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g auctions, the winner's willingness to pay is not observed, leading to
underidentification of many econometric models. I calculate tight bounds on expected revenue and optimal
reserve price for the case of symmetric and affiliated private values.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
2 In case of point masses, Fi(r)≡Pr(υibr), not Pr(υi≤ r).
3 This is exactly true in a second-price sealed-bid auction or a button or clock

auction; it is true up to the minimum bid increment for an ascending auction with
proxy bidding, and for any first-price ascending auction provided the bidders do not
make “jump bids”.

4 Variation in the number of bidders in previous auctions would significantly alter
A number of recent papers address the recovery of underlying
economic primitives from auction data (Guerre et al., 2000 discuss
nonparametric estimation in first-price auctions; Athey and Haile, 2002
give identification results for awide range of auction rules andmodeling
specifications. See Athey and Haile, 2007 for a thorough bibliography).

In many auction formats – ascending auctions, button or clock
auctions, and first-price auctions with proxy bidding (as on eBay), for
example – the highest bidder's willingness to pay is not directly
observed. In the independent private values paradigm, its distribution
can be inferred from the distribution of the winning bid, and all the
unobserved primitives are still identified (see Athey and Haile, 2002) or
tightly bounded (see Haile and Tamer, 2003). However, under weaker
assumptions than independence, its distribution is not identified.

The highest bidder's willingness to pay is important because it directly
affects the seller's expected revenue in an auction with positive reserve
price, as well as the optimal choice of reserve price. I calculate explicit
upper and lower bounds onboth these quantities in the case of symmetric
affiliated private values; the upper bounds are equal to the values these
quantities would achieve under independent private values.

2. Model and results

A seller has one indivisible object to sell, which he values at υ0.
There are a fixed number n of potential buyers, with private values υ1,
…,υn. The joint distribution f(υ1, υ2,…,υn) is symmetric and affiliated1,
on.

l rights reserved.
with bounded support [υ-, ῡ]
n. Let υ1≥υ2≥…≥υn be the order statistics of

the values, and Fi(·) the cumulative distribution function2 of υ i.
I abstract away from the precise details of the auction to be used,

and assume only the following: the seller will specify a reserve price,
and provided that at least one buyer's valuation exceeds this price, the
object will be sold to the buyer with the highest valuation, at a price
which is the greater of the reserve price and the second-highest
valuation.3 I similarly assume that past auctions exactly identify the
distribution F2 of the second-highest valuation, but give no further
information about F1. (Observations of other losing bids may tighten
the upper bounds, but do not affect the lower bounds.) Note that I
assume away variation in both the number of bidders and the reserve
prices of previous auctions.4

Expected revenue in an ascending auction with reserve price r can
be written as

pðrÞ ¼ ðr � t0ÞðF2ðrÞ � F1ðrÞÞ þ
Z
r

Pt
ðt� t0ÞdF2ðtÞ ð1Þ
my results. In most circumstances, it seems difficult to justify treating such variation as
exogenous; treating it as endogenous requires a model of entry in auctions, which is
outside the scope of this paper. Sufficient exogenous variation in past reserve prices
would identify the distribution in question; if past reserve prices were correlated with
bidder values, however, this would not suffice.
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For a given distribution F2(·), define a new distribution H(·) implicitly
by

F2 rð Þ ¼ n n� 1ð Þ
Z H rð Þ

0
sn�2 1� sð Þds ð2Þ

so that the second-highest of n independent draws from the
distribution H has distribution F2.5 Define

p̄ rð Þu r � t0ð Þ F2 rð Þ � Hn rð Þð Þ þ
Z
r

t̄
t� t0ð ÞdF2 tð Þ ð3Þ

and note that π(̄r) would be the expected revenue of the auction with
reserve price r if bidder values were independent draws from the
distribution H. Define

¯
p rð Þu

Z
r

t̄
t� t0ð ÞdF2 tð Þ ð4Þ

and note that for any rNt0;
¯
p rð Þb R t̄

t0
t� t0ð ÞdF2 tð Þ ¼ p t0ð Þ.

Theorem 1. Suppose bidders have private values which are sym-
metric and affiliated.

1. For any rNυ0, expected revenue π(r) is bounded above by π̄(r) and
below by π

�
(r), and both bounds are tight.

