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1. Introduction

A functionf is said to be analmost periodic polynomialif it can be expressed in
the form

f(x) =
m∑
j=1

cj e
iλj x with cj ∈C and λj ∈R. (1.1)

The set of all almost periodic polynomials forms an algebraAPP . The closure of
APP under the uniform norm‖f ‖ = supx∈R|f(x)| gives the algebraAP of almost
periodic functions. In other words,AP is theC∗-subalgebra ofL∞(R) generated
by all functionseλ(x) = eiλx, λ∈R.

Themean valueof an almost periodic function is defined as

M (f ) = lim
t→∞

1

2t

∫ t

−t
f (x) dx,

and theFourier coefficientM λ(f ) := M (e−λf ). (These definitions are standard;
see [4] and [14].) Of course,M (f ) = M 0(f ). For f ∈ APP written in the form
(1.1),M λj (f ) = cj .

TheFourier spectrumof f, denoted�(f ), is defined as{ λ∈R : M λ(f ) 6= 0 }.
We useAP+ (resp.AP−) to denote the subalgebra consisting of allf ∈ AP

such that�(f ) ⊂ [0,∞) (resp.(−∞,0]). A matrix function is said to be inAP
or inAP± if all of its entries are. We say that ann× n matrixAP functionG is
AP -factorableif it can be represented as a product

G(x) = G+(x)3(x)G−(x), (1.2)

where(G+)±1 ∈ AP+, (G−)±1 ∈ AP−, and3 = diag[eλ1, . . . , eλn ], λj ∈ R.
Factorization (1.2) was introduced in [10]. It was also observed there that, ifG

is periodic with a periodT, then a simple change of variablet = eixT/2π reduces
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(1.2) to a classical Wiener–Hopf factorization of matrix functions that are contin-
uous on the unit circle. The latter factorization is important, in particular because
of its applications to Wiener–Hopf equations (i.e., convolution type equations on
the half-line); see [8], an early influential paper on the subject, and [7], a recent
exposition. As it happens, a more generalAP factorization arises naturally [10;
11] when convolution type equations on finite intervals are considered. Other ap-
plications ofAP factorization include inverse scattering problems [1] and signal
processing [15]. It is also used in extension problems for positive and contractive
(matrix)AP functions [18; 17], as well as functions on a torus [2].

Some properties of theAP factorization are very similar to those of the Wiener–
Hopf factorization and can be established analogously. In particular, if anAP fac-
torization exists then the set ofλj in (1.2) is defined uniquely;λj are referred
to as thepartial AP indices of G. If the partialAP indices are all equal to
zero, then the multiplesG+ andG− in (1.2) are defined up to a transforma-
tionG+ 7→ G+C andG− 7→ C−1G− with a nonsingular constant matrixC, so
thatd(G) = M (G+)M (G−) is defined uniquely (see [10]). On the other hand,
the existence ofAP factorization and its explicit construction are much more com-
plicated than those of the usual Wiener–Hopf factorization of continuous matrix
functions. These questions are nontrivial (and still open) even for 2× 2 matrices
of the form

Gf (x) =
[
eiλx 0
f(x) e−iλx

]
, (1.3)

whereλ > 0 andf is an almost periodic polynomial. By the way, such matrices
are of special importance because they arise in the just mentioned applications to
convolution type (in particular, difference) equations in the case of one interval
of lengthλ. We will refer toλ in (1.3) as thediagonal exponentof Gf . We prove
AP -factorability of several new classes of matrix functions of the form (1.3), es-
tablish necessary and sufficient conditions for having zero partialAP indices, and
in some cases computed(Gf ). This is done mainly in Sections 3, 4, and 5. Briefly,
the classes of matrix functions are described in terms of the Fourier spectrum of
f. For example, we prove that if�(f ) ⊂ {−ν} ∪ R ∪ [λ− ν, λ), where 0< ν <
1
2λ andR is a suitably chosen interval in(0, λ − 2ν], thenGf is AP -factorable
(see Theorem 3.1). In Section 4 we study the case whenf is a trinomial:f(x) =
c−1e−ν + c0eµ + c1eδ. We establish new cases ofAP -factorability ofGf when
µ 6= 0. Some generalizations of the trinomial case are given in Section 5. The
structure-preserving transformation introduced in [3] is the main tool in our inves-
tigation. It turns out that virtually all previously known cases ofAP -factorability
of matrix functions (1.3) can be verified using this transformation. The transfor-
mation is described in full detail in Section 2, where some previously known re-
sults are presented as well. The matrix generalization of the functions (1.3), where
diagonal entries are changed toe±iλxIn andf is an almost periodicaln × n ma-
trix, is studied in Section 6. Here,AP -factorization is proved for several classes
of such matrix functions. New phenomena appear for the matrix generalization of
(1.3); for example, in contrast with (1.3), not every matrix function of the form
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G(x) =
[
eiλxIn 0
F(x) e−iλxIm

]
,

whereF(x) is an almost periodic polynomialn × m matrix with nonnegative
Fourier spectrum andm+n > 2, admits anAP -factorization. Applications to the
Fredholm properties of systems of convolution equations on a finite interval (both
continuous and discrete types) are given in Section 7.

Certain properties of almost periodic matrix functionsG(x) and theirAP -
factorability are well known and can be easily established.

Lemma 1.1. For any two matrix functionsP andQ withP±1 ∈AP+ andQ±1 ∈
AP−, PGQ andG are simultaneouslyAP -factorable(PGQ isAP -factorable if
and only ifG is) and have the same partialAP indices, and if the partialAP
indices ofG are zero thend(PGQ) = M (P )d(G)M (Q).

Lemma 1.2. G andG∗ (the conjugate transpose ofG) areAP -factorable only
simultaneously, the partialAP indices ofG∗ are the negatives of the partialAP
indices ofG, and if the partialAP indices ofG are zero thend(G∗) = (d(G))∗.
For the matrix functionGf of the form (1.3), we have more specific information.

Lemma 1.3. LetGf be given as in(1.3).

(i) If Gf isAP -factorable, then its partialAP indices are of the form±α,where
0 ≤ α ≤ λ.

(ii) Gf andGf̄ are simultaneouslyAP -factorable with the same partialAP in-
dices, and

d(Gf̄ ) = J(d(Gf ))∗J, where J =
[

0 1
1 0

]
.

(iii) Definef ′(x) =∑ν∈�(f )∩(−λ,λ) M ν(f )e
iνx. Then

Gf ′ =
[
eλ 0
f ′ e−λ

]
and Gf =

[
eλ 0
f e−λ

]
are simultaneously factorable with the same partialAP indices. If the partial
AP indices are zero then, in addition,

d(Gf ′) =
[

1 0
−M λ(f ) 1

]
d(G)

[
1 0

−M −λ(f ) 1

]
.

