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a b s t r a c t

Testable predictions of many economic models involve inequality comparisons between transformations
of nonparametric functionals. We introduce an econometric test for these types of restrictions based on
one-sided Lp-statistics that adapt asymptotically to the contact sets without having to directly estimate
them. Monte Carlo experiments show that our test is less conservative than procedures based on
least-favorable configurations and has power comparable to other contact-set based procedures. As an
application, we test for interdependence of bidders’ valuations in ascending auctions. Using USFS timber
auction data we reject the Independent Private Values model in favor of a model of correlated private
values.
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1. Introduction

Testable implications of economicmodels often involve restric-
tions on moments identified in the data. In this paper we study
models whose restrictions involve inequalities between nonlinear
transformations of conditional moments, and develop a computa-
tionally simple econometric methodology to test such restrictions.
Our main motivating example is testable implications concerning
the interdependence of bidders’ valuations in ascending auctions
but our method can be applied to many other settings.

There has been a recent growth in the literature on testing
and inferential methods involving some form of conditional
moment inequalities. Recent contributions include Ghosal et al.
(2000), Barrett and Donald (2003), Hall and Yatchew (2005), Lee
et al. (2009), Andrews and Shi (2013, 2011), Chernozhukov et al.
(2013), Lee et al. (2013, 2014), Ponomareva (2010), Kim (2009),
Menzel (2014), Armstrong (2015, 2014), Chetverikov (2012). Our
approach is more closely comparable to that of Lee et al. (2014),
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as both rely on one-sided Lp-statistics meant to exploit the
properties of the contact sets (the regions where the inequalities
are binding). Having a test whose properties rely on the contact
sets improves upon conservative approaches based on least-
favorable configurations (such as Lee et al. (2013)). The difference
between our approach and Lee et al. (2014) is that our test will
asymptotically adapt to the properties of the contact sets while the
procedure in Lee et al. (2014) relies on a direct estimate of such
sets. As our analysis will show, the asymptotic power properties
of both methods are comparable, an assertion supported by our
Monte Carlo experiments. We view our test as a complement to
the approach in Lee et al. (2014): the two use very different ways
to construct tests based on the properties of the contact sets, and
each outperforms the other in certain settings. As our Monte Carlo
experiments will suggest, both of these tests in turn complement
other existing procedures, outperforming them in many, but not
all, settings.

We apply our approach to test the Independent Private Values
(IPV) assumption widely used in empirical studies of auctions.
Whether the valuations of bidders in an auction are independent
or correlated has significant policy implications.1 Furthermore, in

1 If private values are independently and symmetrically distributed, a classic
result in auction theory is that the optimal selling mechanism takes the form of
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auction models both non-parametric identification and the choice
of an empirical strategy depend on whether or not values are
independent (see, e.g., Athey and Haile (2007)). When values are
correlated, policy implications drawn from an IPV-based empirical
approach can be misleading; thus, if the tests presented in this
paper lead to rejection of the IPV model, an empirical strategy
that allows for correlation is necessary.2 We derive testable
implications of both IPV and correlated private values models of
bidding in English auctions. Even though the power analysis of our
econometric test in thesemodels is limited because it is impractical
to evaluate our procedure against all possible alternative auction
models of interest, we find that it has good power properties in the
context of two standard models of endogenous entry in auctions
(those of Levin and Smith (1994) and Samuelson (1985)).We apply
our tests to data fromUSFS timber auctions, which has beenwidely
studied in the literature under the assumption of IPV. Even after
we condition on a rich collection of auction characteristics we
find clear evidence to reject independence of values in favor of
correlation.

The rest of the paper proceeds as follows. Section 2describes the
structure of our general setup. Section 3 describes our econometric
testing procedure and its asymptotic properties. There we also
compare it to the existing literature. Section 4 derives testable
implications of IPV and positively-correlated private values under
standard models of bidding in English auctions, and shows how
they fit within our general econometric setup. A series of Monte
Carlo experiments are described in Section 5, where we analyze
the performance of our procedure in auction models as well as its
comparison to other existing tests. Section 6 applies our test to
data on USFS timber auctions. Our results there lead us to reject
independence of bidders’ valuations, an important finding in terms
of identification and policy implications. Section 7 concludes.
A condensed version of our econometric proofs is included in
Appendices A and B that describes the results of our Monte Carlo
experiments. Step-by-step econometric proofs, as well as proofs
of our auction results in Section 4 and additional material can be
found in the online Supplementary Appendix, at: http://www.
personal.psu.edu/aza12/testing_auctions_supplement.pdf.

2. General setup

Our setup is motivated by our English auctions application but
it encompasses many other econometric models as special cases.

2.1. Variables and index parameter

The variables observed in the data can be classified into the
following categories:

(i) Outcome variables: Denoted by Y ∈ Rdy , these are quantities
under the control of the decision-makers in the model, such
as bids in an auction. Economic theory will characterize how
these decisions are made.

(ii) Conditioning variable of interest: Denoted by N ∈ R, this
refers generally to a variable whose relationship with Y is
predicted by theory and which we will be testing.

a standard auction in which the only relevant design parameter is the reserve price.
IPV also implies revenue-equivalence of the two most prevalent auction formats,
first-price and English auctions; optimality of a reserve price strictly higher than
the seller’s valuation; and invariance of that optimal reserve price to the number
of bidders present. All of these results can break down when bidder values are
correlated.
2 Identification and estimation in auctions with correlated values have been

studied by Li et al. (2002), Krasnokutskaya (2011), and Hu et al. (2013) in the case
of first-price auctions, and Aradillas-López et al. (2013) in the case of ascending
auctions.
(iii) Controls: Denoted by X ∈ Rdx , these are other observable
characteristics of the environment on which we will be
conditioning.

At a high level, we will be testing the relationship between N
and Y , while holding X fixed. The variable N could be allowed to
be multidimensional, but we focus on the case N ∈ R because
it corresponds to the main economic application we study here,
where N will denote the number of bidders in an auction and X
will denote all other observable details of the auction.

(iv) Index parameter: Denoted by z ∈ Z ⊂ Rdz . This index
will be present when the theoretical predictions to be tested
must hold over a range of values. For example, a test of first-
order stochastic dominance can be thought of as a test that
the relationship F1(z) ≤ F2(z) holds for each value of z in
some range. We will focus on the case where Z is a compact,
connected set.

Some of our examples do not involve an index z. In this case we
will normalize z ≡ 1 and Z ≡ {1}. If Z were discrete then z would
be absorbed by our index of transformations ‘q’ which is described
below.

2.2. Structural functions

Our next component is a known, vector-valued function of the
variables above. This function will be denoted by S(y, x, z, n) ∈

Rds , and its expected value over y, conditional on (x, z, n), by

s (x, z, n) =


S(y, x, z, n)dFY |X,N(y|x, n)

= EY |X,N

S (Y , x, z, n)

X = x,N = n

.

(Throughout the paper, Fξ refers to the marginal distribution of
a random variable ξ , and Fξ |η to the conditional distribution of ξ
given η, with fξ and fξ |η the respective densities.)

2.3. Transformations

For each pair (n, n′) ∈ Supp(N)2, the model produces a finite
collection of Qn,n′ known real-valued transformations {mq}. Each of
these transformations depends on the pair (n, n′) in question and
on the conditional moments s(·, n) and s(·, n′). We will abbreviate

Rq X, z; n, n′


= mq s(X, z, n), s(X, z, n′); n, n′


∈ R.

The models we consider have predictions of the type

∀n, n′
∈ Supp(N)2, ∀z ∈ Z, Pr


Rq X, z; n, n′


≤ 0


= 1

for q = 1, . . . ,Qn,n′ . (1)

2.4. Examples

While motivated by our English auctions application, our setup
encompasses many other examples as special cases.

Example 1: First order stochastic dominance
Suppose Y is real-valued, and that the economicmodel predicts

the first-order stochastic dominance relation FY |X,N(·|x, n)%FOSD
FY |X,N(·|x, n′) for a.e xwhenever n > n′. Thus, the model predicts

n > n′
=⇒ FY |X,N(z|x, n) ≤ FY |X,N(z|x, n′) ∀z, a.e x.

This can be written as an instance of our general setup by letting
S(y, x, z, n) = 1 {y ≤ z}, so that s(x, z, n) = FY |X,N(z|x, n), and
using the single transformationm for each n, n′

m

s(x, z, n); s(x, z, n′); n, n′


=

s(x, z, n)− s(x, z, n′)


· 1

n > n′


.
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Example 2: Second order stochastic dominance
Next, consider testingwhether FY |X,N(·|x, n)%SOSD FY |X,N(·|x, n′)

whenever n > n′, where SOSD denotes second-order stochastic
dominance. This requires that

n > n′
=⇒

 z

−∞

FY |X,N(v|x, n)dv

≤

 z

−∞

FY |X,N(v|x, n′)dv ∀z, a.e x.

This too is an instance of our general setup, with S(y, x, z, n) =

max {z − y, 0}. To see why, note that z

−∞

1 {Y ≤ v} dv = max {z − Y , 0} ,

and so for a given (x, z, n),

s(x, z, n) = EY |X,N [S(Y , x, z, n)|X = x,N = n]

= EY |X,N

max {z − Y , 0}

X = x,N = n


=


∞

−∞

 z

−∞

1 {y ≤ v} dv

fY |X,N(y|x, n)dy

=

 z

−∞


∞

−∞

1 {y ≤ v} fY |X,N(y|x, n)dy

dv

=

 z

−∞

FY |X,N(v|x, n)dv.

Once again, we would have Qn,n′ = 1 and

m

s(x, z, n); s(x, z, n′); n, n′


=

s(x, z, n)− s(x, z, n′)


·1

n > n′


.

Example 3: Covariance restrictions
Third, let Y1 and Y2 denote two real-valued outcome variables,

and X a vector of controls. There exist economic models that yield
restrictions of the general form

Cov

1 {Y1 ≤ z} , Y2

X = x


≥ 0 ∀z ∈ Z. (2)

One example is the ‘‘positive correlation’’ test proposed by Chiap-
pori and Salanie (2000) and Chiappori et al. (2006) formoral hazard
and adverse selection in insurance markets. In this case Y2 = −A,
where A is the binary indicator variable that equals 1 if the agent
incurs an accident (requiring them to exercise their insurance con-
tract). Incomplete-information static games are another example
of models that produce restrictions of the general form (2), as is
shown by de Paula and Tang (2012) for binary action games, and
generalized to an ordered set of actions by Aradillas-López and
Gandhi (forthcoming). To seewhy (2) fits within our general setup,
note that it can be re-expressed as the restriction

E

1 {Y1 ≤ z}

X = x

· E

Y2
X = x


− E


1 {Y1 ≤ z} · Y2

X = x


≤ 0 ∀z, a.e x.

In this case there is no variable playing the role of N , so this model
fits the special case (1′) discussed below. The structural functions
are

S (Y , z) =


1 {Y1 ≤ z} , Y2, 1 {Y1 ≤ z} · Y2


,

and

s(x, z) = E

S (Y , z)

X = x


=


E

1 {Y1 ≤ z}

X = x

, E

Y2
X = x


,

E

1 {Y1 ≤ z} · Y2

X = x

≡

s1(x, z), s2(x), s3(x, z)


.

And the transformationm is then given by

m (s(x, z)) = s1(x, z) · s2(x)− s3(x, z)
= E


1 {Y1 ≤ z}

X = x

· E

Y2
X = x


− E


1 {Y1 ≤ z} · Y2

X = x

.

Example 4: Conditional moment inequality models
A special case of our general framework is when there is no N

variable and no index z, so S (y, x, z) = S (y, x). In this case, the
vector-valued transformations are of the form S(y, x) ∈ Rds and

s (x) =


S(y, x)dFY |X (y|x) = EY |X


S (Y , x)

X = x

.

In this case the model consists of q = 1, . . . ,Q transformations
{mq

}. The arguments of each transformation mq are now simply
s(x), with

Rq(x) = mq (s(x)) .

These models predict

Pr

Rq (X) ≤ 0


= 1, q = 1, . . . ,Q . (1′)

3. An econometric test for our general model

Testing of conditional moment inequalities has received in-
creasing attention in the recent past. Some examples include
Andrews and Shi (2011, 2013), Armstrong (2015, 2014), Cher-
nozhukov et al. (2013), Lee et al. (2013, 2014). Among the exist-
ing work, our approach is more closely related to Lee et al. (2014)
since they are both based on one-sided Lp tests driven by the prop-
erties of contact sets, improving upon conservative methods based
on least-favorable configurations such as Lee et al. (2013). The dis-
tinction is that, while our test adapts asymptotically to the proper-
ties of these sets, themethod in Lee et al. (2014) is based on a direct
estimate of such sets. Our results will suggest that both methods
complement each other, and that they also complement alterna-
tive approaches based on instrument-functions (like Andrews and
Shi (2013)) and sup-norm tests (like Chernozhukov et al. (2013)).

