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1 Introduction

In private-value ascending auctions, the winning bidder’s willingness to pay is not observed. Under
assumptions weaker than independent private values, the joint distribution of bidder valuations is
not identified (see Athey and Haile (2002)), so the expected revenue at a positive reserve price,
and the reserve price that would maximize expected revenue, are not uniquely pinned down. In a
separate paper, Quint (2008), I calculate tight upper and lower bounds on these two measures for
the symmetric affiliated private values case; the upper bounds coincide with the values achieved
under the special case of independent private values. Here, I give an illustrative example and several
extensions.

2 Model

A seller has one indivisible object to sell, and values it at v0. There are n potential buyers, with
private values v1, . . . , vn whose joint distribution f is symmetric and has bounded support [v, v]n.
Let v1 ≥ v2 ≥ · · · ≥ vn be the order statistics of the values, and Fi(·) the cumulative distribution
function2 of vi.

I consider a stylized version of an ascending auction: the seller announces a reserve price, and
as long as at least one buyer’s valuation exceeds this price, the object is sold to the buyer with
the highest valuation, at a price which is the greater of the reserve price and the second-highest
valuation. I assume that the distribution of this second-highest valuation (F2) is known exactly,
but that no further information is available about F1.3

Note that expected seller profit can be written as

π(r) = (r − v0)(F2(r)− F1(r)) +
∫ v

r
(v − v0)dF2(v) (1)

Given the distribution F2(·), define H(·) implicitly by

F2(r) = n(n− 1)
∫ H(r)

0
sn−2(1− s)ds (2)

17428 Social Science Bldg., 1180 Observatory Dr., Madison WI 53706, United States; dquint@ssc.wisc.edu
2Cumulative distribution functions in this paper exclude any mass at the point being considered, that is, Fi(r) ≡

Pr(vi < r), not Pr(vi ≤ r).
3The revenue assumption, and precise knowledge of F2, would hold exactly for second-price sealed-bid auctions

and button auctions, and up to a bid increment for first-price auctions with proxy bidding and any ascending auction

without jump bids.
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or, equivalently, F2(r) = nHn−1(r)− (n− 1)Hn(r), and define

π(r) ≡
∫ v

r
(v − v0)dF2(v)

π(r) ≡ (r − v0)(F2(r)−Hn(r)) +
∫ v

r
(v − v0)dF2(v)

(3)

The main result from Quint (2008):

Theorem 1. Suppose bidders have private values which are symmetric and affiliated.

1. For any r > v0, expected revenue π(r) is bounded above by π(r) and below by π(r), and both
bounds are tight

2. Suppose in addition that π is continuous, differentiable, and strictly quasiconcave; let rI be
its maximizer. Then the optimal reserve price r∗ is bounded above by rI and below by v0, and
both bounds are tight

3 An Example With A Parameter For Correlation

Let ε1, ε2, . . . , εn be i.i.d. draws from the uniform distribution on [0, 1], and let ε1 ≥ ε2 ≥ . . . ≥ εn

be their order statistics. Let bidders i’s private value be

vi = ρε2 + (1− ρ)εi (4)

Since v2 = ε2, the observed distribution F2 does not depend on ρ; thus, this example allows us
to parameterize the correlation between bidder values while holding fixed the data that would be
observed. (ρ = 0 corresponds to the case of independent private values, while ρ = 1 would be
perfectly correlated values.) For simplicity, let v0 = 0.

Result 1. For ρ < 1, expected revenue is

π(r) =


rn − n−1

n+1r
n+1 − rn+1

1−ρ + n−1
n+1 for r ≤ 1− ρ

rn − n−1
n+1r

n+1 − rn+1

1−ρ + n−1
n+1 + r(r+ρ−1)n

ρn−1(1−ρ) for r > 1− ρ
(5)

and the revenue-maximizing reserve price is

r∗ =
n

n− 1 + n+1
1−ρ

(6)

both of which are strictly decreasing in ρ.

Since ρ = 0 corresponds to independent private values, both π(r) and r∗ are bounded above by
their value under IPV, and both are decreasing in the degree of unobserved correlation.
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4 Relaxing Affiliation

Theorem 2. Suppose that v1, v2, . . . , vn are conditionally independent4 but not necessarily affiliated.