Part (i) follows from the general fact (discussed in [10]) that the sum of partial
AP indices of anyAP -factorable almost periodicn× nmatrix function with con-
stant determinant will be zero, and from [13, Lemma 1.2]. Parts (ii) and (iii) can
also be found in [10], though they are not formulated there as separate statements.

In view of Lemma 1.3(iii), it will be implicitly assumed throughout the rest of
the paper that�(f ) ⊂ (−λ, λ).

Throughout the paper we denote byZ andZ+ the set of integers and the set of
nonnegative integers, respectively.
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2. The Transformation

The transformation that is the principal tool of the present paper is introduced in
[3] as Theorem 3.1. For lack of a better name, we will refer to the technique as the
BKST transformationafter the authors of the paper. We describe now the BKST
transformation in detail. We begin with a matrix in the form (1.3) andf written as

f(x) = ae−iνx
(

1−
m∑
k=1

bke
iγkx

)
, (2.1)

wherea 6= 0, 0 < γ1, γ2, . . . , γm < λ+ ν, andν ∈ (−λ, λ). For convenience, it
will be assumed thatγj are arranged in the increasing order:γ1 < · · · < γm. We
let0 be them-vector(γ1, . . . , γm), andN will denote anym-vector(n1, . . . , nm)

with nj ∈Z+; 〈N,0〉will be the usual inner productn1γ1+· · ·+nmγm, and|N | =∑
nj . Finally, for any vectorN and polynomial in the form (2.1), let

yN = yN(f ) = (n1+ n2 + · · · + nm)!
n1! n2! · · · nm!

b
n1
1 b

n2
2 · · · bnmm . (2.2)

We defineM+1 (x) =
∑

N :〈N,0〉<λ+ν yNa
−1ei〈N,0〉x and

M+2 (x) =
m∑
k=1

∑
N :λ+ν−γk≤〈N,0〉<λ+ν

yNbke
i(〈N,0〉+γk−λ−ν)x .

Then direct calculation yields that

eiνxM+1 f + ei(λ+ν)xM+2

=
(

1−
m∑
k=1

bke
iγkx

) ∑
N :〈N,0〉<λ+ν

yNe
i〈N,0〉x

+
m∑
k=1

∑
N :λ+ν−γk≤〈N,0〉<λ+ν

yNbke
i(〈N,0〉+γk)x

=
∑

N :〈N,0〉<λ+ν
yNe

i〈N,0〉x −
m∑
k=1

bke
iγkx

∑
N :〈N,0〉<λ+ν

yNe
i〈N,0〉x

+
m∑
k=1

∑
N :λ+ν−γk≤〈N,0〉<λ+ν

yNbke
i(〈N,0〉+γk)x

=
∑

N :〈N,0〉<λ+ν
yNe

i〈N,0〉x −
m∑
k=1

∑
N :〈N,0〉<λ+ν−γk

yNbke
i(〈N,0〉+γk)x . (2.3)

EveryN 6= 0 in the left summation of (2.3) will correspond to a vector

Nk = (n1, . . . , nk − 1, . . . , nm)

in thekth summation on the right for eachk such thatnk 6= 0. If we letnα1 . . . nαq
denote the nonzero terms ofN andn = |N |, then
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k :nk 6=0

bkyNke
i(γk+〈Nk,0〉)x

= ei〈N,0〉x
(
bα1

(n− 1)!

(nα1 − 1)! nα2! · · · nαq !
b
nα1−1
α1 b

nα2
α2 · · · b

nαq
αq + · · ·

+ bαq
(n− 1)!

nα1! · · · (nαq − 1)!
b
nα1
α1 · · · b

nαq−1
αq

)
= ei〈N,0〉x

(
b
nα1
α1 · · · b

nαq
αq

(n− 1)! nα1 + (n− 1)! nα2 + · · · + (n− 1)! nαq
nα1! nα2! · · · nαq!

)
= ei〈N,0〉x

(
b
nα1
α1 · · · b

nαq
αq

n!

nα1! nα2! · · · nαq !
)
= yNei〈N,0〉x. (2.4)

Hence, every term exceptN = 0 in the summation on the left in (2.3) vanishes
along with every term in the double summation on the right, and we are left with

eiνxM+1 (x)f(x)+ ei(λ+ν)xM+2 (x) = y0e
i0x = 1. (2.5)

Let now

M− = M+1 eν−λ =
∑

N :〈N,0〉<λ+ν
yNa

−1ei(〈N,0〉−λ+ν)x

if ν ≤ 0, and
M−(x) =

∑
N :〈N,0〉≤λ−ν

yNa
−1ei(〈N,0〉−λ+ν)x

if ν > 0. Then

f1(x)
def= M+1 (x)e−iλx −M−(x)e−iνx =

∑
N :〈N,0〉−λ∈(−ν,ν)

yNa
−1ei(〈N,0〉−λ)x (2.6)

if we agree, as usual, that(−ν, ν) = ∅ for ν ≤ 0 and that a sum with an empty set
of indices equals zero.

Set

A+ =
[−feν eλ+ν
M+2 M+1

]
, A− =

[−M− 1
1 0

]
.

It is clear thatA+ ∈ AP+ andA− ∈ AP−; (2.5) shows thatA+ has determinant
−1, as doesA−, and they are therefore invertible inAP+ andAP− respectively.

Matrix multiplication shows that

A+GfA− =
[−feν eλ+ν
M+2 M+1

][
eλ 0
f e−λ

][−M− 1
1 0

]
=
[−feλ+ν + feλ+ν eν
eλM

+
2 + fM+1 M+1 e−λ

][−M− 1
1 0

]
=
[

0 eν
e−ν M+1 e−λ

][−M− 1
1 0

]
=
[

eν 0
−M−e−ν +M+1 e−λ e−ν

]
=
[
eν 0
f1 e−ν

]
:= Gf1.
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Observe also that, owing to (2.4),

M (M+2 ) =
m∑
k=1

∑
Nk :〈Nk,0〉=λ+ν−γk

yNkbk =
∑

N :〈N,0〉=λ+ν
yN .

This and Lemma 1.1 yield the following theorem.

Theorem 2.1. With the foregoing notation,Gf andGf1 areAP -factorable only
simultaneously, their partialAP indices coincide, and when the partialAP indices
equal0 we have

d(Gf1) =
[−a 0
X a−1

]
d(Gf )

[−Y 1
1 0

]
, (2.7)

whereX = M (M+2 ) =
∑

N :〈N,0〉=λ+ν yN and

Y = M (M−) =
{ ∑

N :〈N,0〉=λ−ν yNa
−1 if ν > 0,

0 otherwise.

In comparison with [3], we have simplified the formula forX. Also, the caseν ≤
0 was not considered in [3] because it corresponds to the situation�(f ) ⊂ [0,∞)
disposed of earlier in [10, Thm. 2.4]. We, however, decided to demonstrate how
the BKST transformation can be applied to derive this result.