2. Suppose in addition6 that π� is continuous, differentiable, and
strictly quasiconcave; let rI be its maximizer. Then the optimal
reserve price r⁎ is bounded above by rI and below by t0, and both
bounds are tight.

InQuint (2008), I present an examplewhere both expected revenue
and optimal reserve price are strictly decreasing in the degree of
unobserved correlation. I also show that the revenue bounds in Theo-
rem 1 hold when values are conditionally independent but not affi-
liated; that the upper bound π� can be tightened given data on other
losing bids; and that similar bounds hold for auctions with entry fees.

3. Empirical estimation

Now consider the problem of applying these results using an
empirical estimate of the distribution F2. For auctions in which t2 is
revealed by equilibrium bidding (such as button auctions), the dis-
tribution of winning bids yields point estimates F̂2(r) and pointwise
confidence intervals [F2L(r), F2U(r)] for the true distribution. For general
ascending auctions, observations of the highest two bids b1Nb2 de-
fines upper and lower bounds on the empirical distribution of t2, since
under the weak assumptions on bidding behavior made in Haile and
Tamer, b2≤t2≤b1+δ (where δ is the minimum bid increment); these
bounds can similarly be expanded to pointwise confidence intervals
[F2L(r), F2U(r)] for F2(r).

For r≥υ0, the revenue bounds π
�

and π� defined above are
stochastically increasing7 in the distribution of υ2, so calculating π

�(r) from F2
U and π�(r) from F2

L yields appropriate bounds on expected
revenue. Haile and Tamer give a technique for bounding optimal
reserve price under independent values given bounds on π; a slight
modification of their technique defines the upper bound

r̄ I ¼max r : p̄L rð Þz max
r V

p̄U r Vð Þ
� �

ð5Þ
5 Eq. (2) is equivalent to F2(r)=nH(r)n −1− (n−1)H(r)n; the latter is the cumulative
distribution function of the second-highest of n independent draws on the distri-
bution H.

6 These additional requirements are similar to those made in Haile and Tamer.
A sufficient (but not necessary) condition is that the derived distribution H(·) be
continuous and differentiable with a nondecreasing hazard rate. When these
additional conditions are not met, the inequality π� (r⁎)≥π(r⁎)≥π(υ0) provides a weaker
upper bound on r⁎, since π(v0) is known exactly.

7 That is, if F2′ first-order stochastically dominates F2, then π
�

and π̄ are higher at
every r when calculated from F2′: see Appendix A for proof.
with πL̄ and π̄U derived from F2
L and F2

U, respectively. The bounds
t0≤ r⁎≤ r̄ I then hold.
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Appendix A. Proofs

A.1. Upper bound on π(r)

π̄(r) was defined by replacing F1(r) in Eq. (1) by F1
I (r)≡Hn(r). I show

below that F1(r)≥F1I (r), implying π(r)≤π̄(r) for rNv0. Since indepen-
dence is a special case of affiliation, the bound is tight.

Fix r. Choose i∈{0, 1,…,n−2}. Let X and Y denote the following
statements:

X ¼ bt1; N ; tizr; tiþ1; N ; tn�2br; tn�1br Q
Y ¼ bt1; N ; tizr; tiþ1; N ; tn�2br; tn�1zr Q

Under affiliation, Pr(υn≥ r|X ) ≤Pr (υn≥ r|Y ) and Pr(υnbr|X)≥Pr
(υnb r|Y ) (since 1υn≥ r is increasing in υn, its expectation is increasing in
υn−1); so

Pr Xð ÞPr tnzrjXð Þ
Pr Xð ÞPr tnbrjXð Þ V

Pr Yð ÞPr tnzrjYð Þ
Pr Yð ÞPr tnbrjYð Þ Y

Pr X; tnzrð Þ
Pr X; tnbrð Þ V

Pr Y; tnzrð Þ
Pr Y ; tnbrð Þ

Let Pi be the (true) probability that exactly i bidders have values
greater than or equal to r, and Pi

I be the probability under independently
distributed values consistent with F2. Recall that if X holds then i of the
first n−1 values are above r, and if Y holds then i+1 are. By symmetry,

