*}=0.55-\frac{1}{2000} Y^{*}=0.55-\frac{1}{2000}(1040)=0.55-0.52=0.03=3 \% \\
C^{*}=200+0.25\left(Y^{*}-T\right)=200+0.25(840)=410 \\
I^{*}=150+0.25 Y^{*}-1000 i^{*}=150+0.25(1040)-1000(0.03)=150+260-30=380
\end{gathered}
$$

Direction of movement of equilibrium quantities: $Y^{*} \uparrow, i^{*} \downarrow, C^{*} \uparrow, I^{*} \uparrow$.
g) Let $\frac{M}{P}=1600, G=400(G \uparrow)$; repeat parts (a) through (e). Comment on the direction of movement for equilibrium variables relative to the initial case $G=250$.

IS curve:

$$
\begin{gathered}
A E=C+I+G=Y \\
200+0.25(Y-T)+150+0.25 Y-1000 i+400=Y \\
1000 i=750+0.5 Y-0.25(200)-Y=700-0.5 Y \\
i=0.7-\frac{1}{2000} Y
\end{gathered}
$$

This equation is consistent with the IS curve shifting to the right (up). LM curve:

$$
i=\frac{1}{4000} Y-0.2
$$

Equilibrium:

$$
\begin{gathered}
0.7-\frac{1}{2000} Y^{*}=\frac{1}{4000} Y^{*}-0.2 \\
\frac{3}{4000} Y=0.9 \\
Y^{*}=1200 \\
i^{*}=0.7-\frac{1}{2000} Y^{*}=0.7-\frac{1}{2000}(1200)=0.7-0.6=0.10=10 \% \\
C^{*}=200+0.25\left(Y^{*}-T\right)=200+0.25(1000)=450 \\
I^{*}=150+0.25 Y^{*}-1000 i^{*}=150+0.25(1200)-1000(0.10)=150+300-100=350
\end{gathered}
$$

Direction of movement of equilibrium quantities: $Y^{*} \uparrow, i^{*} \uparrow, C^{*} \uparrow, I^{*}$ unchanged.