Theorem 2.2. Suppose�(f ) ⊂ R+ := [0,∞), and letµ be the smallest
(leftmost) element of�(f ). ThenGf is AP -factorable with partialAP indices
equal to±µ, and if µ = 0 then

d(G) =
[

0 −1/a
a M

]
, (2.8)

wherea = M 0(f ) andM =∑N :〈N,0〉=λ yN(f ).

Proof. Write f in the form (2.1) withν = −µ. Applying the BKST transforma-
tion once yields, according to (2.6),

Gf1 =
[
e−µ 0
0 eµ

]
. (2.9)

HenceGf1 (and thereforeGf ) isAP -factorable with partialAP indices±µ.
If µ = 0 then (2.9) and (2.7) tell us that

d(Gf1) = I =
[−a 0
X a−1

]
d(Gf )

[
0 1
1 0

]
and so

d(Gf ) =
[−1/a 0

X a

][
0 1
1 0

]
=
[

0 −1/a
a X

]
,

whereX =∑N :〈N,0〉=λ yN(f ) := M. Formula (2.8) follows.
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The BKST transformation can also be used to verify several other previous re-
sults on factorability (additional information is available in [16]); for the reader’s
convenience, we state some of them.

Suppose that one point of the Fourier spectrum off is separated from the rest of
the spectrum by a “big gap”, a distance at least as great as the diagonal exponent.
This type of matrix reduces in one BKST transformation to the case considered in
Theorem 2.2, allowing explicit calculation of partialAP indices andd(G).

Theorem 2.3. If −ν ∈�(f ) ⊂ {−ν} ∪ [λ − ν, λ) and ν > 0, thenGf isAP -
factorable; if we letµ = the leftmost element of�(f )\{−ν}, then the partialAP
indices ofGf are±(ν + µ− λ). For ν + µ− λ = 0,

d(Gf ) =
[ −1/p 0

M −ν(f )M −p
]
, (2.10)

where
p = M −ν+λ(f )/M −ν(f ) and M =

∑
yN(f )p

−|N |,

with the summation over allN = (0, n2, . . . , nm) such that
∑m

j=2 njδj = ν for
{δ2, . . . , δm} = {α − µ : α ∈�(f ) \ {−ν, µ} }.
Proof. Write f as in (2.1). Applying the BKST transformation yields0 =
(γ1, . . . , γm) with γi ≥ λ. Thus,〈N,0〉 ≥ λ unless〈N,0〉 = 0, and so�(f1) ⊆
{〈N,0〉 − λ} ∩ (−ν, ν) ⊂ R+. By Theorem 2.2,Gf1, and thereforeGf , is AP -
factorable. Its nonnegative partial index coincides with the smallest elementγi−λ.
The latter, by definition, equalsν + µ− λ.

Consider now the case of zero partialAP indices, that is,ν+µ−λ = 0. Letting
a = M −ν(f ), formula (2.6) shows that

M 0(f1) = −p/a.
By (2.8),

d(Gf1) =
[

0 a/p

−p/a M1

]
, (2.11)

where
M1 =

∑
N ′ :〈N ′,0 ′ 〉=ν

yN ′(f1).

On the other hand, by (2.7),

d(Gf1) =
[−a 0
X a−1

]
d(Gf )

[−Y 1
1 0

]
, (2.12)

where

X =
∑

N :〈N,0〉=λ+ν
yN(f ); Y =

∑
N :〈N,0〉=λ−ν

yN(f )

a
.

In our case,Y = 0. Sinceλ ≤ γj < λ+ ν < 2λ,we have alsoX = 0.Comparing
the formulas (2.11) and (2.12),

d(Gf ) =
[−1/p 0
aM1 −p

]
.



80 Daniel Qu int, L eiba Rodman, & Ilya M. Sp i tkovsk y

Sinceγj ≥ λ andλ < λ + ν < 2λ, the only Fourier exponents off1 are the
numbersγ1− λ = 0< · · · < γm − λ. Thus,

f1 =
m∑
j=1

yj(f )

a
eγj−λ,

whereyj(f ) = bj . Consequently

M1 =
∑

N ′ :〈N ′,0 ′ 〉=ν
yN ′ ,

where0 ′ is the set{γ2− λ, . . . , γm − λ}, and forN ′ = {n′2, . . . , n′m} ∈ (Z+)m−1

we have

yN ′ = (n′2 + · · · + n′m)!
n′2! · · · n′m!

m∏
j=2

(
bj

a(−M 0(f1))

)n′
j

= (n′2 + · · · + n′m)!
n′2! · · · n′m!

m∏
j=2

(bj )
n′
j

1

p|N ′|
= yN(f ) 1

p|N ′|
,

whereN = (0, n′2, . . . , n′m). This proves formula (2.10).

This case was considered earlier in [6]. However,d(G) was calculated there only
for a trinomialf.

Suppose the Fourier spectrum off lies in a gridM = −ν + hZ+, where−ν is
the leftmost point in the spectrum andh > 0. This situation occurs (with a suit-
able choice ofh) if and only if the distances between all the points of�(f ) are
commensurable. According to [12, Thm. 3.1], the following result holds.

Theorem 2.4. If �(f ) ⊂M = −ν + hZ+ thenGf isAP -factorable.

We postpone the proof (based on a recursive use of the BKST transformation)
until Theorem 2.7, where a more general result will be established. Meanwhile,
observe that the BKST transformation does not give us a convenient way to explic-
itly calculate the partialAP indices ofGf or d(Gf ) other than recursively. How-
ever, necessary and sufficient conditions for zero partialAP indices can be found
in [12, Sec. 3.2]. Combining Theorems 3.2 and 3.3 in [12] yields the following
result.

Theorem 2.5. Let�(f ) ⊂M = −ν + hZ+. Let alsoτ be the smallest positive
element ofM,and writef as

∑M
j=−M cje

i(τ+jh)x,whereM = {λ/h}. (Throughout
this paper, we will let [x] denote the greatest integer less than or equal tox, and{x}
the greatest integer strictly less thanx; [x] = {x} for x /∈Z and [x] = {x} + 1 =
x for x ∈Z.) For any positive integern, define the matrix

Tn = (ci−j )ni,j=1 =


c0 c−1 c−2 · · · c−n+1

c1 c0 c−1 · · · c−n+2

c2 c1 c0 · · · c−n+3
...

...
...

. . .
...

cn−1 cn−2 cn−3 · · · c0

;
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let 11 be the matrix obtained fromTM+1 by deleting the(M + 1)th row and
(M+1)thcolumn, and12 the matrix obtained fromTM+1 by deleting the(M+1)th
row and first column.