1. The same revenue bounds hold: π(r) ≤ π(r) ≤ π(r), with both bounds being tight.

2. The lower bound on r∗ is still v0, and still tight.

3. It is not necessarily true that r∗ ≤ rI = arg maxr π(r). An upper bound (not tight) on r∗ is
provided by

(r∗ − v0)Hn(r∗) ≤
∫ r∗

v0
F2(v)dv (7)

Thus, the first part of Theorem 1 extends to conditionally independent values. (In fact, a
sufficient condition for the revenue bounds is that for any v ∈ [v0, v], Pr(vi < v) is increasing in the
number of other bidders with values vj < v.) However, the second part of Theorem 1 does not fully
extend to conditionally independent values: in the appendix, we give an example where r∗ > rI .

Equation 7 is still a nontrivial upper bound on r∗, since as v approaches v, (v − v0)Hn(v)
approaches v − v0 and

∫ v
v0
F2(v) does not.

5 What If Losing Bids Are Observed

Above, I assumed that the distribution of v2 was known exactly, but that no other information was
available about the joint distribution f of values. Here, I consider the inferences that can be made
from other losing bids. Let bi denote bidder i’s bid, and bi the ith highest bid.

As in Haile and Tamer (2003), I do not interpret a losing bids as an exact indication of that
bidder’s willingness to pay, only as a lower bound on it. Thus, no observations will be able to falsify
perfect correlation of bidder values, which is used to prove the lower bounds on both π(r) and r∗.
These lower bounds, therefore, are unchanged if losing bids are observed.

On the other hand, if losing bids are sufficiently high (close enough to v2), they may falsify the
assumption of independence, in which case a tighter upper bound on π(r) will follow, which may
in turn lead to a tighter upper bound on r∗. As a demonstration, consider the case of symmetric,
affiliated private values when the distribution of the third-highest bid b3 is observed along with F2.
Similar results will hold for other losing bids.

Let G3(·) be the observed distribution of b3, and note that by assumption, v3 ≥ b3, and therefore
F3(r) ≤ G3(r). Then under symmetry and affiliation,

F1(r)
1
n(F2(r)− F1(r))

≥
1
n(F2(r)− F1(r))
1

nC2
(F3(r)− F2(r))

≥
1
n(F2(r)− F1(r))
1

nC2
(G3(r)− F2(r))

(8)

(The first inequality is from the proof of Theorem 1 in Quint (2008).) Simplifying gives

F1(r)
(F2(r)− F1(r))2

≥ n− 1
2n

1
G3(r)− F2(r)

(9)

4Conditionally independent values satisfy f(v1, v2, . . . , vn) = Eθ {f(v1|θ)f(v2|θ) · · · f(vn|θ)} for some family of

distributions f(·|θ).
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Since the left-hand side is strictly increasing in F1(r), Equation 9 gives a lower bound on F1(r),
which gives an upper bound on π(r). As we saw above, an upper bound π(r) ≤ π(r) imposes an
upper bound π(r∗) ≥ π(v0) on r∗; if the losing bids are high enough, this bound may be lower than
rI .

6 Auctions With Entry Fees

Results for auctions with entry fees are similar to the results for auctions without. First, consider
auctions where potential bidders must pay an entry fee e before learning their private values and
participating in the auction. (That is, players learn e and r but not vi, decide (simultaneously)
whether to pay e and participate, learn vi, and then the auction is held.) I refer to this as an early
entry fee. It is easy to show that in such an auction with symmetric bidders, the seller maximizes
expected revenue by setting r = v0 and using the entry fee to extract all expected surplus from the
sellers by setting

e = e∗ ≡ 1
n

(∫ v

v0
(v − v0)dF1(v)− π(v0)

)
(10)

Let eI denote the value of e∗ when bidder values are independent (that is, substituting Hn(v) for
F1(v) in Equation 10).

Theorem 3. Suppose bidder values are symmetric and affiliated or conditionally independent. In
an auction with an early entry fee, the optimal reserve price is v0; the optimal entry fee is bounded
below by 0 and above by eI , with both bounds being tight.