3.1. Expressing (1) as an unconditional mean-zero condition

We develop a test for the general model described in (1).
Our procedure also covers the special case described in (1′). For
simplicity (and because it corresponds to our auction models
where N denotes number of bidders) we will assume that N has
discrete support, even though our approach can be extended to
the continuous−N case. X will be allowed to include discrete
and/or continuously distributed covariates. For simplicity we will
assume that the support of X does not vary with N . Let P denote a
pre-specifiedmeasure function with Lebesgue density and support
concentrated on Z. We will use P as our weight function for
the index z in our statistic. Since Z is compact,3 without loss of
generality we can normalize


z∈Z

dP (z) = 1. Define

T
q
n,n′(z) = EX


max


Rq(X, z; n, n′), 0


, and

T
q
n,n′ =


z∈Z

T
q
n,n′(z)dP (z)

3 Naturally we can also have

z∈Z

dP (z) = 1 if Z is unbounded but it would
preclude, e.g., giving each z ∈ Z a uniform weight.
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and note that this expectation is nonnegative, and it is zero if and
only if (1) holds for this (n, n′) and q. Nonnegativity allows us to
combine all restrictions into

T =


n,n′∈Supp(N)

Qn,n′
q=1

T
q
n,n′ .

We then have T ≥ 0, with T = 0 if and only if (1) holds.

3.2. Choosing a testing range

We separate X into its continuous X c and discrete Xd compo-
nents, and assume X c has an absolutely continuous distribution
with respect to the Lebesgue measure. Our test will rely on non-
parametric estimatorswhichmust satisfy certain asymptotic prop-
erties uniformly over the range of values considered for (x, n, z).
For this reason we will specify a testing range W ≡ X × N × Z for
(x, n, z), where N ⊆ Supp(N) and X ⊂ Supp(X) are pre-specified
sets such that x ≡ (xc, xd) ∈ X =⇒ xc ∈ int (Supp(X c)), and
fX,N(x, n) ≥ f > 0 ∀(x, n) ∈ X×N , where fX,N is the joint density
of X and N . Wewill focus on the expectation T

q
n,n′ taken conditional

over this range. Let IX denote a trimming functionwith theproperty
IX(x) ≥ 0, and IX(x) > 0 ⇐⇒ x ∈ X. Since we will concentrate
on the testing range, hereafter we will re-define

T
q
n,n′(z) = EX


max


Rq(X, z; n, n′), 0


· IX(X)


,

T
q
n,n′ =


T

q
n,n′(z)dP (z), and T =


n,n′∈N

Qn,n′
q=1

T
q
n,n′ .

(3)

3.3. Nonparametric estimators

We group U ≡ (Y , X,N) and maintain the assumption that we
observe a sample {Ui: 1 ≤ i ≤ L} with Ui ∼ F . We employ kernel-
based estimators constructed using a kernel K : Rr

−→ R (recall
that r ≡ dim(X c)) and a bandwidth sequence hL −→ 0. For a given
x ≡


xc , xd


and h > 0 denote

H (Xi − x; h) = K

X c
i − xc

h


· 1

Xd
i − xd = 0


.

For a given (x, z, n)we use

fX,N(x, n) =
1

L · hr
L

L
i=1

H (Xi − x; hL) · 1 {Ni = n} ,

s(x, z, n) =
1

L · hr
L

L
i=1

S (Yi, x, z, n) · H (Xi − x; hL)

· 1 {Ni = n}
fX,N(x, n),Rq x, z; n, n′


= mq s(x, z, n),s(x, z, n′); n, n′


.

As we described above, our target testing range depends on fX,N .
We estimate T

q
n,n′ and T as

T q
n,n′(z) =

1
L

L
i=1

Rq Xi, z; n, n′


·1
Rq Xi, z; n, n′


≥ −bL


· IX(Xi),

T q
n,n′ =

 T q
n,n′(z)P (z), and T =


n,n′∈N

Qn,n′
q=1

T q
n,n′ .

(4)
bL −→ 0 is a nonnegative bandwidth sequence, whose inclu-
sion will allow us to deal with the ‘‘kink’’ at zero in the func-
tion max{v, 0} and obtain (under assumptions described below)
asymptotically pivotal properties for T q

n,n′ and T . Its role is analo-
gous, e.g., to the bandwidth sequences βn in Jun et al. (2010) and
τn in Kim (2009). Both of these papers also involve testing and in-
ference with moment inequalities.4

3.4. Asymptotic properties

We characterize the asymptotic distribution of T under four
types of assumptions: (i) Smoothness conditions. (ii) A special
regularity assumption. (iii) Kernels and bandwidth convergence
conditions. (iv) Manageability properties of the empirical pro-
cesses involved.

Assumption 3.1 (Smoothness Conditions). (i) For each (n, n′, z) ∈

N 2
× Z and a.e (x1, x2) ∈ X2, the functionals

EY |X,N

S(Y , x1, z, n′)

X = x2,N = n


and fX,N(x2, n)

are M times differentiable with respect to xc2, with bounded
derivatives. Below, we will describe how largeM needs to be.
(ii) −∞ < s ≤

s(x, z, n) ≤ s < ∞∀(x, z, n) ∈ W . Let
∂mq(s1,s2;n,n′)

∂s1
and ∂mq(s1,s2;n,n′)

∂s2
denote the partial derivatives ofmq

with respect to its first and second arguments, respectively. Denote
the Jacobian and Hessian

∂mq(s1, s2; n, n′)

∂s
=


∂mq


s1, s2; n, n′


∂s1

∂mq

s1, s2; n, n′


∂s2

′

,

∂2mq(s1, s2; n, n′)

∂s∂s′
=


∂2mq


s1, s2; n, n′


∂s1∂s1

∂2mq

s1, s2; n, n′


∂s1∂s2

∂2mq

s1, s2; n, n′


∂s2∂s1

∂2mq

s1, s2; n, n′


∂s2∂s2

 .
Then

sup
(n,n′)∈N

s1,s2:max{∥s1∥, ∥s2∥}≤D

max
∂mq(s1, s2; n, n′)

∂s

 ,
∂2mq(s1, s2; n, n′)

∂s∂s′

 ≤ D for some D < ∞.

For a given (x, z, n, n′) ∈ W we will denote from now on,

∇smq x, z; n, n′


=
∂mq(s(x, z, n), s(x, z, n′); n, n′)

∂s
,

∇ss′mq x, z; n, n′


=
∂2mq(s(x, z, n), s(x, z, n′); n, n′)

∂s∂s′
.

Our testing range W is chosen such that ∇smq

x, z; n, n′


and

∇ss′mq

x, z; n, n′


exist for all (x, z, n, n′) in W . Furthermore, the

previous conditions imply that

4 All the results that follow can hold if we let the bandwidth sequence bL depend
on (z, n, n′) and q, thus generalizing (4) to

T q
n,n′ (Xi) =


z∈Z

Rq Xi, z; n, n′

· 1
Rq Xi, z; n, n′


≥ −bqL(z, n, n

′)

dP (z). (4′)

As long as each of the bandwidth functions bqL(z, n, n
′) satisfy the conditions to be

described in Assumption 3.3, all our asymptotic results would follow through. We
focus on the expression given in (4) for expositional purposes.
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sup
(x,z,n,n′)∈W

∇smq x, z; n, n′
 ≤ D,

sup
(x,z,n,n′)∈W

∇ss′mq x, z; n, n′
 ≤ D.

Contact sets. Contact sets refer to regions in W where the
inequalities in (1) are binding. For a given (n, n′) we let
COq(n, n′) =


(x, z) ∈ W : Rq


x, z; n, n′


= 0


denote the con-

tact set for Rq(·; n, n′). The contact set has measure zero if
EX


z∈Z
1

(X, z) ∈ COq(n, n′)


dP (z)


= 0. We must allow for

contact sets to have positive measure. While we allow for this, we
assume that Rq


X, z; n, n′


has a finite density in an open neigh-

borhood to the left of zero.More preciselywe impose the following
condition.

Assumption 3.2 (A Regularity Condition). There exist constants
b > 0 and A < ∞ such that, for any 0 < b ≤ b and each
(z, n, n′) ∈ Z × N 2 and each q = 1, . . . ,Qn,n′ ,

Pr

−b ≤ Rq X, z; n, n′


< 0

X ∈ X


≤ b · A.

The smoothness conditions in Assumption 3.1 can lead to
√
L-

consistency of T if we can make the bias in our nonparametric
estimators disappear at a fast enough rate. We describe conditions
under which this can be achieved in the following assumption.

Assumption 3.3 (Kernels and Bandwidths). Let M be as described
in Assumption 3.1. We use a kernel K of order M with bounded
support. The kernel is a function of bounded variation, symmetric
around zero, and satisfies supv∈Rr

K(v) ≤ K < ∞. The
bandwidth sequences bL and hL satisfy

L1/2 · hr
L · bL −→ ∞

and for a small enough ϵ1 > 0,

bL · Lϵ1
hr
L

−→ 0 and L1/2+ϵ1 · b2L −→ 0.

In addition,M is large enough that

L1/2+ϵ1 · hM
L −→ 0.

The latter can be understood as an undersmoothing condition. If
our bandwidths are of the form hL ∝ L−αh and bL ∝ L−αb it is
not hard to verify that the smallest value for which Assumption 3.3
can hold is M = 2r + 1. This is the smallest number of bounded
derivatives that the functionals in Assumption 3.1 must possess.

Assumption 3.4 (Empirical Process Conditions). Let

S(y) = sup
(x,z,n)∈X×Z×N

S(y, x, z, n).
Then E


exp


S(Y )2 · ϵ


≤ C for some ϵ > 0 and C < ∞

(i.e., S(Y )2 possesses a moment generating function). For each ℓ =

1, . . . , ds and each n ∈ N , the class of functions

F ℓ
=

f : f (y) = Sℓ(y, x, z, n) for some (x, z, n) ∈ X × Z × N


is Euclidean (see Definition 2.7 in Pakes and Pollard (1989)) with
respect to the envelope S(·).

Using the results in Pakes and Pollard (1989) (in particular,
Lemmas 2.4 and 2.14), the Euclidean property is satisfied5 by
our auction models in Section 4, as well as the examples briefly
outlined in Section 2.4.

5 Euclidean classes of functions are rich and diverse (Pakes and Pollard (1989),
include a list of classes of functions that satisfy this property). They range from
3.4.1. A linear representation result
Let ε (y, x, z, n) = S(y, x, z, n)− s(x, z, n). The functionals that

follow will have three sets of arguments: z ∈ Z, (n, n′) ∈ N 2,
x1 ∈ X and u2 ≡ (y2, x2, n2) ∈ Supp(Y )× X × N . Let

ε(u2, x1, z; n, n′) =


ε (y2, x1, z, n)′ · 1 {n2 = n}

fX,N(x1, n)
,

ε

y2, x1, z, n′

′
· 1

n2 = n′


fX,N(x1, n′)

′

.

Let ∇smq

x, z; n, n′


and ∇ss′mq


x, z; n, n′


be as defined in 3.1.

We will denote

ϕq u2, x1; n, n′


=


z∈Z


∇mq x1, z; n, n′

′ε(u2, x1, z; n, n′)


· 1

Rq(x1, z; n, n′) ≥ 0


dP (z),

f q(x1, u2, n, n′
; h) = ϕq u2, x1; n, n′


· IX(x1)

·
1
hr

H(x2 − x1; h),

∆q(u2, n, n′
; h) = EX


f q(X, u2, n, n′

; h)

,

∆q(u2, n, n′
; hL) ≡ ∆

q
L(u2, n, n′).

(5)

The following functional describes the ‘‘influence function’’ in the
linear representation of T q

n,n′ under our previous assumptions. Let

D
q
n,n′(X) =


z∈Z

max

Rq(X, z; n, n′), 0


dP (z),

λ
q
L(Ui; n, n′) =


D

q
n,n′(Xi) · IX(Xi)− EX


D

q
n,n′(X) · IX(X)


  

=T
q
n,n′



+


∆

q
L(Ui, n, n′)− EU


∆

q
L(U, n, n

′)

.