ThenGf isAP -factorable, and the partialAP indices ofGf will be zero if and
only if one of the following holds:

(a) ν/h∈Z, λ/h∈Z, anddetTM+1 6= 0;
(b) ν/h∈Z, λ/h /∈Z, anddetTM detTM+1 6= 0; or
(c) ν/h /∈Z, λ/h∈Z, anddet11 det12 6= 0.

If �(f )∩ (−λ, λ) consists of two points only, then condition�(f ) ⊂M is obvi-
ously satisfied. In this case, one step of the BKST transformation provides anAP

factorization ofGf . This leads to the formulas for partialAP indices, which can
also be extracted from the proof of Theorem 2.3 in [10] as follows.

Theorem 2.6. Let f = ae−ν + beµ, −λ < −ν < µ < λ. ThenGf is AP -
factorable with partialAP indices equal to

(a) ±ν if ν ≤ 0 or b = 0,
(b) ±µ if µ ≤ 0 or a = 0,
(c) ±min{µ, ν,mink∈Z|k(µ+ ν)− λ|} if µ, ν > 0, andab 6= 0.

The following case is introduced in [6, Thm. 3.1 and Thm. 3.6] as a generaliza-
tion of both the commensurable distances situation (Theorem 2.4) and the case
of one-sidedf (Theorem 2.2). Defineε as the positive distance from zero to the
negative portion of the union of the two gridsM = −ν+ hZ andM′ = −λ+ hZ.
(Strictly, ε = min(λ− h{λ/h}, ν − h{ν/h}).) Theorem 3.6 of [6], which also can
be verified with the BKST transformation, may be stated as follows.

Theorem 2.7. If �(f ) ⊂M ∪ [λ− ε, λ), thenGf isAP -factorable.

We will first show that BKST transformation reducesGf to another matrix in the
same class with smallerλ.

Lemma 2.8. If �(f ) ⊂ M ∪ [λ − ε, λ), then there exists a matrix functionG′

such that

Gf =
[
eλ 0
f e−λ

]
and G′ =

[
eλ′ 0
f ′ e−λ′

]
are simultaneouslyAP -factorable,�(f ′ ) ⊂ M ∪ [λ′ − ε, λ′ ), and eitherf ′ = 0
or λ′ ∈ {λ+ hZ} ∩ [ε, λ− h].

Proof. If f(x) = 0 then we are done. Otherwise, we constructG′ by applying
the BKST transformation not more than twice toGf . The first time, writef as
f(x) = ae−iνx(1−∑ bj e

iγj x −∑ cke
iδkx), with γj ∈ hZ andδk ≥ λ + ν − ε

and0 = (γ1, . . . , γp, δ1, . . . , δq). 〈N,0〉 is therefore either a multiple ofh or≥
λ + ν − ε, so�(f1) ⊂ {〈N,0〉 − λ} ∩ (−ν, ν) ⊂ {−λ + hZ} ∪ [ν − ε, ν). If
f1(x) = 0, letG′ = G1 and we are done. Otherwise, let−λ′ be the leftmost point
in �(f1). If −λ′ ≥ 0 thenf1 ∈ AP+ and, by Theorem 2.2,G1 is AP -factorable
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with partialAP indices±λ′ and so we letG′ = diag[eλ′ , e−λ′ ]. Suppose−λ′ < 0.
Sinceε ≤ ν − h{ν/h} ≤ ν, the inclusion−λ′ ∈�(f1) ⊂ {−λ+ hZ} ∪ [ν − ε, ν)
implies thatλ′ ∈ {λ+ hZ}. From here and the inequalities 0< λ′ < (ν <) λ one
can conclude that, in fact,λ′ ≥ λ − h{λ/h} ≥ ε andλ′ ≤ λ − h. Transforming
a second time, the elements of01 are either multiples ofh or ≥ λ′ + ν − ε, and
the diagonal exponents ofG1 are±ν, so 〈N,01〉 is either a multiple ofh or ≥
λ′ + ν − ε. Hence�(f2) ⊂ {〈N,01〉 − ν} ⊂ {−ν + hZ} ∪ [λ′ − ε, λ′ ). We may
now letG′ = G2.

Proof of Theorem 2.7.Applying Lemma 2.8 repeatedly, we arrive at a matrix,

Gfn =
[
eλn 0
fn e−λn

]
,

for which eitherfn = 0 orλn = λ−h{λ/h}, �(fn) ⊂ {−ν+hZ} ∪ [λn− ε, λn).
In the first case,Gfn is obviouslyAP -factorable (with partialAP indices±λn). In
the second case, consider the two subcases separately.

(i) λ− h{λ/h} ≤ ν − h{ν/h}. Thenε = λn, {−ν + hZ} ∩ (−λn,0) = ∅, and
fn ∈AP+. Hence, by Theorem 2.2,Gfn isAP -factorable.

(ii) λ−h{λ/h} > ν−h{ν/h}. Thenε = ν−h{ν/h} < λn, and the intersection
{−ν + hZ} ∩ (−λn,0) consists of exactly one point,−ε, the distance of which
from the rest of�(fn) is at leastλn. By Theorem 2.3,Gfn isAP -factorable.

In both subcases, Lemma 2.8 implies thatGf isAP -factorable as well.

Again, this method gives no way other than recursively to explicitly calculate the
partialAP indices ofGf or d(Gf ) (if the partial indices are zero).

3. A Generalization of the Big-Gap Result

Theorem 2.3 shows the factorability of polynomialsf with one negative exponent
and the rest of the exponents a distance of at leastλ away. It relies on the fact
that, under the BKST transformation, suchf yield f1 ∈AP+, a known factorable
case. We can generalize this result by allowing additional points in the Fourier
spectrum off which lie within a certain closed interval but which still causef1 ∈
AP+. Givenλ∈R+, ν ∈ (0, λ), s ∈Z+, ands < λ/ν − 1, define

Rs(λ, ν) =
{ [ λ

s+1 − ν, λ−νs − ν
]

if s ≥ 1,

∅ if s = 0.
(3.1)

Theorem 3.1. If �(f ) ⊂ {−ν}∪Rs ∪ [λ− ν, λ) for somes, then the following
statements hold.

(1) Gf isAP -factorable.
(2) If we leta = M −ν(f ), b = − 1

a
M λ/(s+1)−ν(f ), andc = − 1

a
M λ−ν(f ), then

Gf will have partialAP indices equal to zero if and only ifc + bs+1 6= 0.
(3) When the partialAP indices equal zero,

d(Gf ) =
[

1/ad Y/ad

−X/d − aM ad −XY/d − aMY
]
,
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where
(a) d = c/a + bs+1/a,

(b) Y = a−s−1(−M (λ−ν)/s−ν(f ))s,
(c) X =∑N :〈N,0〉=λ+ν yN(f ), and
(d) M = ∑N ′ :〈N ′,0 ′ 〉=ν yN ′(f1), where0 ′ is the vector of nonzero elements

of �(f1).