Finally, consider the harder problem of auctions with an entry fee which is paid after bidders
learn their valuations. That is, bidders learn e, r, and vi, decide (simultaneously) whether to
participate, and then the auction is held among those who enter. The results are not as complete,
but I do offer the following bounds on the revenue-maximizing parameters:

Theorem 4. Suppose bidder values are symmetric and affiliated or conditionally independent. In
an auction with a late entry fee, the optimal reserve price and entry fee (r∗, e∗) are not bounded
away from (v0, 0); an upper bound on r∗ + e∗ is given by∫ v

r∗+e∗
(v − v0)d(Hn(v)) ≥ π(v0, 0) (11)
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Appendix – Proof of Result 1

We begin by calculating F1(r), the cumulative density function of v1:

F1(r) = Pr(v1 < r) = Pr(ρε2 + (1− ρ)ε1 < r)

Since we know (by construction) the distribution of ε2, F2, we can rewrite this as

F1(r) =
∫

Pr(ρε2 + (1− ρ)ε1 < r|ε2 = x)dF2(x)
=

∫ r
0 Pr(ε1 < r−ρε2

1−ρ
∣∣ε2 = x)dF2(x)

Now, the distribution of ε1, conditioned on a given value of ε2, is simply the distribution of
ε conditional on being above that value. That is, knowing that ε2 = x makes the conditional
distribution of ε1 the uniform distribution on [x, 1]. So

Pr

(
ε1 <

r − ρε2

1− ρ

∣∣∣∣∣ ε2 = x

)
=


1 if x < r+ρ−1

ρ

( r−ρx1−ρ − x)/(1− x) if x ∈ [ r+ρ−1
ρ , r]

0 if x > r

Plugging this into the integrals above gives

F1(r) =


∫ r
0

r−x
(1−ρ)(1−x)dF2(x) if r ≤ 1− ρ

F2( r+ρ−1
ρ ) +

∫ r
(r+ρ−1)/ρ

r−x
(1−ρ)(1−x)dF2(x) if r > 1− ρ

Since v2 = ε2, F2(x) = nxn−1 − (n− 1)xn; plugging in, integrating, and simplifying then gives

F1(r) =


rn

1−ρ if r ≤ 1− ρ

rn

1−ρ −
(r+ρ−1)n

ρn−1(1−ρ) if r > 1− ρ

Case 1 : r > 1− ρ

As noted in equation 1, when v0 = 0, expected revenue is

π(r) = r(F2(r)− F1(r)) +
∫ 1

r
xdF2(x)

When r > 1− ρ, this is

π(r) = r(F2(r)− F1(r)) +
∫ 1
r xdF2(x)

= r
(
nrn−1 − (n− 1)rn − rn

1−ρ + (r+ρ−1)n

ρn−1(1−ρ)

)
+
∫ 1
r x

(
n(n− 1)xn−2(1− x)

)
dx

= nrn − (n− 1)rn+1 − rn+1

1−ρ + r(r+ρ−1)n

ρn−1(1−ρ) + n(n− 1)
∫ 1
r

(
xn−1 − xn

)
dx

= nrn − (n− 1)rn+1 − rn+1

1−ρ + r(r+ρ−1)n

ρn−1(1−ρ) + (n− 1) xn|1x=r − n(n− 1) xn+1

n+1

∣∣∣1
x=r

= nrn − (n− 1)rn+1 − rn+1

1−ρ + r(r+ρ−1)n

ρn−1(1−ρ) + (n− 1)− (n− 1)rn − n(n−1)
n+1 + n(n−1)

n+1 rn+1

= nrn − (n− 1)rn − (n− 1)rn+1 + n(n−1)
n+1 rn+1 − rn+1

1−ρ + r(r+ρ−1)n

ρn−1(1−ρ) + (n− 1)− n(n−1)
n+1

= rn − n−1
n+1r

n+1 − rn+1

1−ρ + r(r+ρ−1)n

ρn−1(1−ρ) + n−1
n+1
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and so

π′(r) = nrn−1 − (n− 1)rn − n+1
1−ρ r

n + (r+ρ−1)n

ρn−1(1−ρ) + nr(r+ρ−1)n−1

ρn−1(1−ρ)
= n(1− r

1−ρ)rn−1 − (n− 1)rn − rn

1−ρ + ( r+ρ−1
ρ )n−1 1

1−ρ(r + ρ− 1 + nr)
= 1

1−ρ
(
−n(r + ρ− 1)rn−1 − (n− 1)(1− ρ)rn − rn+

( r+ρ−1
ρ )n−1(r + ρ− 1) + nr( r+ρ−1

ρ )n−1)
)