Pi ¼ n Ci Pr X; tnbrð Þ
Piþ1 ¼ nCiþ1 Pr X; tnzrð Þ ¼ nCiþ1 Pr Y ; tnbrð Þ
Piþ2 ¼ nCiþ2 Pr Y; tnzrð Þ

so the previous inequality becomes

1
nCiþ1

Piþ1

1
nCi

Pi
V

1
nCiþ2

Piþ2

1
nCiþ1

Piþ1

If values are independent, Pr(tn≥ r) does not depend on vn−1, so the
same inequalities hold with equality and

1
nCiþ1

PI
iþ1

1
nCi

PI
i

¼
1

nCiþ2
PI
iþ2

1
nCiþ1

PI
iþ1

By definition, F1(r)=P0, F1I (r)=P0I , and F2(r)=P0+P1=P0I +P1I . Suppose
toward contradiction that F1(r)bF1I (r), or P0bP0I , implying P1NP1

I . Then

1
nC2

P2
1

nC1
P1

z
1

nC1
P1

1
nC0

P0
N

1
nC1

PI
1

1
nC0

PI
0

¼
1

nC2
PI
2

1
nC1

PI
1

so P2
P1
N

PI
2

PI
1
; since P1NP1I, this means P2NP2I . It similarly follows that P3

P2
N

PI3
PI2
,

so P3NP3
I , and similarly P4NP4

I , etc. Since P0+P1=P0I +P10, this means

1 ¼ P0 þ P1 þ P2 þ N þ Pn N PI
0 þ PI

1 þ PI
2 þ N þ PI

n ¼ 1

The contradiction proves that F1(r)≥F1I (r).

A.2. Upper bound on r⁎

A.2.1. f continuous
By assumption, π� is continuous, differentiable, and strictly

quasiconcave. If the distribution f is continuous, then π(·) is continuous
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and differentiable as well, with f nondegenerate in the following
sense: for any υ, Pr (υj=υ|υi=υ)=0. Strict quasiconcavity implies π̄ is
strictly decreasing above r I, so π̄′(r)b0 almost everywhere; I show
below that π̄′(r)b0→π′(r)b0, so π is strictly decreasing above rI as
well.

Pick rN rI with π′̄(r)b0. From Eq. (1),

p V rð Þ ¼ F2 rð Þ � F1 rð Þ � r � v0ð Þf1 rð Þ
and, letting f1

I be the marginal density of the distribution F1
I ,

p̄ V rð Þ ¼ F2 rð Þ � FI1 rð Þ � r � v0ð Þf I1 rð Þ
Since π̄′(r)b0, f1(r)N0, and therefore f2(r)N0.8

I showed above that F1(r)≥F1I(r), so if f1(r)N f1I(r) then π′(r)≤π′̄(r)b
0; assume therefore that f1(r)b f1I(r). In addition, f1(r)N0,9 so let f1(r)=
αf1

I(r) with α∈ (0, 1).
Pr(vn≥r|t1= r, t2,…,tn−1b r)≤Pr(tn≥ r|t1N r, t2,…,tn −1br) by affilia-

tion; letting j(·) be the marginal density function of v1, this gives

j rð ÞPr t2; N ; tn�1brjt1 ¼ rð ÞPr tnzrjt1 ¼ r; t2; N ; tn�1brð Þ
j rð ÞPr t2; N ; tn�1brjt1 ¼ rð ÞPr tnbrjt1 ¼ r; t2; N ; tn�1brð Þ V

Pr t1zr; t2; N ; tn�1brð ÞPr tnzrjt1zr; t2; N ; tn�1brð Þ
Pr t1zr; t2; N ; tn�1brð ÞPr tnbrjt1zr; t2; N ; tn�1brð Þ