Observe thatRs ⊂ (0, λ−2ν] andRi ∩Rj = ∅ for i 6= j. Thus, Theorem 3.1 con-
tains several independent statements in which the intermediate part of�(f ) is al-
lowed to lie entirely in any one of the disjoint intervalsR1, . . . , R{λ/ν}−1. The case
s = 0 corresponds to the setting of Theorem 2.3, where�(f )⊂{−ν} ∪ [λ−ν, λ);
in this case,b = X = Y = 0.

Proof. Write

f(x) = ae−iνx
(

1−
p∑
j=1

bj e
iγj x −

q∑
k=1

cke
iδkx

)
,

with ν < λ/(s + 1) ≤ γ1 < γ2 < · · · < γp ≤ (λ− ν)/s < λ ≤ δ1 < δ2 < · · · <
δq < λ+ ν. Let n andm denotep- andq-vectors of nonnegative integers, and let
N = (n|m); let γ = (γ1, γ2, . . . , γp), δ = (δ1, δ2, . . . , δq), and0 = (γ |δ); note
that〈N,0〉 = 〈n, γ 〉 + 〈m, δ〉 =∑ njγj +

∑
mkδk.

(1) Theorem 2.1 states thatGf will be simultaneously factorable with

Gf1 =
[
eν 0
f1 e−ν

]
,

where�(f1) ⊆ {〈N,0〉 − λ} ∩ (−ν, ν).We will show that�(f1) ⊂ R+, proving
thatGf1, and thusGf , areAP -factorable.

Sinceδk ≥ λ, if |m| ≥ 1 then〈N,0〉−λ ≥ λ−λ = 0. Sinceγj ≤ (λ− ν)/s, if
|m| = 0 and|n| ≤ s then〈N,0〉 = 〈n, γ 〉 ≤ s((λ−ν)/s) = λ−ν, so〈N,0〉−λ /∈
(−ν, ν). And sinceγj ≥ λ/(s + 1), if |m| = 0 and|n| ≥ s + 1, then〈N,0〉 =
〈n, γ 〉 ≥ (s + 1)(λ/(s + 1)) = λ and so〈N,0〉 − λ ≥ 0. Thus,�(f1) ∈R+, so
Gf1 isAP -factorable by Theorem 2.2 and soGf isAP -factorable as well.

(2) Theorem 2.1 also states thatGf andGf1 will have the same partialAP in-
dices, that is,Gf will have zero partialAP indices if and only ifGf1 does. But
f1(x) ∈ AP+, soGf1 will have zero partial indices if and only ifM 0(f1) 6= 0
(Theorem 2.2). Now we will consider in what cases〈N,0〉 − λ = 0, that is, what
N will contribute to the constant term ofGf1. If |m| ≥ 1 then〈N,0〉 = λ if and
only if |n| = 0, m = (1,0,0, . . . ,0), andδ1 = λ; that is,M λ−ν(f ) 6= 0. The
contribution toM 0(f1) is

yN

a
= 1!

1!
c1

1a
−1 = c1

a
.

If |m| = 0, then we know that〈N,0〉 ≤ λ− ν if |n| ≤ s and that〈N,0〉 ≥ λ+ ν
if |n| ≥ s + 2. Sinceγ1 ≥ λ/(s + 1) andγj > λ/(s + 1) for j 6= 1, it follows
if |n| = s + 1 that〈N,0〉 = λ if and only if n = (s + 1,0,0, . . . ,0) andγ1 =
λ/(s + 1); that is,M λ/(s+1)−ν(f ) 6= 0. In this case, the contribution toM 0(f1) is
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(s + 1)!

(s + 1)!
bs+1

1 a−1 = bs+1
1

a
.

Thus, if we defineb = − 1
a
M λ/(s+1)−ν(f ) andc = − 1

a
M λ−ν(f ) (b = b1 or 0,

c = c1 or 0), thenM 0(f1) = c/a + bs+1/a, and soGf1 andGf will have partial
AP indices equal to zero if and only ifc + bs+1 6= 0.

(In fact,Gf1 and therefore alsoGf will have partialAP indices that are equal to
±min((s+1)γ1−λ, δ1−λ) unless(s+1)γ1 = δ1 andc1 = −bs+1

1 , and, if this is
the case, thenGf will have partialAP indices equal to±min(sγ1+γ2−λ, δ2−λ)
unlesssγ1+ γ2 = δ2 andc2 = −(s + 1)bs1b2.)

(3) According to Theorem 2.1,

d(Gf1) =
[−a 0
X a−1

]
d(Gf )

[−Y 1
1 0

]
,

where

X =
∑

N :<N,0>=λ+ν
yN(f ) and Y =

∑
N :<N,0>=λ−ν

yN(f )a
−1.

Note that everyN = (n|m) that contributes toX will havem = 0, becauseδj ∈
[λ, λ + ν) and soλ + ν − δj ∈ (0, ν] 6= 〈Nj, 0〉 for anyN. As for Y, we note
that if |m| 6= 0 then〈N,0〉 > λ > λ − ν. If |n| ≥ s + 1 then〈N,0〉 ≥ λ >

λ − ν; if m = 0 and|n| ≤ s then〈N,0〉 ≤ λ − ν, with equality holding only
whenn = (0,0, . . . ,0, s) andγp = (λ − ν)/s. In this case,yn = (s!/s!)bsp and
bp = − 1

aM (λ−ν)/s−ν(f ), soY = (−M (λ−ν)/s−ν(f ))sa−s−1.

We know from Theorem 2.2 that

d(Gf1) =
[

0 −d−1

d M ′

]
,

whered = M 0(f1) = c/a + bs+1/a andM ′ = ∑N ′ :〈N ′,0 ′ 〉=ν yN ′(f1) (note that
what is referred to in Theorem 2.2 asλ is ν here, andµ there is here the leftmost
element off1,which is 0; 0 ′ represents the vector of nonzero elements of�(f1)).

Matrix inversion and multiplication yields

d(Gf ) =
[−1/a 0

X a

][
0 −1/d
d M ′

][
0 1
1 Y

]
=
[

1/ad Y/ad

−X/d − aM ad −XY/d − aMY
]
.

4. Trinomials

In this section we consider almost periodic matrices of the form

G =
[

eλ 0
c−1e−ν + c0eµ + c1eδ e−λ

]
with −ν < µ < δ and withc−1, c0, andc1 complex numbers. Thus,G = Gf ,
wheref(x) = c−1e−ν+c0eµ+c1eδ. SuchG are not always factorable (see Theo-
rem 4.1), nor does there exist a universal test for factorability of trinomials. There
are, however, many special cases in which factorization is possible.
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If −ν ≥ 0 or δ ≤ 0 thenf(x)∈AP± and soG is explicitly factorable by The-
orem 2.2, so we can assume without any loss of generality thatν, δ > 0. We will
also assume thatµ ≥ 0, since ifµ < 0 then we can instead use the matrixGf̄ =
JG∗J with f̄ = c1e

−iδx + c0e
i|µ|x + c−1e

iνx. If β := (ν + µ)/(δ − µ) is rational
then the distances between points are commensurable and Theorem 2.4 applies,
so we will assumeβ is irrational. Finally, we will assume throughout this sec-
tion thatc−1c0c1 6= 0; if this is not true, thenf(x) is a binomial and Theorem 2.6
applies.