Note that EU

λ
q
L(U; n, n′)


= 0. Under our assumptions, T q

n,n′ −

T
q
n,n′ will possess an asymptotic linear representation, with
λ
q
L(Ui; n, n′) as the influence function. The next result follows from

an Mth-order approximation.

Remark 1. Fix (n, n′) ∈ N and u2 ≡ (y2, x2, n2) ∈ Supp(Y )×X×

N and define

Ξ q u2, n, n′


= ϕq(u2, x2; n, n′) · IX(x2) · fX (x2).

Suppose ϕq(u2, x1; n, n′) and IX(x1) are M times differentiable
with respect to xc1 with bounded derivatives for all u2 ∈ Supp(Y )×
X × N and x1 ∈ X. Then,

∆q u2, n, n′
; h


= Ξ q u2, n, n′

+ O


hM .

smooth (e.g., Lipschitz-continuous) to non-smooth (e.g., functions with ‘‘kinks’’
which are not differentiable but possess directional derivatives) functions, to
discontinuous ones (e.g., indicator functions over so-called VC or ‘‘polynomial’’
classes of sets). This includes all the examples studied in this paper and manymore
cases of interest. The Euclidean property can fail if the class of functions is too rich
(for example, if they consist of indicator functions over classes of sets that are too
rich, like the class of all Borel sets, as is shown in Andrews (1994)). Ideally, applying
our results to classes of functions not yet known to be Euclidean (e.g., classes not
covered in Pakes and Pollard (1989)) should be preceded by a formal analysis of this
property. In general this would be a very challenging problem as it would involve
a detailed characterization of the covering numbers (or packing numbers) of said
class.
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Note that the above conditions are an extension of the smoothness
properties in Assumption 3.1 to the functional ϕq. Combined with
our bandwidth convergence restrictions this would yield

λ
q
L(Ui; n, n′) =


D

q
n,n′(Xi) · IX(Xi)− EX


D

q
n,n′(X) · IX(X)


+


Ξ q Ui, n, n′


− EU


Ξ q U, n, n′


+ o


L−1/2−ϵ for some ϵ > 0.

Thus, up to a term of order o

L−1/2


, the influence function

λ
q
L(Ui; n, n′) would be the same for any hL that satisfies our

bandwidth convergence restrictions. This can be a useful result
for bandwidth selection (see our discussion in Section 3.7.2 on a
proposed Jackknifed-bandwidth approach).

Theorem 1. If Assumptions 3.1–3.4 hold, then for each n, n′
∈ N

and q = 1, . . . ,Qn,n′ ,

T q
n,n′ = T

q
n,n′ +

1
L

L
i=1

λ
q
L


Ui; n, n′


+ ξ

q
L (n, n

′),

where

(i) E

λ
q
L


Ui; n, n′


= 0.

(ii) If PX

Rq(X, z; n, n′) < 0

X ∈ X


= 1 for a.e z ∈ Z (i.e., if the
contact set has measure zero), then λqL


Ui; n, n′


= 0 w.p.1.

(iii)
ξ qL (n, n′)

 = Op

L−1/2−ϵ


for some ϵ > 0.

Proof. In the Appendix. �

3.4.2. Properties of λq
L and its relation to the contact sets

By constructionwehave E

λ
q
L


Ui; n, n′


= 0. Also as Remark 1

points out, under appropriate smoothness conditions λqL

Ui; n, n′


would be independent of hL up to a negligible o


L−1/2


term (in

which case we can omit the subscript L in λq). However, the key
property of λqL is its relationship with the contact sets COq(n, n′).
By inspection of (5) it follows immediately that if the contact sets
have measure zero (i.e., if Rq


x, z; n, n′


< 0 for a.e (x, z) ∈ W ),

thenϕq(u2, x1; n, n′) = 0 a.e. and thereforeλL(Ui; n, n′) = 0w.p.1.
Summarizing,

(i) E

λ
q
L


Ui; n, n′


= 0.

(ii) If PX

Rq(X, z; n, n′) < 0

X ∈ X


= 1 for a.e z ∈ Z (i.e., if the
contact set has measure zero), then λqL


Ui; n, n′


= 0 w.p.1.

Notice thatwe can have λqL

Ui; n, n′


= 0w.p.1. even if the contact

set has positive measure. This would occur, for example, if for a.e
u2 ∈ Supp(Y )× X × N ,

∇smq x1, z; n, n′
′ε(u2, x1, z; n, n′) = 0

for a.e (x1, z) ∈ COq(n, n′).

This case could be seen as an anomaly, but we will explicitly
rule it out through the following assumption. While we believe
this assumption can be relaxed under certain conditions, the
asymptotic properties of our procedure, like the fact that it adapts
asymptotically to the contact sets, will rely upon it.

Assumption 3.5. As defined previously, let ε (y, x, z, n) =

S(y, x, z, n)− s(x, z, n). Let us stack

ε(y, x, z; n, n′) =

ε (y, x, z, n) , ε


y, x, z, n′


.

Let X1 ∼ FX , Y2 ∼ FY with (X1, Y2) ∼ FX ⊗ FY (i.e., X1⊥Y2). Then
for a.e (z, n, n′) ∈ W and any C ⊆ X such that PX1 [X1 ∈ C] > 0,

PX1,Y2

∇smq (X1, z; n, n)′ ε(Y2, X1, z; n, n′) ≠ 0

 X1 ∈ C

> 0.
Assumption 3.5 would suffice to ensure that, if H0 is satisfied,
λ
q
L


Ui; n, n′


= 0 w.p.1. if and only if COq(n, n′) has measure zero.

Ruling out anomalous cases will help us in the exposition that
follows. Let

λL (Ui) =


n,n′∈N

Qn,n′
q=1

λ
q
L


Ui; n, n′


.

By Theorem 1,

(i) E [λL (Ui)] = 0.
(ii) If PX


Rq(X, z; n, n′) < 0

X ∈ X


= 1 for a.e z ∈ Z and each
(n, n′) and q (i.e., if every contact set has measure zero), then
λL (Ui) = 0 w.p.1.

By the representation result in Theorem 1, we have

T = T +
1
L

L
i=1

λL (Ui)+ ξL,

where ξL = Op

L−1/2−ϵ for some ϵ > 0. (6)

Note that the asymptotic properties of T adapt to the contact sets.
This is captured by

σ 2
L = Var (λL (Ui)) .

If H0 is satisfied but every contact set COq(n, n′) has measure zero
we will have σ 2

L = 0. Otherwise (by Assumption 3.5) it will
be positive. Our test will adapt to the contact sets through the
properties of the influence function λL, and σ 2

L will be the relevant
measure of slackness in the inequalities (1).

3.5. A test statistic

The linear representation in (6) and the specific properties of
the influence function λL(Ui) are the foundation of our test. Let
κL −→ 0 be a nonnegative sequence such that Lϵ · κL −→ ∞

for any ϵ > 0 (e.g., κL ∝ log(L)−1). Define

tL =

√
L · T

max {σL, κL}
.

We can characterize the asymptotic properties of tL in three
relevant cases.

(i) If (1) is violated with positive probability over our testing
range, then

tL =

√
L · T

max {σL, κL}  
→+∞

+
1

√
L

L
i=1

λL(Ui)

max {σL, κL}  
=Op(1)

+Op


L−ϵ

κL


  

=op(1)

.

(ii) If the restrictions in (1) are satisfied as strict inequalities w.p.1
over our testing range, then

tL = Op


L−ϵ

κL


= op(1).

In this case, for any c > 0 we have limL→∞ Pr (tL ≤ c) = 1.
(iii) If the restrictions in (1) are satisfied w.p.1 over our testing

range but at least one of them holds with equality with
positive probability,

tL =
1

√
L

L
i=1

λL(Ui)

max {σL, κL}
+ Op


L−ϵ

κL


  

=op(1)

.
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In this case, for any c > 0wehave limL→∞ Pr (tL ≤ c) ≥ Φ(c),
whereΦ is the Standard Normal distribution.

Take any α ∈ (0, 1) and let c1−α be the Standard Normal critical
value that satisfies Φ (c1−α) = 1 − α. From the above results we
have
(i) lim

L→∞

Pr (tL ≤ c1−α) ≥ 1 − α

if (1) is satisfied w.p.1 over our testing range,
(ii) lim

L→∞

Pr (tL ≤ c1−α) = 0 otherwise.

σ 2
L is unknown but is nonparametrically identified and can be

estimated as

σ 2
L =

1
L

L
i=1

λ2L (Ui).

The estimatorλL(Ui) for the influence function is described in the
Appendix. Under the conditions leading to Theorem 1wewill haveσ 2

L − σ 2
L

 = op(1). Let

tL =

√
L · T

max {σL, κL} .
For a target size α ∈ (0, 1), consider the rejection rule

‘‘Reject (1) iftL > c1−α ’’. (7)

This decision rule would have the following properties:

lim
L→∞

Pr


(1) is rejected when it is true


≤ α,

lim
L→∞

Pr


(1) is rejected when it is violated over our testing range


= 1.

3.6. A study of uniform asymptotic properties

Here we outline the uniform properties of our approach
under certain assumptions about the family of distributions that
produced our data. We will denote this space as F and for
each F ∈ F we will index the various functionals involved in
our test by F . Thus, we will refer to T (F), λL(U, F), σL(F), and
Rq

X, z; n, n′, F


= mq


s(X, z, n, F), s(X, z, n′, F); n, n′


.

Assumption 3.6. LetF be a family of distributions forU which has
common support and satisfies PF [X ∈ X] ≥ p > 0. In addition,

(i) Every F ∈ F satisfies Assumptions 3.1, 3.2, 3.4 and 3.5.
(ii) Let

F ∗

W =

F ∈ F : PF


Rq X, z, n, n′, F


< 0

X ∈ X


= 1 a.e z ∈ Z, ∀n, n′
∈ N , q = 1, . . . ,Qn,n′


F ∗

W is therefore the subset of distributions in F where the
inequalities are satisfied but the contact sets have F-measure
zero. There exist b > 0 and ϵ > 0 such that

lim
L→∞

EF


λL(U, F)2+ϵ

σ 2+ϵ
L (F)


≤ b ∀F ∈ F \ F ∗

W .

Part (i) is meant to ensure that the linear representation in
Theorem 1 is valid for each F ∈ F . Part (ii) is an integrability
condition which, intuitively, bounds the information about T (F)
(and λL(U, F)) that is contained in the tails of F . Since one sample
of observations yields little information about the tails of the
distribution, allowing T (F) to be sufficiently sensitive to the tails
of F could bring about poor (uniform) size properties for our
procedure.
Assumption 3.6(ii) is analogous to the integrability condition
in Romano (2004, Section 4.2). By Theorem 1, for each F ∈

F ∗
W we have λL(U, F) = 0F-a.s (and therefore σL(F) = 0).

Assumption 3.6(ii) ensures that, for any sequence of distributions
{FL} ∈ F and any nonnegative sequence δL → 0,

lim
L→∞

EFL


λL(U, FL)2+ϵ

max

σ 2+ϵ
L (FL), δL

 ≤ b.

Assumption 3.6(ii) is also a stronger version of Assumption 3.5.
Let us generalize our setting and assume we have a triangular
array {Ui : 1 ≤ i ≤ L, L ≥ 1} that is row-wise iid with distribution
FL where {FL} ∈ F . To study the properties oftL, let us focus for
now on tL =

√
L·T

max{σL(FL),κL}
, the (unfeasible) statistic normalized

by the true standard deviation σL(FL). The properties of tL will
be preserved fortL if F is equipped with conditions that ensuremax {σL(FL), κL} − max {σL(FL), κL}

 p
−→ 0. Let

FW =

F ∈ F : PF


Rq X, z, n, n′, F


≤ 0

X ∈ X


= 1 a.e z ∈ Z, ∀n, n′
∈ N , q = 1, . . . ,Qn,n′


.

FW is the subset of distributions such that the inequalities in
(1) are satisfied. Note that F ∗

W ⊆ FW . Under the conditions in
Assumption 3.6,

lim
L→∞

PFL (tL > c1−α) ≤ α ∀ {FL} ∈ FW .

The proof combines the results in Theorem1 and the verification of
the Lindeberg condition, which would follow from Assumption 3.6
(as in Romano (2004, Lemma 1)). Furthermore if FW \ F ∗

W ≠ ∅

(i.e., if there are distributions in F that produce contact sets with
positive measure), then there exists a sequence6 {FL} ∈ FW such
that

lim
L→∞

PFL (tL > c1−α) = α.