(We know j(r)N0 since f2(r)N0). Using the nondegeneracy of f, this is

1
n n�1ð Þ f2 rð Þ

1
n f1 rð Þ V

1
nC2

P2
1

nC1
P1

Let g ¼ 1
n n�1ð Þ f2 rð Þ

� �
= 1

n f
I
1 rð Þ� �

, and recall that f1(r)=αf1I (r), so

g

a
¼

1
n n�1ð Þ f2 rð Þ

1
n f1 rð Þ V

1
nC2

P2
1

nC1
P1

V
1

nC3
P3

1
nC2

P2
V: : :V

1
nCn

Pn
1

nCn�1
Pn�1

This gives

P2z
P1
n nC2

g

a

� �
; P3z

P1
n nC3

g

a

� �2
; N ; Pnz

P1
n nCn

g

a

� �n�1

Summing these gives

1� F2 rð Þ ¼
X

i¼2; N ;n

Piz
P1
n nC2

g

a

� �
þ nC3

g

a

� �2
þ: : : þ nCn

g

a

� �n�1
� 	

Under independence, α=1 and all these inequalities hold with
equality, so

1� F2 rð Þ ¼ PI
1
n nC2gþ nC3g

2 þ : : : þ nCng
n�1Þ�

so when f1(r)=αf1I(r),

P1V nC2gþ nC3g
2 þ : : : þ nCngn�1

nC2
g
a

� �þ nC3
g
a

� �2þ: : : þ nCn
g
a

� �n�1 P
I
1baP

I
1

8 f2 rð Þ
f I1 rð Þ ¼

n n�1ð ÞHn�2 rð Þ 1�H rð Þð Þh rð Þ
nHn�1 rð Þh rð Þ ¼ n�1ð Þ 1�H rð Þð Þ

H rð Þ . If H(r)=1, F2(r)=F1I (r)=1, so π(r)≤π̄(r)=0.

9 Let j(·) denote the marginal density of t1: by symmetry,

f1 rð Þ
f2 rð Þ ¼

nj rð Þ
n n� 1ð Þj rð Þ

Pr t2; N ; tn�1brjt1 ¼ rð Þ
Pr t2; N ; tn�2br; tn�1zrjt1 ¼ rð Þ

Pr tnbrjt1 ¼ r; t2; N ; tn�2br; tn�1brð Þ
Pr tnbrjt1 ¼ r; t2; N ; tn�2br; tn�1zrð Þ

We can also write f2(r) using Pr(t2,…,υn−1br|t1=r), so the middle fraction is nonzero: the
last fraction is greater than 1 by affiliation.
But P1=F2 (r)−F1(r) and P1
I =F2(r)−F1I(r), so

p V rð Þ ¼ P1 � r � t0ð Þf1 rð ÞbaP I
1 � r � t0ð Þaf I1 rð Þ ¼ ap̄ V rð Þb0

A.2.2. f not continuous
For r′Nr I and f continuous, π(r′)−π(r I) is not only negative, but

bounded away from zero10. If f is not continuous, take any series of
symmetric, affiliated, continuous distributions f1, f2,… which con-
verge to f; pointwise convergence of f k to f suffices to show πk(r′)−πk

(r I) converges to π(r′)−π (r I), which is therefore negative.

A.3. Lower bounds on π(r) and r⁎

υ1Nυ2, so F1(r)VF2(r), so p rð Þz
R
r

Pt
ðt� t0ÞdF2ðtÞ. Consider the case

where bidder values are perfectly correlated and together take the
observed distribution of the second-highest value; this joint distribu-
tion is symmetric, affiliated, and conditionally independent, and since
F1(r)=F2(r), the bound is achieved. Since π is strictly decreasing above
v0, this distribution also achieves the lower bound on r⁎.

A.4. π
�

and π̄ stochastically increasing

Write π (r) as Ev2[(υ2−υ0)1υ2 ≥ r]. For r≥υ0, (υ2−υ0)1υ2 ≥ r , is
increasing in υ2, so its expectation increases with a first-order
stochastic increase in the distribution of υ2.

Similarly, write π̄(r) as Ev2[1υ2b r ψ(r)(r−v0)+1υ2≥ r (υ
2
−υ0)] where

w rð Þ ¼ F2 rð Þ � Hn rð Þ
F2 rð Þ ¼ 1� Hn rð Þ

nHn�1 rð Þ � n� 1ð ÞHn rð Þ ¼ 1� 1
n

H rð Þ � n� 1ð Þ

is decreasing in H(r). A stochastic increase in υ2 decreases F2(r) and
therefore H(r), increasing ψ(r); and with ψ(r) fixed and r≥υ0, the
expression in square brackets is increasing in υ2; so a stochastic
increase in υ2 increases π̄ (r).
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