Let us first consider the case whereν + δ ≥ λ, which is referred to as the case
of smallλ. Theµ = 0 case is covered completely in [13, Thm. 5.1, Cor. 5.2, and
Thm. 6.1] (see also [3, Sec. 2]). These results can be summarized as follows.

Theorem 4.1. If ν + δ = λ andµ = 0, then:

(a) G isAP -factorable if and only if|cβ1 c−1| 6= |c1+β
0 | (β = ν/δ irrational);

(b) G has zero partialAP indices if it isAP -factorable; and

(c) d(G) =


[

0 c−1
0

−c0 0

]
if |cβ1 c−1| < |c0|β+1,[−c−1

1 c−1 0

−2c0 −c1c
−1
−1

]
if |cβ1 c−1| > |c0|β+1.

Theorem 4.2. If ν + δ > λ andµ = 0, thenG is AP -factorable. Its partial
AP indices are zero if and only if there exists a positive integerl such that either

(1) δ + ν = βl−1+
∑ l

s=1 nsβs−1 > λ > βl−2+
∑ l−1

s=1 nsβs−1 andc(−1)l,l 6= 1, or

(2) δ + ν > βl−1+
∑ l

s=1 nsβs−1 ≥ λ > βl−2 +
∑ l−1

s=1 nsβs−1,

where

n1+ 1

n2 + 1
n3+···

= the unique continued fraction forβ = ν

δ
(nj ∈Z+)

β−1 := ν, β0 := δ, βk := βk−2 − nkβk−1,

c1,0 := c−1
0 c1, c−1,0 := c−1

0 c−1,

and

c−1,k :=
{
c
nk
1,k−1c−1,k−1,

c−1,k−1,
c1,k :=

{
c1,k−1,

c1,k−1c
nk
−1,k−1,

for

{
k odd,

k even.

The BKST transformation allows us to understand the small-λ case whenµ 6= 0,
which we present as Theorems 4.3 and 4.4.

Theorem 4.3. If ν + δ = λ andµ > 0, thenG is AP -factorable. The partial
AP indices ofG will be zero if and only if either

(a) w(ν +µ) ≥ λ−µ, wherew := 1+ [(λ− ν)/(ν +µ)] (which is always true
whenµ ≥ ν) or

(b) one of the conditions for zeroAP indices in Theorem 4.2 holds forβ−1 =
w(ν + µ)− λ, β0 = (w + 1)(ν + µ)− λ,
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β = w(ν + µ)− λ
(w + 1)(ν + µ)− λ = n1+ 1

n2 + 1
n3+···

,

c1,0 = − (−c0)
w+1

c1c
w
−1

, c−1,0 = − (−c0)
w

c1c
w−1
−1

,

andc±1,k andβk defined as in Theorem 4.2.

Proof. Applying the BKST transformation once will transformG(x) to an already
understood case. We have0 = (ν +µ, λ), so�(f1) ⊂ {n1(ν +µ)+ n2λ− λ} ∩
(−ν, ν). If n2 ≥ 2 then〈N,0〉 − λ ≥ λ > ν /∈�(f1). If n2 = 1 thenn1 = 0 gives
0∈�(f1), butn2 = 1 andn1 ≥ 1 gives〈N,0〉−λ ≥ ν+µ > ν /∈�(f1). If n2 =
0, definew = 1+ [(λ − ν)/(ν + µ)]; that is, makew the smallest integer such
thatw(ν +µ) > λ− ν; clearly,(w+ 2)(ν +µ) > w(ν +µ)+ 2ν > λ+ ν, so at
worst,f1 is a trinomial with�(f1) = {w(ν+µ)−λ,0, (w+1)(ν+µ)−λ} and
the diagonal terms ofGf1 aree±iνx . (Degenerate cases are when(w + 1)(ν + µ)
orw(ν + µ) ≥ λ + ν, in which casef1 is binomial or monomial, both of which
areAP -factorable, so we need only consider the above case.) However, since
ν+µ > ν, Gf1 meets the conditions of Theorem 4.2 and soGf1, and thusG,must
beAP -factorable.

As for the partialAP indices, ifw(ν+µ) ≥ λ−µ then(w+ 1)(ν+µ)− λ ≥
ν /∈ �(f1), and sof1 is binomial with Fourier spectrum{w(ν + µ) − λ,0} and
therefore has zero partialAP indices. (Ifw(ν+µ)− λ > ν, thenf1 is monomial
with Fourier spectrum{0} and therefore zero partialAP indices.) Otherwise, we
construct

f1 = w!

w!

1

c−1

(
− c0

c−1

)w
ei(w(ν+µ)−λ)x

+ 1!

1!

1

c−1

−c1

c−1
ei0x + (w + 1)!

(w + 1)!

1

c−1

(
− c0

c−1

)w+1

ei((w+1)(ν+µ)−λ)x

= (−c0)
wc−w−1
−1 ew(ν+µ)−λ − c1c

−2
−1 + (−c0)

w+1c−w−2
−1 e(w+1)(ν+µ)−λ

and apply Theorem 4.2.

Theorem 4.4. If ν + δ > λ andµ > 0, thenG isAP -factorable and its partial
AP indices are equal to{ ±minj∈Z|j(νk + µk)− λk| if −νk < 0 and

±min(−νk, µk) if −νk ≥ 0
where

λ0 := λ, ν0 := ν, µ0 := µ, δ0 := δ,

wn := 1+
[
λn − νn
νn + µn

]
,

λn+1 := νn,
νn+1 := −wn(νn + µn)+ λn,
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µn+1 := νn + δn − λn = µn−1,

δn+1 := (wn + 1)(νn + µn)− λn,
and

k := the smallest natural numberj such thatδj ≥ λj .
Specifically, the partialAP indices ofG are zero if and only if eitherνk = 0, or
−νk < 0 andλk/(νk + µk)∈Z.
Proof. We will show inductively that forn ≤ k, aftern iterations of the BKST
transformation,G transforms to

Gn =
[

eλn 0

c
(n)
−1e−νn + c(n)0 eµn + c(n)1 eδn e−λn

]
with 0 < µn < λn, νn + δn > λn, 0 < δn < λn for n < k, andδk ≥ λk for
somek <∞, sofk(x) is binomial and thereforeGk is factorable with partialAP
indices computable by Theorem 2.6.