Combining the above results, we would obtain

lim
L→∞

sup
F∈FW

PF (tL > c1−α) ≤ α, with

lim
L→∞

sup
F∈FW

PF (tL > c1−α) = α if FW \ F ∗

W ≠ ∅.
(8)

(8) is relevant for the size properties of our approach.
Moving on to the issue of power, there will be two objects of

interest. For any sequence of distributions {FL} ∈ F let

δ1 = lim
L→∞


max {σL(FL), κL}

σL(FL)


and

δ2 = lim
L→∞

 √
LT (FL)σL(FL)

max {σL(FL), κL}2


,

where δ1 and δ2 are allowed to be∞ (note that δ1 ≥ 1 and δ2 ≥ 0).
Under our previous conditions,7

lim
L→∞

PFL (tL > c1−α) = 1 − Φ (δ1 · (c1−α − δ2)) . (9)

This expression helps us characterize the power properties of our
approach. Since δ1 ≥ 1, wewill have asymptotic power of 1 for any
sequence {FL} such that δ2 = ∞. Consider a sequence such that

6 Simply choose a sequence {FL} ∈ FW \ F ∗
W .

7 Recall that T (FL) = 0 for any {FL} ∈ FW and therefore δ2 = 0 for any such
sequence. Our result in (8) follows as a special case of (9) since δ1 ≥ 1.
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T (FL) > 0 and limL→ T (FL) = 0 and denote limL→∞ σL(FL) = σ0.
Whether or not our test has nontrivial local power against such
a sequence will depend on the properties of the corresponding
contact sets. LetM0(CO)denote the limitingmeasure of the contact
sets. There are two relevant cases.

• M0(CO) > 0: By Assumption 3.6 (specifically the fact that
Assumption 3.5 is satisfied by each F ∈ F ) we must have
σ0 > 0 and δ1 = 1. Let limL→∞ L · T (FL) = d. In this case
we will have,

δ2 =


∞ if d = ∞,
d
σ0

≥ α if d < ∞.

It follows that, if d ≠ 0, our test will always have nontrivial local
power as long as the limiting contact set has positive measure.

• M0(CO) = 0: These are the cases where our test can have
trivial local power. We now must have σ0 = 0. Suppose for
example that T (FL) ∝ L−α1 and σL(FL) ∝ L−α2 . Then δ1 = 1
and δ2 = limL→∞ L1/2+α2−α1 . In this case our test will have
nontrivial power if and only if 1/2 + α2 − α1 ≤ 0. This rules
out, e.g., the case α1 = 1/2.

To summarize, our test will have trivial local power only if the
limiting contact sets havemeasure zero. Nontrivial local power can
be achieved in cases where the limiting contact sets have measure
zero but this requires very specific conditions on the relative rates
at which T (FL) and σL(FL) converge to zero.

Nextweneed to take into account the fact thatσL is estimated in
our test. If λL(Ui)were directly observed, Assumption 3.6(ii) would
suffice to ensure that an appropriate LLN for triangular arrays holds
(see Romano (2004, Lemma 2)) and we would have

max


L
i=1
λ2L (Ui)/L, κL


max


σ 2
L (FL), κL

 −→ 1.

However, λL(Ui) is not observed and is replaced with a nonpara-
metric estimator in the construction of our test. Thus, to ensure
that the size and power properties described in (8) and (9) are pre-
served for our testing procedure it would suffice to endow F with
conditions that guarantee that

max


L
i=1

λ2L (Ui)/L, κL


max


σ 2
L (FL), κL

 −→ 1.

Analyzing each one of the pieces that goes into the construction
ofλ2L (Ui) illuminates the type of additional conditions on F that
would suffice to ensure that8

sup
u∈Supp(U)∩W×N

λL(u, FL)− λL(u, FL)
 p
−→ 0

for sequences {FL} in F . From here and Assumption 3.6, the size
and power properties described in previously would be satisfied
by our actual test.

The measure of contact sets also determines the local power
in the test proposed in Lee et al. (2014), suggesting that the two
procedures might be comparable in terms of their power; this
conjecture is strongly supported by our Monte Carlo experiments.

8 This is stronger than we need since we only require
max

L
i=1

λ2L (Ui)/L,κL


max

σ 2
L (FL),κL

 −→ 1,

and not necessarily
L

i=1
λ2L (Ui)/L

σ 2
L (FL)

−→ 1.
The difference is that our test asymptotically adapts to the contact
sets while theirs relies on a direct estimate of such sets. Our
conclusion – supported by the evidence from these experiments –
will be that the two procedures complement each other, and that
they complement other existing methods.

3.7. Choice of tuning parameters

A general theory for bandwidth selection in our problem
is beyond the scope of this paper, but here we present some
guidelines for choosing our tuning parameters. We will propose
a Jackknife-based method that combines information from several
bandwidth choices, each of which satisfies our general restrictions
and therefore the linear representation in Theorem 1. Our Monte
Carlo experiments suggest that this approach to the bandwidth
selection performs well in our context.

3.7.1. Tuning parameters and scale invariance
Our inequalities will be unchanged by any proportional re-

scaling of the functional Rq(X, z; n, n′). For this reason it is
desirable to set bL and κL in a way that helps make our test scale-
invariant. This can be done, for example, in the following way. Let

R(X, z) =

Qn,n′
q=1


n,n′∈N

Rq(X, z; n, n′),

Ω2
= EX


z∈Z

R(X, z)2dP (z)


−


EX


z∈Z

R(X, z)dP (z)
2

.

Next, let λ∗

L (Ui) denote the expression that would follow if we
replace 1


Rq(X, z; n, n′) ≥ 0


with 1 everywhere in the definition

of the influence function λL(Ui),9 and let

Σ2
L = Var (λL(Ui)) .

We use bandwidths of the form

bL = cb · Ω · L−αb , κL = cκ · Σ · log(L)−1,

hL = ch ·σ(X) · L−αh .
(10)

The bandwidth convergence restrictions in Assumption 3.3 can be
satisfied if we set

αh =
1

4 · r
− ϵh, αb =

1
4

+ ϵb,

where 0 < ϵh ≤
1

4 · r · (2 · r + 1)
, 0 < ϵb < ϵh.

3.7.2. A jackknifed-bandwidth approach
We can simply fix the coefficients ch, cb and cκ and use the

corresponding bandwidths. However, we propose an approach
that combines different bandwidths that result from different
choices of these coefficients. We can refer to this as a Jackknifed-
bandwidth approach, a terminology used, for example, in Honoré
and Powell (2005) in semiparametric estimation settings.

9 So λ∗

L (Ui) is the expression of the influence function if the contact set includes
the entire testing range.
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The idea is the following.10 We take a collection

c jh, c

j
b

J
j=1 with

corresponding bandwidth sequences hj
L = c jhL · σ(X) · L−αh and

bjL = c jb ·Ω · L−αb . Under the smoothness conditions11 in Remark 1,
up to a term o


L−1/2


, each one of these bandwidths will have

exactly the same influence function,λ(Ui) (whose exact expression
is given in Remark 1). Let σ 2

= Var (λ(U)) and lett jL denote the
test-statistic constructed with (hj

L, b
j
L). Now let


wj
J
j=1 denote a

set of weights such that
J

j=1w
j

= 1. A Jackknifed-bandwidth
test-statistic would be given by ẗL =

J
j=1w

j
·t jL. By the linear

representation result in Theorem 1 and our construction, we have

ẗL =

J
j=1

wj ·

√
LT

max
σ j, κL


+

J
j=1

wj ·


1

√
L

L
i=1

λ(Ui)

max
σ j, κL

+ op(1)

=

J
j=1

wj ·

√
LT

max {σ , κL} + op(1)

+

J
j=1

wj ·

 1
√
L

L
i=1

λ(Ui)

max {σ , κL}
+ op


1

L1/2 · κ2
L


  

=op(1)


+ op(1)

=

J
j=1

wj ·

√
LT

max {σ , κL} + op(1)

+
1

√
L

L
i=1

λ(Ui)

max {σ , κL}
+ op(1), (11)

where the last line follows from
J

j=1w
j
= 1. From (11), using ẗL in

our rejection rule will satisfy the properties described in Section 3.
It has the potential advantage of combining the information from
different bandwidth choices instead of relying on a single band-
width choice. Furthermore, the weightswj used in its construction
can be designed to boost power (e.g., by weighting the individual
statistics according to their value). In ourMonte Carlo experiments
we find that this Jackknifed-bandwidth approach can performwell
even if we use uniform weightswj

= 1/J .

3.8. A comparison to existing methods

Among existing methods that can be used to test conditional
moment inequalities ours should be directly compared to Lee et al.
(2013) (hereafter LSW1) and Lee et al. (2014) (hereafter LSW2).
Like ours, those tests use nonparametric estimators and one-sided
Lp-statistics. Like us, LSW1 use critical values from the Standard
Normal distribution but, unlike us, their approach is based on
the least favorable configuration (the case where the inequalities
are binding everywhere). This strategy renders their approach
conservative. To overcome this, LSW2 propose a procedure that
focuses on the contact sets. The key difference is that LSW2 rely
on a direct estimate of the contact sets, while our method adapts

10 What follows can be extended to include the sequence κL as well. For simplicity
we focus on hL and bL .
11 If the smoothness conditions in Remark 1 are not assumed to hold, we can
replace each c jh with a sequence c jh,L where each c jh,L has the same limit.
asymptotically to the properties of contact sets. Using our notation
the contact set estimates proposed in LSW2 would be of the formCO(cL) =


(x, z) ∈ X × Z:

R(x, z) ≤cL(x, z) .
Lee et al. (2014) study the problem of choosingcL(·) and describe
the properties of their bootstrap procedure. Qualitatively, the
power properties of LSW2 are comparable to ours. Like our test,
LSW2 can have trivial local power if the limiting contact sets have
Lebesgue measure zero (see Lee et al. (2014, Section 6.2)). Like
our method, the procedure in LSW2 requires the choice of tuning
parameters. Implementing their bootstrap test requires choosing
three different constants in addition to the bandwidth used in
the kernel-based nonparametric estimators. In our case it requires
choosing the constants related to bL and κL.

Our experiments in Section 5.2 support the notion that our
approach improves upon LSW1 and it complements LSW2 by
providing a different way of using the information in the contact
sets to give a non-conservative test. We find that the performance
of our method is entirely comparable to LSW2 (better in some
instances, equivalent in others and slightly outperformed in
others). Furthermore, we also find that our test can perform as
well or better than other non-Lp tests, including methods based
on sup-norm statistics12 like Chernozhukov et al. (2013) (hereafter
CLR), or tests based on spaces of instrument functions instead of
nonparametric estimators like Andrews and Shi (2013) (hereafter
AS). Overall we conclude that our method complements LSW2,
CLR and AS as econometric tools in problems involving tests of
functional inequalities.

4. Testing models of English auctions

In this sectionwe show that certain standard assumptionsmade
in the empirical modeling of English auctions fit within our testing
framework.

4.1. General setup

Each auction in the data is characterized by a set of observable
(to the researcher) covariates describing that particular auction,
X; a number of bidders, N; and a vector of bids, B =

(B1, . . . , BN). The joint distribution of the observables (X,N, B) is
thus nonparametrically identified by the data. We will maintain
the following assumption throughout:

Assumption 4.1. Bidders have private values, and the joint
distribution of these private values is symmetric.

Thus, we will assume that bidders have private values V =

(V1, . . . , VN); let F( · |x, n) denote the joint distribution of these
valuations, conditional on X = x and N = n.13 Symmetry
imposes the additional restriction that F(v1, v2, . . . , vn|x, n) =

F(vσ(1), vσ(2), . . . , vσ(n)|x, n) for σ : {1, 2, . . . , n} → {1, 2, . . . , n}
any permutation. An independent private values (IPV) model
would impose the additional restriction that F(v1, . . . , vn|x, n) =n

i=1 FV (vi|x, n) for some univariate distribution FV (which may or
may not depend on n).

Our primary focus is to understand and test the implications of
the IPV assumption in English (ascending) auctions. Unlike the case
of first-price auctions (see Section 5.5 in Athey and Haile (2007)),
bids in ascending auctions may be correlated even if valuations

12 For instance, we find that a method such as ours or LSW2 can outperform sup-
norm approaches such as CLR in cases where the nonparametric functions are flat
near the contact sets.
13 This is slight abuse of notation, as the domain of F : ℜ

n
+

→ [0, 1] depends on
n, but the meaning should be clear.
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are not.14 Thus, we cannot test the IPVmodel in ascending auctions
simply by testing for conditional covariance among bids. However,
in this section we show it is still possible to derive non-parametric
testable implications of ascending auctions using the properties of
order statistics.