= 1
1−ρ

(
−(n− 1)(r + ρ− 1)rn−1 − (n− 1)(1− ρ)rn + (n− 1)r( r+ρ−1

ρ )n−1

−(r + ρ− 1)rn−1 + (r + ρ− 1)( r+ρ−1
ρ )n−1 − rn + r( r+ρ−1

ρ )n−1
)

< n−1
1−ρ

(
−(r + ρ− 1)rn−1 − (1− ρ)rn + r( r+ρ−1

ρ )n−1
)

(Since (1 − r)(1 − ρ) = 1 − r − ρ + rρ > 0, r > r+ρ−1
ρ ; the inequality then follows, since rn >

r( r+ρ−1
ρ )n−1 and (r + ρ− 1)rn−1 > (r + ρ− 1)( r+ρ−1

ρ )n−1.) Then

π′(r) < n−1
1−ρ

(
−rρ( r+ρ−1

ρ )rn−2 − r(1− ρ)rn−1 + r( r+ρ−1
ρ )n−1

)
< n−1

1−ρ

(
−rρ( r+ρ−1

ρ )rn−2 − r(1− ρ)( r+ρ−1
ρ )rn−2 + r( r+ρ−1

ρ )n−1
)

< n−1
1−ρ

(
−r( r+ρ−1

ρ )rn−2 + r( r+ρ−1
ρ )n−1

)
< 0

Since π′(r) < 0 for r > 1− ρ, we know that r∗ ∈ [0, 1− ρ].
To show that π(r) is decreasing in ρ, rewrite expected revenue as

π(r) = r

(
F2(r)−

∫ r

0
min

{
1,

r − x
(1− ρ)(1− x)

}
dF2(x)

)
+
∫ 1

r
xdF2(x)

which is strictly decreasing in ρ by inspection. (This simply requires that min
{

1, r−x
(1−ρ)(1−x)

}
6= 1

on a positive-measure (w.r.t. F2) subset of [0, r]; this is the case on [ r+ρ−1
ρ , r].)

Case 2 : r ≤ 1− ρ

For r ≤ 1− ρ, F1(r) = rn

1−ρ , and so

π(r) = rn − n− 1
n+ 1

rn+1 − rn+1

1− ρ
+
n− 1
n+ 1

which is decreasing in ρ by inspection. Differentiating,

π′(r) = nrn−1 − (n− 1)rn − n+ 1
1− ρ

rn

Note that π′ has the same sign as n − (n − 1 + n+1
1−ρ )r, so π is strictly quasiconcave. Thus, the

first-order condition gives us the maximizer, which is

r∗ =
n

n− 1 + n+1
1−ρ
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Proof of Theorem 2

As in the proof of Theorem 1 in Quint (2008), we show F1(r) ≥ Hn(r); then π(r) ≤ π(r) for r ≥ v0.
Define ψ1, ψ2 : [0, 1] → [0, 1] by ψ1(x) = xn and ψ2(x) = nxn−1 − (n − 1)xn. For a given

distribution H(·) of one variable, then, ψ1(H(·)) and ψ2(H(·)) are the distributions of the highest
and second highest, respectively, of n independent draws on H.

If values are conditionally independent, let {Hθ} be the set of distributions from which values
may be independently drawn. It is easy to show that

F2(r) = Eθψ2(Hθ(r)) and F1(r) = Eθψ1(Hθ(r))

Next, we show that ψ1 ◦ ψ−1
2 is convex. This is because

(
ψ1 ◦ ψ−1

2

)′
(s) =

ψ′1(ψ−1
2 (s))

ψ′2(ψ−1
2 (s))

=
ntn−1

n(n− 1)tn−2(1− t)
=

t

(n− 1)(1− t)

where t = ψ−1
2 (s); since this is increasing in t, and therefore s,

(
ψ1 ◦ ψ−1

2

)′
is increasing so ψ1 ◦ψ−1

2

is convex. Recall also that H(r) was defined by F2(r) = ψ2(H(r)). Applying Jensen’s inequality,

F1(r) = Eθψ1(Hθ(r))
= Eθψ1

(
ψ−1

2 ◦ ψ2(Hθ(r))
)