We know thatG(x) meets the criteriaν + δ > λ andµ > 0; we will show
inductively thatfn+1 is trinomial with these properties iffn is. Transforming
fn by the BKST method, we have0n = (νn + µn, νn + δn), so�(fn+1) ⊂
{n1(νn+µn)+n2(νn+δn)−λn}. Forn2 ≥ 2, 〈N,0〉−λn > λn > νn /∈�(fn+1);
likewise, forN = (1,1), 〈N,0〉 − λn > νn + λn − λn = νn /∈ �(fn+1). Let
wn = 1+[(λn−νn)/(νn+µn)] be the smallest integer such thatwn(νn+µn)−λn >
−νn. If n1 ≥ wn + 2, then〈N,0〉 − λn > λn − νn + 2(νn + µn) − λn > νn /∈
�(fn+1).So the only vectorsN that could contribute to�(fn+1) areN = (wn,0),
(0,1), and(wn+ 1,0), so at worst�(fn+1) = {wn(νn+µn)− λn, νn+ δn− λn,
(wn + 1)(νn+µn)−λn} = {−νn+1, µn+1, δn+1}.Here,µn+1 = νn+δn−λn > 0
by assumption, andνn+1+δn+1 = −wn(νn+µn)+λn+(wn+1)(νn+µn)−λn =
νn + µn > νn = λn+1. Further, ifn + 1 < k then−νn+1 < 0 because other-
wiseδn+1 = −νn+1+ νn+µn > νn = λn+1. Also,µn+1 < νn because otherwise
νn+ δn− λn ≥ νn, that is,δn ≥ λn, and ifδn+1 ≥ λn+1 then we are merely in the
n = k case, and so we are done.

It is worth noting thatµn+2 = νn+1+ δn+1− λn+1 = −wn(νn + µn) + λn +
(wn + 1)(νn + µn)− λn − νn = µn.

Now we must show thatk is finite. We lety denote the smallest numberj such
thatνj + µj ≥ λj and claimk ≤ min(y + 1,2[λ0/µ0]) <∞. If y is finite, then
wy = 1 becauseνy+µy−λy ≥ 0> −νy; thenδy+1 = (wy+1)(νy+µy)−λy =
2(νy +µy)−λy ≥ νy +µy > νy = λy+1 and sok ≤ y+1. If y is infinite, then at
every step we know thatνj < λj − µj, that is,λj+1 < λj − µj ; therefore,λj+2 ≤
λj −µj −µj+1, and since eitherµj orµj+1 = µ0, it follows thatλj+2 ≤ λj −µ0.

Therefore, if we letz = 2[λ0/µ0] then we haveλz ≤ λ0 − [λ0/µ0]µ0 ≤ µ0 =
µz, and since (as we showed before)µj ≥ λj impliesδj−1 ≥ λj−1, we know that
k < z <∞.

Finally, after thekth transformation,δk ≥ λk. We know 0< µk < λk since
νk−1 + δk−1 > λk−1 andδk−1 < λk−1. So if −νk ≥ 0 then we are in the one-
sided case, which is factorable with partialAP indices of±min(−νk, µk) by
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Theorem 2.2. (If−νk ≥ λk, thenfk is monomial and soGk is factorable with
partialAP indices±µk, which is the same as±min(−νk, µk) sinceµk < −νk.)
If −νk < 0 then we are in the conventional binomial case, andGk is factorable
with partialAP indices±minj∈Z|j(νk + µk) − λk|. SoGk, and thereforeG, is
AP -factorable with partialAP indices as stated previously.

Thus, we have a complete understanding of the small-λ case, at least in terms of
AP -factorability and partialAP indices; combining Theorems 4.1, 4.2, 4.3, and
4.4 yields our next result as follows.

Corollary 4.5. Letf(x) = c−1e
−iνx + c0e

iµx + c1e
iδx with ν, δ > 0, µ ≥ 0,

andν + δ ≥ λ. ThenGf isAP -factorable unless all of the following hold:

(a) ν + δ = λ,
(b) µ = 0,
(c) β = ν/δ is irrational, and
(d) |cβ1 c−1| = |c1+β

0 | 6= 0.

We now use the foregoing results to generalize to other classes of trinomialsf that
can be shown to beAP -factorable. The following result contains Theorem 4.4 ex-
cept for the explicit calculation of partialAP indices; however, Theorem 4.4 is
used in the proof, so it needed to be stated and proven separately.

Theorem 4.6. If µ > 0andν+µ+δ ≥ λ, thenG isAP -factorable. Moreover,
the partialAP indices are zero if and only if one of the following holds:

(a) λ/(ν + µ)∈Z;
(b) w(ν + µ) ≥ λ− µ (always true ifµ > ν) andν + δ = λ, or

ν/(ν + δ − w(ν + µ))∈Z and(ν + δ − λ)(w(ν + µ)− λ) < 0;
(c) w(ν + µ) = δ or w(ν + µ) = δ + ν − µ < λ− µ;
(d) δ < w(ν + µ) < min{δ + ν − µ, λ− µ} and the matrix[

eν 0
(−c0)

wc−w−1
−1 ew(ν+µ)−λ − c1c

−2
−1eν+δ−λ + (−c0)

w+1c−w−2
−1 e(w+1)(ν+µ)−λ e−ν

]
satisfies the conditions for zero partialAP indices of Theorem 4.2 ifν+ δ =
λ and of Theorem 4.4 ifν + δ 6= λ.

Proof. We have0 = (ν +µ, ν + δ), so�(f1) ⊆ {n1(ν +µ)+ n2(ν + δ)− λ} ∩
(−ν, ν). If n2 ≥ 2 then〈N,0〉 − λ ≥ 2ν + 2δ − λ > 2ν + δ + µ − λ ≥ ν. If
n2 = 1 andn1 ≥ 1, we have〈N,0〉 − λ ≥ 2ν + µ + δ − λ ≥ ν. Definew =
1+ [(λ − ν)/(ν + µ)]; that is,w is the smallest integer such thatw(ν + µ) >
λ− ν. By definition,(w − 1)(ν +µ)− λ /∈ (−ν, ν), and sinceν +µ > ν we see
that(w+ 2)(ν +µ)− λ > w(ν +µ)− λ+ 2ν > ν. Hence the only vectors such
that〈N,0〉 − λ ∈ (−ν, ν) are(w,0), (w + 1,0), and(0,1), so at worst we have
�(f1) = {ν + δ − λ,w(ν + µ)− λ, (w + 1)(ν + µ)− λ}, with the diagonal ex-
ponents ofGf1 equal to±ν. If ν + δ < w(ν +µ) or ν + δ > (w+ 1)(ν +µ), we
are in the big-gap case, which is alwaysAP -factorable by Theorem 2.3; if not,
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we are in the small-λ trinomial case (Theorems 4.2 and 4.4), which are always
AP -factorable. Thus,Gf1, and therefore alsoG, areAP -factorable.