Fixing N = n, let V1:n ≤ V2:n ≤ · · · ≤ Vn:n denote the order
statistics of the random vector of valuations V , and Fk:n (· | x) the
distribution of Vk:n conditional on the realization (X,N) = (x, n).
Similarly, let B1:n ≤ · · · ≤ Bn:n denote the order statistics of the
random vector of bids B, and Gk:n (· | x) the distribution of Bk:n
given (X,N) = (x, n). Since bids are observed, Gk:n( · | x) are
identified from the data.

For k ≤ n, define a function ψk:n : [0, 1] → [0, 1] by

ψk:n(s) =
n!

(n − k)!(k − 1)!

 s

0
tk−1(1 − t)n−kdt.

For t ∈ (0, 1), the integrand is positive, so ψk:n is strictly
increasing everywhere and therefore invertible. Athey and Haile
(2002) observe that if n independent random variables are drawn
from a distribution H(·), the distribution of the kth-lowest is
ψk:n (H(·)). Under an IPVmodel, then, for any k and n, FV (v|x, n) =

ψ−1
k:n (Fk:n(v|x)).

4.2. Testing IPV with fixed N

In an open-outcry English auction, a bidder responds to his
opponents’ bids; a bidder’s valuation therefore does not uniquely
determine his bid. Haile and Tamer (2003) address this by
imposing weak assumptions about bidder behavior. They assume
bidders never bid higher than their valuations, which implies
Bk:n ≤ Vk:n; and they assume that bidders never allow the auction
to end at a price they could profitably beat, which implies that for
k < n, Vk:n ≤ Bn:n +∆, where∆ is the minimum bid increment at
the end of the auction. In order to create an IPV test that will have
power even in such an unstructured model of bidding, we must
place some structure on howwemight expect independence to be
violated, that is, what we see as the alternative hypothesis to IPV.
We do this in a theoretically general and non-parametric way:

Assumption 4.2. For each n and x, the joint distribution F( · |x, n)
is such that for any v and i, the probability Pr(Vi < v|X = x,N =

n, ∥{j ≠ i : Vj < v}∥ = k) is nondecreasing in k.

This formulation of correlated private values was introduced
by Aradillas-López et al. (2013). There, we show (Lemma 1)
that Assumption 4.2 holds under all the standard models of
symmetric, correlated private values: specifically, affiliated private
values, conditionally-independent private values, and IPV with
unobserved heterogeneity. We will say that Assumption 4.2 holds
strictly at (x, n, v) if Pr(Vi < v|X = x,N = n, ∥{j ≠ i : Vj < v}∥ =

k) is not the same for all k.

Proposition 1. Under IPV, for any (x, n, v) and any k ≤ n − 2,

ψ−1
k:n (Fk:n(v|x)) = ψ−1

n−1:n (Fn−1:n(v|x)) .

On the other hand, if values are not independent, then

ψ−1
k:n (Fk:n(v|x)) < ψ−1

n−1:n(Fn−1:n(v|x))

at any (x, n, v) where Assumption 4.2 holds strictly.

14 For example, in the absence of jump bidding, the winning bid will always be
very close to the second-highest, even when the highest valuation is much higher
than the second-highest.
Under Haile-and-Tamer bidding, Bk:n ≤ Vk:n, and therefore
Gk:n(v|x) ≥ Fk:n(v|x). Similarly, Vn−1:n ≤ Bn:n + ∆, and therefore
Fn−1:n(v|x) ≥ G∆n:n(v|x), where G∆n:n(·|x) is the distribution (given
X = x) of Bn:n + ∆. Under Haile-and-Tamer bidding, then, we can
base a test of IPV on the relationship

ψ−1
k:n (Gk:n(v|x)) ≥ ψ−1

n−1:n


G∆n:n(v|x)


(12)

knowing that thismust hold under IPV, but should fail when values
are not independent, Assumption 4.2 holds strictly, and there is
‘‘sufficiently little slack’’ in the Haile-and-Tamer bounds.

In fact, (12) was noted by Haile and Tamer (2003, Remark 2),
who point out that it could be used as a test of the IPV model. The
second part of Proposition 1, however, is a new result, and shows
that this test can have power against the standard alternative
hypotheses to independence.

We can represent (12) as an instance of (1), and in par-
ticular, as a case of (1′). The decision variables are Y =

(B1:N , . . . , BN−1:n, BN:N +∆). The index variable Z could be any
real-valued random variable with the property that Support(V ) ⊆

Support(Z).15 For a given w ≡ (x, z), y and n, the structural func-
tion S is the vector-valued indicator S(y, w, n) = 1 {y ≤ z}, so

s (w, n) = EY |X,N

S(Y , w, n)

X = x,N = n


=

G1:n(z|x), . . . ,Gn−1:n(z|x),G∆n:n(z|x)


.

For each n, the model involves Qn = n − 2 transformations {mq
},

with

mq (s (w, n) ; n) = ψ−1
n−1:n


G∆n:n(z|x)


− ψ−1

q:n


Gq:n(z|x)


,

q = 1, . . . , n − 2.

As noted above, the power of the test depends on how close
G∆n:n is to Fn−1:n and Gk:n to Fk:n. If ∆ is small and the top two bids
are close together in most auctions, then the first inequality will
not have much slack: since G∆n:n ≤ Fn−1:n ≤ Gn−1:n, if Gn−1:n and
G∆n:n are close together, Fn−1:n must be close to G∆n:n. Thus, the real
concern is whether Gk:n is close to Fk:n for k ≤ n − 2—that is,
whether losing bidders other than the second-highest bid close
to their valuations. Song (2004) considers the possibility that the
‘‘top two losers’’ bid close to their values, even if the others do
not, implying Gn−2:n ≈ Fn−2:n; this would be enough for our test
to have power. Unfortunately, there is no easy way to check this in
the data; and if only the highest losing bidder approaches his value,
a test based on (12) may have little power.

As a result, we consider another approach to testing the IPV
model, which relies only on transaction prices (or the winning and
highest losing bids) but requires variation in the number of bidders.

4.3. Testing IPV using variation in N

Exploiting variation in N requires an assumption about the
nature of this variation. We will assume that variation in the
number of bidders is independent of the realization of their
valuations. To formalize this condition, let F n

m(· | x)denote the joint
distribution ofm bidders drawn at random from an auction with n
bidders, conditional on X = x.16

15 This is to ensure the inequality is tested everywhere; in practice, however,
for econometric/regularity reasons, we will apply our test on a strict subset of
Support(V ).
16 Since F( · | x, n) is symmetric, F n

m(v1, . . . , vm | x) = F

v1, . . . , vm,∞,

∞, . . . ,∞ | x, n

.
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Definition. Values are independent of N if F n
m( · | x) = F n′

m ( · | x)
for all (x, n, n′,m).

Under the IPV model, this simply means that the marginal
distribution FV ( · | x, n) does not depend on n. This assumption
has been used in Haile et al. (2003), Guerre et al. (2009), Gillen
(2009), and Aradillas-López et al. (2013), and has been termed an
‘‘exclusion restriction’’ since N is excluded from the distribution
FV ( · | x).

This test, and the subsequent ones, are based only on the
distribution of the second-highest valuation VN−1:N as N changes.
Inmany applications, including in Aradillas-López et al. (2013), this
valuation is assumed to be equal to the transaction price BN:N—
as it would be in a ‘‘button auction’’. If bidders only increase their
bids by the minimum amount toward the end of the auction, this
should be true to within a bid increment under the Haile-and-
Tamer bidding assumptions. Here, we present the test under this
stronger assumption, as this is what we use in our application; we
show in our online Supplementary Appendix how to modify the
tests to be based on the weaker Haile-and-Tamer assumptions.

Proposition 2. Assume Bn:n = Vn−1:n and values are independent of
N.

(a) Under IPV, for any (x, n, n′, v),

ψ−1
n−1:n (Gn:n(v|x)) = ψ−1

n′−1:n′ (Gn′:n′(v|x)) . (13)

(b) Under Assumption 4.2 (nonnegatively correlated private values),
for any (x, n, n′, v),

n > n′
−→ ψ−1

n−1:n (Gn:n(v|x)) ≥ ψ−1
n′−1:n′ (Gn′:n′(v|x)) (14)

and (14) holds strictly wherever Assumption 4.2 holds strictly at
(x, n, v).

(13) was proposed by Athey and Haile (2002) as a possible
basis for a test of the IPV model. (See also the discussion in Athey
and Haile, 2007.) The drawback is that a rejection of (13) could
follow from a violation either of IPV or of the exclusion restriction.
(14), on the other hand, is a new result, and contributes to
our testing strategy in two ways. First, it ensures that (13) has
power against all the standard models of positively-correlated
values when the exclusion restriction holds. More importantly, it
provides a testable implication of the exclusion restriction itself
which does not depend on independence of values. Studying the
power properties of our test against every possible alternative
auction model of interest is impractical for reasons of space. In
our online Supplementary Appendix, we show that (14) has power
as a test of the exclusion restriction. Specifically, we show fairly
general conditions under which a correlated private values model,
combined with either of the two standard models of endogenous
entry in auctions (those of Levin and Smith (1994) and Samuelson
(1985)), would lead to a violation of (14). (This is also illustrated
in a numerical example in Section 4.6.) Thus, if the data violates
(13) but satisfies (14), this supports the hypothesis that the failure
of (13) is caused by a violation of IPV rather than a violation of
the exclusion restriction. If this is indeed the case – values are
correlated, but independent of the number of bidders – then both
upper and lower bounds are identified for the seller’s expected
profit and optimal reserve price, using the approach laid out
in Aradillas-López et al. (2013).17

17 In that paper, we also show that the same upper bound on profit, and a weaker
upper bound on the optimal reserve price, still hold if the exclusion restriction is
violated.
To gain intuition for Proposition 2, consider what happens to
the distribution of transaction prices asN increases. AsN increases,
transaction prices get stochastically higher (the distribution shifts
to the right), since the price is set by the second-highest of a bigger
group. (Pinkse and Tan, 2005 refer to this as the sampling effect.)
If values are IPV and FV does not vary with n, Proposition 2 says
that this must happen at a particular ‘‘speed’’—that is, for each v,
Fn−1:n(v) must fall exactly fast enough so that ψ−1

n−1:n(Fn−1:n(v))
remains constant.

Relative to that benchmark, correlation of values slows down
the sampling effect—if values are correlated, then each incremental
bidder has less impact on transaction price, as bidder values are
more prone to be close together. So if values are correlated but
independent of N , Fn−1:n(v) falls more slowly than under IPV, and
ψ−1

n−1:n(Fn−1:n(v)) therefore increases with n.
On the other hand, violations of the exclusion restriction would

likely be due to a positive relationship between valuations and
N—that is, endogenous participation favoring auctions for more-
valuable prizes. This would augment the sampling effect, causing
Fn−1:n(v) to fall more quickly than under IPV; provided this effect
was stronger than the slowing-down due to correlation, it would
result in ψ−1

n−1:n(Fn−1:n(v)) decreasing with n. As noted above, we
have shown that even in the presence of correlation, the test of
(14) has power against a fairly wide class of ‘‘typical’’ violations of
the exclusion restriction.

The restriction in (14) is an instance of (1) where the decision
variable is Y = BN:N and (as before) the index variable Z
could be any real-valued random variable with the property that
Support(V ) ⊆ Support(Z). The structural function is S(y, w, n) =

S(y, z) = 1 {y ≤ z} and

s (w, n) = EY |X,N

S(Y , w, n)

X = x,N = n


= Gn:n(z|x).

For each n, n′ the model involves a single transformation
(i.e., Qn,n′ = 1) given by

m

s (w, n) ; s


w, n′


; n, n′


=


ψ−1

n′−1:n′ (Gn′:n′(z|x))− ψ−1
n−1:n (Gn:n(z|x))


· 1

n > n′


.

The restriction in (13) involves an equality between transforma-
tions of conditional moments. Notice however that we can frame it
as the combination of two inequalities: (14) along with its reverse
inequality. If either fails, we would reject (13).