= Eθ
(
ψ1 ◦ ψ−1

2

)
(ψ2(Hθ(r)))

= Eθ
(
ψ1 ◦ ψ−1

2

)
(ψ2(Hθ(r)))

≥
(
ψ1 ◦ ψ−1

2

)
(Eθψ2(Hθ(r)))

= ψ1

(
ψ−1

2 (F2(r))
)

= Hn(r)

From Equations 1 and 3, then,

π(r)− π(r) = (r − v0)(Hn(r)− F1(r)) ≤ 0

and the bound is tight because IPV is a special case of conditionally independent private values.
The lower bound on π, as well as on r∗, is proved the same way as in Quint (2008).

To show that r∗ is not necessarily lower than arg maxr π(r), we offer a counterexample. Let
n = 3, v0 = 0, and suppose that θ takes the values 0, 1 with equal probabilities and

• when θ = 0, bidder valuations are i.i.d. ∼ U [3, 9]

• when θ = 1, bidder valuations are i.i.d. ∼ U [[0, 3] ∪ [9, 10]].

For i ∈ {1, 2},

Fi(x) =


1
2ψi

(
x
4

)
for x ≤ 3

1
2ψi

(
3
4

)
+ 1

2ψi
(
x−3

6

)
for x ∈ (3, 9)

1
2ψi

(
x−6

4

)
+ 1

2 for x ≥ 9

This allows us to calculate a closed-form (if messy) expression for π(r). While we don’t have a
closed-form expression for H(r) = ψ−1

2 (F2(r)), we can calculate it, and therefore π(r), numerically.
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Figure 1: An example with CIPV where π(r) ≤ π(r) but arg maxr π(r) > arg maxr π(r).

It turns out that while π(r) ≤ π(r) everywhere (as required by Theorem 2), π(r) is maximized at
r∗ = 6.09, and π(r) at rI = 5.37, as shown in Figure 1.

(In Figure 1, π is not quasi-concave, so this example is not an exact contradiction of Theorem
1 in Quint (2008) when affiliation is relaxed. However, we can eliminate the “lip” in π near r = 9
without changing the result. If rather than the uniform distribution on [3, 9], the CDF of each

bidder’s value when θ = 0 is 1 −
√

1−
(
x−3

6

)
for x between 3 and 9, then π is strictly quasi-

concave, and arg maxr π(r) is still strictly greater than arg maxr π(r).)
As for the new upper bound on r∗,

π(r∗) ≥ π(r∗) ≥ π(v0) ≥ π(v0)

(the middle inequality is the optimality of r∗, the first and third are simply the bounds on π).
π(r∗) ≥ π(v0) can be written as

(r∗ − v0)(F2(r∗)−Hn(r∗)) ≥
∫ r∗

v0
(v − v0)dF2(v)

Integrating the right-hand side by parts and simplifying gives

(r∗ − v0)Hn(r∗) ≤
∫ r∗

v0
F2(v)dv

Proof of Theorem 3

An auction with a reserve price r∗ = v0 and entry fee

e∗ =
1
n
E
(
max{v1, v0} −max{v2, v0}

)
(12)
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achieves efficiency and extracts all bidder surplus; thus, it must be optimal. (It is not hard to show
that in nondegenerate cases, this auction is uniquely optimal.) Since max{v1, v0} is an increasing
function of v1, its expectation, and therefore e∗, are increasing functions in the distribution F1

(with respect to first-order stochastic dominance).
We argued above that F1(r) ≤ F2(r) everywhere, with equality being attained for the perfectly-

correlated joint distribution. Thus,

e∗ ≥ 1
n
E
(
max{v2, v0} −max{v2, v0}

)
= 0

forms a tight lower bound. Similarly, we showed that F1(r) ≥ F I1 (r) everywhere, and since in-
dependent values are a special case of symmetric affiliated values and conditionally independent
values, equality is attainable, so

e∗ ≤ 1
n

(∫ v

v
max{v, v0}dF I1 (v)− Emax{v2, v0}

)
= eI

forms a tight upper bound.

Proof of Theorem 4

Lower Bound

We again use the perfectly-correlated values example consistent with the observed distribution F2,
and claim that for any (r, e) 6= (v0, 0), π(r, e) < π(v0, 0).