4.4. Testing IPV when the exclusion restriction fails

When the exclusion restriction is rejected, of course, (13)
no longer offers a test of IPV. Without any restriction on how
FV ( · |x, n) can vary with n, the IPV model is just-identified
from transaction price data, and therefore not testable. However,
a natural restriction would be a general positive relationship
between the number of bidders and their valuations. This can be
formalized as the following condition18:

Assumption 4.3. If valuations are IPV but the distribution FV ( · |

x, n) depends on n, then it does so in such a way that (for any x)
n > n′ implies FV ( · | x, n)%

FOSD
FV ( · | x, n′).

Proposition 3. Assume Bn:n = Vn−1:n. Under IPV and Assump-
tion 4.3,

n > n′
−→ ψ−1

n−1:n (Gn:n(v|x)) ≤ ψ−1
n′−1:n′ (Gn′:n′(v|x)) (15)

for all (x, n, n′, v).

18 In Aradillas-López et al. (2013), we generalize this notion of valuations being
‘‘stochastically increasing in N ’’ to settings with correlated values, and show
conditions underwhich it follows from three differentmodels of endogenous entry.
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Table 1
Overview of observable implications.

Eq. Test of N Bidding assumptions

(12) IPV Fixed Haile-and-Tamer bidding

(13) IPV ∧V ⊥ N Variable Transaction price = Vn−1:n
(14) V ⊥ N Variable Transaction price = Vn−1:n
(15) IPV Variable Transaction price = Vn−1:n

Rejecting (14) or (15) would also reject (13).

Observe that Proposition 3 gives the opposite conclusion as
part (b) of Proposition 2; that is, relative to the benchmark of
(13), violations of the exclusion restriction work in the opposite
direction as correlation among values. When both the exclusion
restriction and independence fail, (15) neednot always have power
as a test of IPV. Nevertheless, a rejection would serve as evidence
against IPV.

For testing, (15) can be framed as an instance of (1). The
decision variable is Y = BN:N , and (as before) the index variable
Z could be any real-valued random variable with the property
that Support(V ) ⊆ Support(Z). The structural transformation is
S(y, w, n) = S(y, z) = 1 {y ≤ z} and

s (w, n) = EY |X,N

S(Y , w, n)

X = x,N = n


= Gn:n(z|x).

For each n, n′ the model involves a single transformation
(i.e., Qn,n′ = 1) given by

m

s (w, n) ; s


w, n′


; n, n′


=


ψ−1

n−1:n (Gn:n(z|x))− ψ−1
n′−1:n′ (Gn′:n′(z|x))


· 1

n > n′


.

4.5. Summarizing the results from auction models

Table 1 summarizes the various tests we have derived above:
The tests basedon (13)–(15) all have analogs basedon theHaile-

and-Tamer bidding assumptions; these are given in our online
Supplementary Appendix.

4.6. Illustration of Propositions 2 and 3

Eqs. (13)–(15) are claims that ψ−1
n−1:n(Gn:n(v|x)) is constant,

increasing, or decreasing in n, respectively. To illustrate how
ψ−1

n−1:n(Gn:n(v|x)) behaves for various types of data-generating
processes, we graph in Fig. 1 its value (as a function of v) for
different values of N under four versions of a parametric example.
For the example, there are no observable covariates X; bidder
values are i.i.d. draws from a log-normal distribution, log(Vi) ∼

N(µ, σ 2), with σ 2
= 0.5 throughout but µ potentially variable.

The four cases are as follows:

1. Values are IPV and independent of N: specifically,µ = 2.25 for
every N .

2. Values are independent of N , but correlated with each other
via conditional independence: regardless of N , µ = 2.0 with
probability 1

2 and 2.5with probability 1
2 . (Variation inµ induces

correlation among values.)
3. Values are IPV, but the distribution varies with N: specifically,
µ = 2 + 0.05N .

4. Values are correlated with each other, and with N . µ = 2.5 or
1.5with probabilities 1

3 and 2
3 respectively, andN is determined

endogenously via equilibrium play of the entry game described
in Samuelson (1985). There are 12 potential bidders, each of
whom learnsµ and his own valuation before deciding whether
to pay a cost of 10 to participate in the auction. Bidders play
a symmetric, cutoff-strategy equilibrium, with the cutoff value
varying with µ19; this induces a positive relationship between
N and µ, and therefore between N and valuations.

Fig. 1 shows plots ofψ−1
n−1:n (Gn:n(v)) against v for various values

of n for each scenario. For DGP1, we would fail to reject (13), and
conclude (correctly) that the data was consistent with both IPV
and the exclusion restriction. For DGP2, we would reject (13) but
fail to reject (14), (correctly) rejecting IPV but not the exclusion
restriction. For DGP3, we would reject both (13) and (14), but fail
to reject (15), concluding (correctly) that the data was consistent
with an IPV model violating the exclusion restriction. Finally, for
DGP4, we would reject all three tests, concluding (correctly) that
both IPV and the exclusion restriction failed.20

5. Monte Carlo experiments

This sectionhas twoobjectives. First,we study the finite-sample
performance of our test in auctionmodels. Second,we compare our
procedure against alternative approaches in the existing literature.
In all cases our goal is to study the sensitivity of our results to
various choices of the tuning parameters (bandwidths) involved.

5.1. Auction designs

First, we applied the tests of (14) and (15) on simulated auction
data (our main application). The data is based on modifications of
the last three DGPs from Section 4.6 to include a single auction-
specific covariate X . In all cases, the maximum number of bidders
was 12, and valuations satisfy log(Vi) ∼ N


µ, σ 2


. We fixed

σ 2
= 0.5, let X ∼ N (0, 1), and generated µ in ways analogous

to DGPs 2, 3 and 4 above in the following way:

(A) Values are independent of N conditional on X but are
correlated with each other (even conditional on X) in the
following way. Let ε ∼ N (0, 1) such that ε⊥X . If X + ε > 0
then µ = 2.0, otherwise µ = 2.5.

(B) Values are IPV conditional on X , but the distribution of values
varies with N in the following way. If X < 0 then µ = 1.7 +

.05 · N . Otherwise µ = 2.3 + .05 · N . Note that on average we
have µ = 2 + .05 · N .

(C) Let ε ∼ N (0, 1) with ε⊥X and let c 1
3
denote the 1

3 rd quantile

from the Standard Normal distribution. Thenµ = 2.5 if X+ε
√
2
<

c 1
3
and µ = 1.5 otherwise. Everything else is as described in

DGP4 above, withN being determined endogenously (givenµ)
by the equilibrium outcome of an entry game.

By design, DGP(A) satisfies (14) almost surely as a strict inequality,
while it violates (15). The reverse is true for DGP(B). Both (14) and
(15) are violated with positive probability in DGP(C), but each of
these inequalities is satisfied over some range of x and n. Table 2
summarizes the predicted asymptotic behavior of our econometric
test for each one of these designs.

19 When µ = 2.5, the entry cutoff is 30.57, which is exceeded by 9.7% of bidders;
when µ = 1.5, the cutoff is 15.54, which is exceeded by 3.9% of bidders. By Bayes’
Law, then, Pr(µ = 2.5|N = n) is increasing in n.
20 When neither IPV nor the exclusion restriction holds, it is not necessarily the
case that (14) and (15) will both be violated: a similar example based on a different
entry model (that of Levin and Smith, 1994) leads to distributions satisfying (15)
everywhere.
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Fig. 1. ψ−1
n−1:n (Gn:n(v)) against v under four scenarios.
5.1.1. Kernels and bandwidths
We have r = 1 (one continuous observable X). The smallest

order of the kernel that can satisfy Assumption 3.3 isM = 2r+1 =

3. We employed a kernel of the type

K(ψ) =

2
ℓ=1

cℓ ·

s2 − ψ22ℓ

· 1{|ψ | ≤ s},

with s = 5 · r = 5 (analogously to Section 4.4 of Aradillas-López
et al., 2013). The coefficients c1, c2 were chosen to ensure that K(·)
was a kernel of order M = 4. Our bandwidths are given as (10),
with ϵh =

9
10 ·

1
4·r·(2·r+1) and ϵb =

9
10 · ϵb (r = 1 as described

previously). This yielded αh ≈ 0.28 and αb ≈ 0.32.

Choice of tuning coefficients ch, cb and cκ

For simplicity we fixed cκ = 10−1 in all cases and we focused
on analyzing the sensitivity of our results to the choices of ch and
cb. We applied our tests in two different ways:

(i) Different individual combinations of (cb, ch). We obtained
results for each of the following combinations: (cb, ch) ∈

{0.01, 0.10, 0.50, 1.0}×{0.20, 0.40, 0.60}. In total this includes
12 different combinations and covers a relativelywide range of
values for these bandwidth coefficients.
(ii) Jackknifed-bandwidth approach. We also applied the Jack-
knife approach outlined in Section 3.7.2. Take each of the j =

1, . . . , 12 combinations (cbj , chj) described above and lettLj
denote the corresponding test-statistic. For a collection of non-
negative weights (wj)

12
j=1 such that

12
j=1wj = 1 we con-

structed a Jackknifed test-statistic as ẗL =
12

j=1wj ·tLj in two
different ways. First we used uniform weights: wj = 1/12 for
each j. Then we tried weights aimed at increasing the power of
our procedure by givingmore weight to combinations


cbj , chj


that produced larger values oftLj . To achieve this we used

wj =
Φ(tLj)2

12
k=1

Φ(tLk)2 , whereΦ(·) = Standard Normal cdf. (16)

We applied our tests for samples of size L = 100, 250, 500 and
1000.

Testing range
We let N = {2, . . . , 12} and Z =


B(0.01), B(0.99)


, where

B(p) = pth quantile of transaction price observed in the data. Let
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Table 2
Asymptotic rejection probabilities predicted for our test.

DGP(A) DGP(B) DGP(C)

limL→∞ Pr (Reject (14)) 0 1 1
limL→∞ Pr (Reject (15)) 1 0 1

These asymptotic predictions are valid at any significance level.

f (.005)X = .005th quantile offX (·). We used

X =


x:fX (x) ≥f (.005)X and 10−4

≤Gk:n(z|x) ≤ 1 − 10−4

∀(n, z) ∈ N × Z and each 2 ≤ k ≤ n

.

5.1.2. Experiment results for auction models
Step-by-step details of the construction of our test statistics can

be found in our online Supplementary Appendix, at http://www.
personal.psu.edu/aza12/testing_auctions_supplement.pdf. Our re-
sults are detailed in Appendix B. At very small sample sizes (L =

100) our tests had relatively little power, but power grows very
quickly, and our results approach the asymptotic predictions sum-
marized in Table 2 starting at L = 250. Our results are sensitive
to the bandwidth choice, and we find that our Jackknife appears to
be a very good solution to this, as it yielded excellent finite-sample
results in all cases. By combining the information from different
bandwidths, our Jackknifed-based test-statistics are better able to
detect whether there is evidence against the null hypothesis; fur-
thermore, this does not appear to come at the cost of size distor-
tions. Choosing Jackknife weights according to (16) led to dramatic
power improvements, but even the naive uniform weights pro-
duced good results. Choosing an ‘‘optimal’’ bandwidth may very
well lead to superior finite-sample results than our Jackknife pro-
cedure, but what constitutes an optimal choice in our context is a
complicated problem and is left for future research. However, we
are greatly encouraged by the simplicity and performance of the
proposed Jackknife approach. As wewill see below, this simple ap-
proach also led to excellent results when we compare our proce-
dure against competing tests.