If e = 0 and r 6= v0, all players enter, and the expected revenue is∫ v

r
(v − v0)dF2(v) <

∫ v

v0
(v − v0)dF2(v) = π(v0, 0)

Suppose, therefore, that e > 0 for the rest of the proof. For a given value of v, let πv(r, e) be the
expected revenue (including entry fees) from the auction with reserve price r and entry fee e when
all bidders have the private value v for the good, so that

π(r, e) = Evπv(r, e) =
∫ v

v
πv(r, e)dF2(v)

We assume that each player has an independent entry strategy τi : [v, v] → [0, 1] giving their
probability of entering for each realization of their private value v. Note that no player will ever
enter when v < e+ r, so πv = 0 for v < e+ r.

For a given v, we consider two cases: when only one player considers entering (τi(v) = 0 for all
i but at most one), and when more than one consider entering. In the first case, letting x be the
player who may enter, πv(r, e) = τx(v)(e+ r − v0); since τx is zero when v < e+ r, we know that

πv(r, e) ≤ max{0, (e+ r − v0)× 1v≥e+r}

In the second case, note that the revenue from the auction, excluding the entry fees, is 0 when
nobody enters, r − v0 when one player enters, and v − v0 when at least two enter; thus, we can

9



express total expected revenue as

πv(r, e) = (
∑
i τi(v)) e+

(∑
i

(
τi(v)

∏
j 6=i(1− τj(v))

))
(r − v0)

+
(
1−

∏
i(1− τi(v))−

∑
i

(
τi(v)

∏
j 6=i(1− τj(v))

))
(v − v0)

Now, entering bidders get no surplus from an auction if any other bidders enter, since the price
paid is equal to their private value; so equilibrium play requires that for each i, either τi(v) = 0, or
−e+ (

∏
j 6=i(1− τj(v)))(v − r) ≥ 0. In either case,

τi(v)e ≤ τi(v)
∏
j 6=i

(1− τj(v))(v − r)

Plugging this into the expression for πv(r, e) and simplifying gives

πv(r, e) ≤
(

1−
∏
i

(1− τi(v))

)
(v − v0)

Now, if more than one player considers entering, let y be the player with the second-highest
value of τi(v). By assumption, τy(v) > 0, so equilibrium play requires

e ≤
∏
j 6=y

(1− τj(v))(v − r)

or
∏
j 6=y(1− τj(v)) ≥ e

v−r ≥
e

v−r . Letting x again be the player with the highest value of τi(v), we

know that 1 − τy(v)) ≥ 1 − τx(v) ≥ e
v−r , so

∏
i(1 − τi(v)) ≥

(
e

v−r

)2
; thus, when more than two

bidders consider entering,

πv(r, e) ≤
(

1−
(

e

v − r

)2
)

(v − v0)

Thus, we have now shown that given equilibrium play by the bidders,

πv(r, e) ≤ 1v≥e+r max

{
0, e+ r − v0,

(
1−

(
e

v − r

)2
)

(v − v0)

}
This expression is everywhere weakly less than max{0, v − v0}, and strictly less than v − v0 on
(v0, v]− {e+ r}. Thus,

π(r, e) =
∫ v

v
πv(r, e) <

∫ v

v0
(v − v0)dF2(v) = π(v0, 0)

Since this argument holds for any (r, e) 6= (v0, 0), it follows that (r∗, e∗) = (v0, 0) must be optimal.

Upper Bound

For the upper bound on r∗ + e∗, note that for any (r, e), the maximum possible surplus (to both
the seller and the buyers) is

∫ v
r+e(v − v0)dF1(v) since nobody will enter when v1 < r∗ + e∗. Since

in equilibrium, bidders must have nonnegative expected payoff,

π(r, e) ≤
∫ v

r+e
(v − v0)dF1(v) ≤

∫ v

r+e
(v − v0)dF I1 (v)

(The last inequality is because (v− v0)1v>r+e is a nondecreasing function of v, so its expectation is
increasing with respect to first-order stochastic dominance, and we showed in the proof of Theorem
1 that F1(·) ≥ F I1 (·) everywhere.) Optimality of (r, e) implies π(r, e) ≥ π(v0, 0) = π(v0); combining
the inequalities gives

∫ v
r+e(v − v0)dF I1 (v) ≥ π(v0), completing the proof.
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