5.2. Comparison of finite-sample performance with existing methods

Here, we analyze the performance of our approach for the
Monte Carlo designs analyzed in Andrews and Shi (2013) and later
in Lee et al. (2014). We will compare our results against those
of Andrews and Shi (2013, Section 10.3) (hereafter AS), (Cher-
nozhukov et al., 2013) (hereafter CLR), (Lee et al., 2013) (LSW1),
and Lee et al. (2014) (LSW2). The null hypothesis is simply
H0 : E


Y − θ

 X = x


≤ 0 for each x ∈ X, for a fixed θ .
The DGP for (Y , X) is given by Y = f (X) + U , where X ∼

Unif [−2, 2] and U is a truncated normal of the form U =

min

max


−3,U , 3 with U ∼ N (0, 1). AS considered two

different functions for f : fAS1(x) = D · φ

x10

, and fAS2(x) =

D · max

φ

(x − 1.5)10


, φ

(x + 1.5)10


, where φ is the stan-

dardnormal PDF. Both of these functions are characterized by steep
slopes, with fAS1 and fAS2 having single and double-plateau shapes
respectively. AS applied their test to the values D = 1 and D = 5
and compared their test with CLR and LSW1. More recently these
results were compared by LSW2 against their test. Here we collect
the results in AS, CLR, LSW1 and LSW2 and compare them against
ours. As in LSW2, our testing range is X = [−1.8, 1.8]. As weigh-
ing function we use ω(x) = fX (x) (i.e., we use a density-weighted
version of our test-statistic).
Unlike our auction designs, this simple experiment has a key
feature we can exploit. By its simple nature, if we reject H0 for
some θ0 we should automatically reject it for any θ < θ0. Thus
the asymptotic probability of rejectingH0 should be nonincreasing
in θ , suggesting that letting bL and κL decrease as θ decreases
might boost the power of our procedure21 (see footnote 4 and
the related discussion in Section 3.7). For example, we can use
cb(θ) = g(θ) · cb and cκ(θ) = g(θ) · cκ , with g(·) being a
monotonically increasing function. This can help our finite-sample
rejection probabilities be nonincreasing in θ , as should be the case
asymptotically. Below we perform the test for two values θ1 > θ2
and as part of our experiments we tried g(θ1) = 1 and g(θ2) =

0.10. Following AS and LSW2we tested H0 for two different values
of θ : θ1 = supx∈X f (x) and θ2 = supx∈X f (x) − 0.02. By
construction, H0 is satisfied for θ = θ1 and violated for θ = θ2.
As mentioned previously, our procedure is properly comparable
to LSW1 and LSW2. We expect to observe the following: (i) Our
test should have better power properties than LSW1, which is
more conservative by construction. (ii) Our test should have power
properties comparable to LSW2, which like ours relies on the
properties of contact sets.

The results are summarized in Tables B.3 and B.4, with
additional results included in our online Supplementary Appendix.
We find that our Jackknifed-bandwidth approach produced
excellent results. When compared to the other tests we confirm
that ours performs better in all cases than LSW1, and that it is
comparable to LSW2. Our results were slightly better than LSW2
(in terms of power) in cases where D = 5, while LSW2 performed
slightly better in the case f = fAS1 and D = 1. Our results were
quite similar in the case f = fAS2 and D = 1. We also found that
our method performed particularly well in very small sample sizes
(L = 100 and L = 250). As the sample size grows above 250 both
procedures essentially produce equivalent results. Our results are
also comparable to AS in all cases except f = fAS1 and D = 5,
where ours (along with LSW2) produced superior results. As LSW2
point out, the relative poor performance of CLR can be attributed
to the plateau-shaped feature of the function f in our designs. If
f were sharply peaked, CLR would perform better than AS and
(as confirmed in unreported simulations by Lee et al. (2014)) CLR
would also perform better than LSW2. This is reasonable since
CLR is based on the sup-norm statistic while LSW2 (and ours) is
based on one-sided Lp-statistics. Therefore we conjecture that CLR
would also perform better than our test in such cases. Overall we
conclude that AS, CLR, LSW2 and our approach complement each
other.

6. Application to USFS timber data

6.1. Timber auctions

Finally, we apply our tests to data from timber auctions run
by the United States Forest Service. A number of other papers
have studied Forest Service auctions empirically. Nearly all have
done so within the framework of independent private values.22

21 Also note that if we reject H0 for some θ0 , then 1 {E[Y |X] − θ ≥ θ} =

1 {θ0 ≥ E[Y |X] − θ ≥ θ} for any θ < θ0 . This information can be used in the
construction of our influence function and the corresponding estimator of its
variance, σL .

http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
http://www.personal.psu.edu/aza12/testing_auctions_supplement.pdf
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Table 3
Test results on ascending auction timber data.

Eq. Test of N Bidding assumptions
(12) IPV Fixed Haile-and-Tamer bidding

Results

cb = 0.01
ch = 0.6 ch = 0.8 ch = 1.0 ch = 1.2 ch = 1.4t 18.2437 28.2473 32.1576 35.9888 38.07608

Outcome* Reject Reject Reject Reject Reject

Eq. Test of N Bidding assumptions
(14) V⊥N Variable Bn:n = Vn−1:n

Results

cb = 0.01
ch = 0.6 ch = 0.8 ch = 1.0 ch = 1.2 ch = 1.4t 0.2745 0.0228 0.0008 0.0043 0.0003

Outcome* Fail to reject Fail to reject Fail to reject Fail to reject Fail to reject

Eq. Test of N Bidding assumptions
(15) IPV Variable Bn:n = Vn−1:n

Results

cb = 0.01
ch = 0.6 ch = 0.8 ch = 1.0 ch = 1.2 ch = 1.4t 11.5319 13.6534 14.2701 14.4783 14.5934

Outcome* reject reject reject reject reject
* Critical values for rejection are 1.645 for α = 5% and 2.326 for α = 1%.
Two recent papers, however, have found indirect evidence of
correlation among valuations. Athey et al. (2011) estimate amodel
allowing for unobserved heterogeneity on data from first-price
auctions. In Aradillas-López et al. (2013), we estimate a model
allowing for correlated values on English auction data; we find
the estimates (of expected profit as a function of reserve price)
differ significantly from estimates made under the assumption of
independence. Thus, while independence is a standard assumption
in empirical work, both in general and applied to these particular
auctions, there is some recent evidence to suggest this assumption
might be worrisome.

6.2. Data

Data on all USFS timber auctions held between 1978 and
1996 was made available to us by Phil Haile. We focus on the
auctions held between 1982 and 1990, as the reserve price policy
in place was stable during that period, and the reserve prices
used were generally recognized not to be binding, allowing us
to infer the number of potential bidders from the number who
submitted bids.23 We use auctions from Region 6 (mostly Oregon),
which relative to other regions provides a large sample of English
auctions. We use the same conventions as Haile and Tamer (2003)
to select auctions most likely to satisfy the assumption of private
values.

We control for six auction covariates which have been
emphasized in the previous literature as being relevant demand
shifters: the density of timber (timber volume over acres in
the tract, which we label X1); the government’s appraisal value

22 See, e.g., Baldwin et al. (1997); Haile (2001); Haile et al. (2003); Lu and Perrigne
(2008); Athey and Levin (2001); and Haile and Tamer (2003).
23 Campo et al. (2002) write, ‘‘It is well known that this reserve price does not
act as a screening device to participating’’, and perform analysis that confirms that
‘‘the possible screening effect of the reserve price is negligible’’ (p. 33). See alsoHaile
(2001), Froeb and McAfee (1988), and Haile and Tamer (2003).
of the timber (which we label X2); the estimated profit from
manufacturing the timber (sales value minus manufacturing cost,
X3); the estimated harvesting cost (per unit of timber, X4); the
species concentration (the HHI (Herfindahl index) computed as a
function of the volume of various species present, X5); and the
total volume of timber sold in the six months prior to each auction
(as a measure of the bidding firms’ existing inventory, X6). Bids
and monetary covariates are all measured in 1983 dollars. We
let X = (X1, X2, X3, X4, X5, X6) refer to the vector of covariates,
and Xi = (X1

i , X
2
i , X

3
i , X

4
i , X

5
i , X

6
i ) the data corresponding to the

ith auction. X was treated as a continuously distributed random
vector. We drop auctions with N = 1 (since there is no second-
highest bidder to whose value we can link the transaction price)
and N = 12 (as this appears to be top-coding for ‘‘more than 11’’).
Thus, our range for N is N = {2, 3, . . . , 11}, which leaves us with
a sample of L = 2034 auctions.

6.3. Kernels, bandwidths and testing range

We used the same types of kernels as in our Monte Carlo
experiments in Section 5.1.1 given r = 6. We employed a kernel
of order M = 14 of a multiplicative form K(ψ1, . . . , ψ6) =6
ℓ=1 k(ψℓ), where

k(ψ) =

7
ℓ=1

cℓ ·

s2 − ψ22ℓ

· 1{|ψ | ≤ s}.

Like in ourMonte Carlo experiments the supportwas set to s = 5·r
(s = 30 in this case). This is also the same type of kernel used
in Aradillas-López et al. (2013, Section 4.4). Our bandwidths hL,
bL and cL were chosen using the expressions in (10), with ϵh =
9
10 ·

1
4·r·(2·r+1) and ϵb =

9
10 · ϵb (and r = 6 in this case). Our Monte

Carlo experiments for auctions models suggested that very small
bandwidths could lead to size distortions or power loss, which
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could likely be exacerbated in this case with r = 6 continuous
conditioning variables. To avoid these potential issues we used
ch ≥ 0.6 in our results. Next we describe our testing range. We use
N = {2, 3, . . . , 11} and Z =


B(0.01), B(0.99)


, where B(p) = pth-

quantile of the observed transaction price. Letf (.005)X = .005th
quantile offX (·). We use

X =


x:fX (x) ≥f (.005)X and 10−4

≤Gk:n(z|x) ≤ 1 − 10−4

∀2 ≤ k ≤ n, n ∈ N , z ∈ Z

.

6.4. Results

We computed our test for different values of cb and ch, fixing
cκ = 0.10 throughout. Table 3 shows the results for the tests of
(12), (14) and (15) for all the values of ch studied and for cb = 0.01;
for the sample sizeswe had our resultswere very robust to changes
in cb. The accept/reject results are consistent across all the tuning
parameters used.24

These results paint a consistent picture of the timber data. Both
testing methods – comparing winning to losing bids in auctions
of the same size, and comparing transaction prices across auctions
of different sizes – allow us to reject independence of valuations,
and instead give strong evidence of positive correlation among
valuations.25 On the other hand, we fail to reject a model of
correlated values which are independent of N; thus, the exclusion
restriction appears plausible in the ascending auction data.

7. Conclusion

In this paper, we considered testing of economic models whose
testable implications involve inequality comparisons between
nonlinear transformations of nonparametric conditionalmoments.
Our motivating example was specification tests in ascending
auctions, but this setup extends to multiple examples of interest.
Because many commonly-used models in economics fit this
description, it is important to have econometric tools capable of
testing these restrictions in a computationally feasible way in
the presence of rich covariate data. The test we propose satisfies
these requirements while improving upon existing, conservative
methods by depending asymptotically on the properties of
contact sets (the regions where the inequalities are binding)
instead of relying on least-favorable configurations. As such,
our econometric procedure complements the approach of Lee
et al. (2014) (LSW2), which also exploits the contact sets. Our
contribution is to introduce a test that asymptotically adapts to
the contact sets instead of relying on an estimate for such sets
like the test in LSW2. The asymptotic properties of our test are
comparable to those in LSW2 and they both improve upon existing,
conservative approaches based on least-favorable configurations.
As our Monte Carlo experiments suggest, they also complement
other existing procedures, performing better in some settings. Our
main economic application (and motivation) involved testing for
independence in bidders’ private values in ascending auctions.
Applying our test to data from the United States Forest Service
timber auctions, we found clear evidence to reject the IPV model

24 Since we reject (12) and (15) and fail to reject (14) for every bandwidth
combination tried, there was no need to apply the Jackknife procedure described
above, as any weighted average of the bandwidth-dependent test statistics would
lead to the same accept/reject decision.
25 As we noted previously, rejection of (15) implies automatically that (13) is
rejected, too.
in favor of a model of correlated private values. Because the IPV
assumption is at the heart of key auction theory results, this finding
has significant policy implications, which are analyzed in detail
in Aradillas-López et al. (2013).
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Appendix A. Econometrics

A.1. Proof of Theorem 1

A step-by-step detailed proof is found in our online Supplemen-
tal Appendix, which can be found at http://www.personal.psu.
edu/aza12/testing_auctions_supplement.pdf. Here we summarize
the main steps. Let

vℓi (x, z, n; h) =


Sℓ(Yi, x, z, n)− sℓ(x, z, n)

fX,N(x, n)


· H(Xi − x; h) · 1 {Ni = n} ,

vi(x, z, n, n′
; h) =

vi(x, z, n; h)′,vi(x, z, n′
; h)′

′
,

and vqi (x, z, n, n
′
; h) = ∇smq


x, z; n, n′

′
vi(x, z, n, n′

; h). In the
first step of the proof we show that, under the conditions in
Theorem 1,

Pr


sup

(x,z,n,n′)∈W

Rq(x, z; n, n′)− Rq(x, z; n, n′)
 ≥ bL



≤ K 1 · exp

−

√
L · hr

L


K 2 · bL − K 3 · hM

L


, (A.1)

for some positive constants K 1, K 2 and K 3. AndRq(x, z; n, n′)− Rq(x, z; n, n′)

=
1

L · hr
L

L
i=1

v
q
i


x, z, n, n′

; hL

+ ξ

q
L (x, z, n, n

′),

where sup
(x,z,n,n′)∈W

ξ qL (x, z, n, n′)
 = Op


log(L)2

L · hr
L


. (A.2)

From here we study the properties of T q
n,n′(z) =

1
L

L
i=1
Rq(Xi, z;

n, n′) · 1
Rq(Xi, z; n, n′) ≥ −bL


· IX(Xi). Using (A.1) and (A.2), we

show that

T q
n,n′(z) =

1
L

L
i=1

max

Rq(Xi, z; n, n′), 0


· IX(Xi)

+
1
L

L
i=1

Rq(Xi, z; n, n′)− Rq(Xi, z; n, n′)


· 1

Rq(Xi, z; n, n′) ≥ 0


· IX(Xi)+ ζ

q
L (z, n, n

′), (A.3)
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where sup(z,n,n′)∈W

ζ q
L (z, n, n

′)
 = Op


L−1/2−ϵ


for some ϵ > 0.

The first term on the right hand side of (A.3) is a U-statistic and
we proceed to study its asymptotic properties using its Hoeffding
decomposition (Serfling, 1980) and results from U-process theory
(Sherman, 1994). Let ε (y, x, z, n) = S(y, x, z, n) − s(x, z, n), and
let

ε(u2, x1, z; n, n′) =


ε (y2, x1, z, n)′ · 1 {n2 = n}

fX,N(x1, n)
,

ε

y2, x1, z, n′

′
· 1

n2 = n′


fX,N(x1, n′)

′

,

φq u2, x1, z; n, n′


=


∇smqx1, z; n, n′

′ε(u2, x1, z; n, n′)


·1

Rq(x1, z; n, n′) ≥ 0


,

f q(x1, u2, z, n, n′
; h) = φq u2, x1, z; n, n′


· IX(x1)

·
1
hr

H(x2 − x1; h).

Next, let

∆
q
L


u, z, n, n′


= EX


f q

X, u, z, n, n′

; hL

,

λ
q
L


Ui, z; n, n′


=


max


Rq(Xi, z; n, n′), 0


· IX(Xi)− T

q
n,n′(z)


+


∆

q
L


Ui, z, n, n′


− EU


∆

q
L


U, z, n, n′


,

(recall that T
q
n,n′(z) = EX


max


Rq(X, z; n, n′), 0


· ·IX(X)


). Un-

der the conditions of Theorem 1, the Hoeffding decomposition of
the U-Statistic on the right hand side of (A.3) yields

T q
n,n′(z) = T

q
n,n′(z)+

1
L

L
i=1

λ
q
L


Ui, z; n, n′


+ ξ

q
L (z, n, n

′),

where
ξ qL (n, n′)

 = Op

L−1/2−ϵ for some ϵ > 0.

(A.4)

Examining the structure of λqL

Ui, z; n, n′


it is easy to see that for

each z ∈ Z,

(i) E

λ
q
L


Ui, z; n, n′


= 0.

(ii) If PX

Rq(X, z; n, n′) < 0

X ∈ X


= 1, then λqL

Ui, z; n, n′


=

0 w.p.1. That is, if the contact set for z has measure zero then
λ
q
L


Ui, z; n, n′


= 0 almost surely.

Using the previous results we obtain the asymptotic properties ofT q
n,n′ described Theorem 1. Recall that T q

n,n′ =
 T q

n,n′(z)dP (z) and
T

q
n,n′ =


T

q
n,n′(z)dP (z). Let
ϕq u2, x1; n, n′


=


z∈Z


∇smqx1, z; n, n′
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

· 1

Rq(x1, z; n, n′) ≥ 0


dP (z),

f q(x1, u2, n, n′
; h) = ϕq u2, x1; n, n′


· IX(x1) ·

1
hr

H(x2 − x1; h),

∆q(u2, n, n′
; h) = EX


f q(X, u2, n, n′

; h)

,

∆q(u2, n, n′
; hL) ≡ ∆

q
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and

D
q
n,n′(X) =


z∈Z
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
Rq(X, z; n, n′), 0


dP (z),

λ
q
L(Ui; n, n′) =


D

q
n,n′(Xi) · IX(Xi)− EX


D

q
n,n′(X) · IX(X)


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
∆
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
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
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(A.5)

From (A.4), we have

T q
n,n′ = T

q
n,n′ +

1
L

L
i=1

λ
q
L


Ui; n, n′


+ ξ

q
L (n, n

′),

where
ξ qL (n, n′)

 = Op

L−1/2−ϵ for some ϵ > 0.

Note that

(i) E

λ
q
L


Ui; n, n′


= 0.

(ii) If PX

Rq(X, z; n, n′) < 0

X ∈ X


= 1 for a.e z ∈ Z (i.e., if the
contact set has measure zero), then λqL


Ui; n, n′


= 0 w.p.1.

This proves Theorem 1. �

Appendix B. Appendix—Monte Carlo experiment results

Tables B.1 and B.2 describe our results for the auction
design experiments. Table B.1 summarizes the results from our
bandwidth-Jackknife approach. For comparison, Table B.1 presents
the results for each one of the individual combinations of constants
(cb, ch) used to construct the bandwidths. Tables B.3 and B.4
summarize the Jackknife-bandwidth results from the Monte Carlo
experiments used to compare our method against competing
approaches, as described in Section 5.2. Our online Supplemental
Appendix includes the full set of results of our test for each one of
the individual combinations of constants (cb, ch) used to construct
the bandwidths.
Table B.1
Monte Carlo results for our auction designs using the Jackknifed-bandwidth approach.

Rejection rates
L Jackknife with uniform weights Jackknife with weights as in (16)

DGP(A) DGP(B) DGP(C) DGP(A) DGP(B) DGP(C)
(14) (15) (14) (15) (14) (15) (14) (15) (14) (15) (14) (15)

100 .000 .000 .000 .000 .000 .108 .000 .030 .000 .000 .052 .518
250 .000 .026 .000 .000 .944 .980 .000 .520 .000 .002 .986 .994
500 .000 .932 .020 .000 1.00 1.00 .000 .994 .418 .024 1.00 1.00

1000 .000 1.00 .994 .000 1.00 1.00 .000 1.00 1.00 .046 1.00 1.00
Results from 500 simulations.
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Table B.3
Results of the test ‘‘H0 : E [Y − θ |X = x] ≤ 0 ∀x ∈ X’’, for θ = θ1 ≡ max {f (x): x ∈ X} (i.e., H0 is satisfied).

Rejection rates. Nominal level α = 0.05.

DGP L (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
AS CLR LSW1 LSW2 AGQ
CvM KS Series Local cb = 0.01 cb = 1.0 Jackknifed bandwidths

Linear CCS = ch = ch = Uniform weights Weights as (16)
0.4 0.5 0.6 0.2 0.4 0.6 0.2 0.4 0.6

f = fAS1 100 .014 .014 .293 .196 .000 .020 .010 .001 .000 .000 .002 .000 .000 .000 .000 .000
D = 1 250 .025 .027 .195 .107 .000 .049 .040 .029 .020 .004 .002 .004 .004 .000 .000 .000

500 .025 .030 .128 .075 .000 .032 .024 .023 .038 .022 .034 .008 .006 .006 .000 .000
1000 .029 .034 .091 .065 .000 .038 .029 .027 .066 .020 .020 .024 .014 .014 .000 .000

f = fAS1 100 .000 .000 .606 .287 .000 .004 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000
D = 5 250 .000 .000 .317 .144 .000 .047 .037 .025 .000 .000 .000 .000 .000 .000 .000 .000

500 .000 .000 .167 .092 .000 .037 .028 .024 .000 .000 .000 .000 .000 .000 .000 .000
1000 .000 .000 .100 .073 .000 .035 .032 .032 .000 .000 .000 .000 .000 .000 .000 .000

f = fAS2 100 .030 .031 .380 .279 .000 .013 .009 .007 .000 .000 .000 .000 .000 .000 .000 .000
D = 1 250 .031 .036 .238 .146 .000 .048 .035 .027 .000 .000 .000 .000 .000 .000 .000 .000

500 .037 .043 .146 .100 .000 .034 .029 .024 .000 .000 .000 .000 .000 .000 .000 .000
1000 .031 .037 .099 .073 .000 .051 .043 .038 .000 .000 .000 .000 .000 .000 .000 .000

f = fAS2 100 .002 .001 .679 .345 .000 .002 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000
D = 5 250 .003 .002 .388 .174 .000 .048 .035 .024 .000 .000 .000 .000 .000 .000 .000 .000

500 .006 .006 .192 .110 .000 .036 .029 .027 .000 .000 .000 .000 .000 .000 .000 .000
1000 .006 .009 .107 .082 .000 .057 .050 .042 .000 .000 .000 .000 .000 .000 .000 .000

• Figures in columns (1)–(5) come from Table V in Andrews and Shi (2013) and are also reproduced in Table 3 of Lee et al. (2014).
• Figures in columns (6)–(8) are from Table 3 in Lee et al. (2014). Columns (9)–(16) present our results based on 500 simulations.
• LSW1 refers to the test in Lee et al. (2013) based on conservative Standard Normal critical values from the least favorable configuration.
• LSW2 refers to the test in Lee et al. (2014) which constructs bootstrap critical values based on estimates of the contact sets.
• The tuning parameter CCS is used in the estimation of the contact sets in LSW2 (see Lee et al., 2014 for details).
Table B.4
Results of the test ‘‘H0 : E [Y − θ |X = x] ≤ 0 ∀x ∈ X’’, for θ = θ2 ≡ max {f (x): x ∈ X} − 0.02 (i.e., H0 is violated).

Rejection rates. Nominal level α = 0.05.

DGP L (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
AS CLR LSW1 LSW2 AGQ
CvM KS Series Local cb = 0.01 cb = 1.0 Jackknifed bandwidths

Linear CCS = ch = ch = Uniform weights Weights as (16)
0.4 0.5 0.6 0.2 0.4 0.6 0.2 0.4 0.6

f = fAS1 100 .160 .110 .120 .170 .020 .190 .100 .050 .648 .318 .148 .584 .238 .138 .086 .280
D = 1 250 .430 .330 .180 .310 .080 .560 .510 .460 .752 .376 .190 .664 .320 .184 .258 .556

500 .750 .630 .280 .500 .300 .830 .820 .800 .790 .438 .270 .740 .322 .210 .448 .746
1000 .970 .930 .430 .740 .750 .980 .980 .980 .896 .516 .338 .820 .472 .276 .746 .930

f = fAS1 100 .000 .000 .090 .110 .010 .060 .020 .000 .732 .476 .284 .628 .364 .284 .400 .712
D = 5 250 .000 .000 .150 .270 .040 .520 .460 .380 .894 .610 .552 .818 .570 .458 .938 .988

500 .030 .010 .230 .440 .180 .810 .790 .770 .972 .860 .746 .932 .786 .702 1.00 1.00
1000 .300 .110 .390 .670 .600 .970 .970 .970 .998 .960 .950 .982 .928 .934 1.00 1.00

f = fAS2 100 .300 .210 .110 .160 .100 .310 .210 .140 .694 .374 .212 .608 .326 .182 .212 .538
D = 1 250 .700 .540 .170 .340 .350 .730 .680 .650 .854 .490 .344 .790 .402 .220 .722 .898

500 .940 .850 .300 .530 .740 .940 .940 .920 .938 .660 .448 .880 .490 .364 .974 .992
1000 1.00 .990 .450 .770 .980 1.00 1.00 1.00 .968 .706 .526 .924 .592 .388 .992 1.00

f = fAS2 100 .050 .010 .090 .120 .050 .110 .050 .030 .576 .352 .350 .584 .332 .288 .306 .558
D = 5 250 .340 .170 .140 .300 .250 .700 .650 .580 .862 .722 .726 .818 .646 .618 .986 1.00

500 .770 .580 .260 .490 .640 .930 .920 .910 .956 .888 .894 .932 .818 .866 1.00 1.00
1000 .990 .960 .410 .710 .960 1.00 1.00 1.00 .994 .976 .986 .986 .938 .970 1.00 1.00

• Figures in columns (1)–(5) come from Table V in Andrews and Shi (2013) and are also reproduced in Table 4 of Lee et al. (2014).
• Figures in columns (6)–(8) are from Table 4 in Lee et al. (2014). Columns (9)–(16) present our results based on 500 simulations.
• As reported in Table 4 of Lee et al. (2014), figures in columns (1)–(5) are ‘‘CP-corrected’’, while those in columns (6)–(8) are not ‘‘CP-corrected’’.
• See the notes in Table B.3.
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