As for the partialAP indices, ifw(ν+µ) ≥ λ−µ then(w+ 1)(ν+µ)− λ ≥
ν andf1 is binomial with Fourier spectrum{w(ν +µ)− λ, ν + δ− λ}.Owing to
Theorem 2.6, the partialAP indices will be zero if either of the numbers in�(f1)

is zero or they are of opposite signs and their difference dividesν. (If λ is a multi-
ple ofν+µ thenw(ν+µ) = λ > λ−µ, so this condition is sufficient on its own.)
Otherwise,f1 is trinomial. Ifν+δ−λ ≥ w(ν+µ)−λ+ν (i.e., if δ ≥ w(ν+µ))
then we are in the situation of Theorem 2.3 (one point in�(f ) separated from
the rest by a distance ofλ, or in this caseν), in which case the partialAP in-
dices are zero if and only if equality holds, and likewise if(w+ 1)(ν +µ)− λ ≥
ν + δ − λ+ ν (i.e., ifw(ν + µ) ≥ δ + ν − µ). If none of these hold then we are
in a nondegenerate trinomial case with a distance ofν + µ > ν between highest
and lowest exponents, and so we constructGf1 and apply Theorem 4.2 if the mid-
dle exponent is zero and Theorem 4.4 otherwise.

If µ andδ are sufficiently close thenG will transform to a case of commensu-
rable distances between exponents, and we will be able to proveAP -factorability
and give necessary and sufficient conditions for zero partialAP indices based on
Theorem 2.5.

Theorem 4.7. Letk = [(λ+ ν)/(ν +µ)]. If 0< µ< δ ≤ (λ− ν)/(k − 1)− ν,
thenG is AP -factorable. If we letg = ν + µ andh = ν + δ, the partialAP
indices ofG will be zero if and only if:
(a) (kg − λ)/(h− g)∈Z, ν/(h− g)∈Z, anddet TM+1 6= 0;
(b) (kg − λ)/(h− g)∈Z, ν/(h− g) /∈Z, anddet TM det TM+1 6= 0; or
(c) (kg − λ)/(h− g) /∈Z, ν/(h− g)∈Z, anddet11 det12 6= 0,
where

p =
[
kg − λ
h− g

]
, cj =

(
k

j − p
)
b
k−j+p
1 b

j−p
2

a
, M =

{
ν

h− g
}
,

Tn = (ci−j )ni,j=1, 11 = TM+1 without its(M + 1)th row and column, and12 =
TM+1 without its(M + 1)th row and first column.

Proof. First, note thatk > 0 because otherwise(λ+ ν)/(ν +µ) < 1 and soµ >
λ; if k = 1, thenλ + ν < 2(ν + µ), that is,ν + 2µ > λ. Sinceδ > µ by def-
inition, we haveν + µ + δ > ν + 2µ > λ, and so Theorem 4.6 holds andG is
AP -factorable.

Otherwise, we will show that if〈N,0〉−λ∈ (−ν, ν) then|N | = k, and that this
causes�(f1) to lie within a gridξ+hZ, a sufficient condition forAP -factorability
by Theorem 2.4.

Writef in the formf(x) = ae−iνx(1−b1e
igx−b2e

ihx), g < h ≤ (λ−ν)/(k−1).
Since0 = (g, h) with h > g, if |N | ≤ k − 1 then〈N,0〉 − λ ≤ (k − 1)h− λ ≤
(k− 1)((λ− ν)/(k− 1))− λ = λ− ν− λ = −ν and so〈N,0〉 /∈�(f1). If |N | ≥
k + 1 then〈N,0〉 ≥ (k + 1)g. By definition,k + 1 > (λ + ν)/g, so 〈N,0〉 >
((λ+ ν)/g)g = λ+ ν and hence〈N,0〉 − λ /∈ (−ν, ν).
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Thus, if〈N,0〉−λ∈�(f1) then|N | = k.That is,�(f1)∈ {(k−j)g+jh−λ} =
{(kg− λ)+ j(h− g)} = ξ + (h− g)Z and so, by Theorem 2.4,Gf1 and therefore
G isAP -factorable.

As for the partialAP indices, since|N | = k for 〈N,0〉 − λ to appear in�(f1),

f1(x) =
j1∑

j=j0

k!

(k − j)! j!
b
k−j
1 b

j

2

a
ei((kg−λ)+j(h−g))x (4.1)

From Theorem 2.5 we know that, forGf1 to have zero partialAP indices, ei-
ther (kg − λ)/(h − g) or ν/(h − g) must be an integer. Define as beforep =
[(kg − λ)/(h− g)], so thatτ := kg − λ− p(h− g) < h− g. Define

cj =
(

k

j − p
)
b
k−j+p
1 b

j−p
2

a
.

Then (4.1) simplifies to

f1 =
M∑

j=−M
cje

i(τ+j(h−g))x

with M defined as before, so then Theorem 2.5 applies.

Corollary 4.8. If µ ≥ ν andλ < 2ν + 3µ, thenG isAP -factorable.

Proof. If λ < 2ν + 3µ thenλ + ν < 3(ν + µ), sok = [(λ + ν)/(ν + µ)] ≤ 2.
If µ ≥ ν then(λ − ν)/(λ − µ) ≥ 1, so k − 1 ≤ 1 ≤ (λ − ν)/(λ − µ) and so
eitherk − 1 = 0 orλ− µ ≤ (λ− ν)/(k − 1). If k − 1 = 0 then, as noted previ-
ously,λ+ ν < 2ν + 2µ and soν +µ+ δ > ν + 2µ > λ and Theorem 4.6 holds.
Otherwise, for any value ofδ we must have eitherδ + ν ≥ λ − µ or δ + ν ≤
(λ−ν)/(k−1);we know from Theorems 4.6 and 4.7 that, in either of these cases,
G(x) isAP -factorable.

Note that Corollary 4.8 represents the only nontrivial instance ofk−1≤ (λ− ν)/
(λ − µ), because ifk = 1 then Theorem 4.6 holds as already noted, and if
(λ− ν)/(λ− µ) ≥ 2 then eitherλ− ν ≥ 2(λ− µ) or 2µ ≥ λ+ ν. Sinceδ > µ,

it follows thatµ+ δ + ν > 2µ+ ν ≥ λ+ 2ν > λ and so Theorem 4.6 holds.
The following is a subcase of Theorem 4.6, and is included only because the

partialAP indices have been calculated explicitly.

Theorem 4.9. If µ ≥ (λ − ν)/2, thenG is AP -factorable and the partialAP
indices are

(a) ±ν if δ ≤ λ− 2ν,
(b) ±(ν + δ − λ) if ν + δ − λ ≤ 0 or µ ≤ λ− 2ν < δ,

(c) ±(ν + µ− λ) if ν + µ ≥ λ, or
(d) ±minn∈Z|n(δ − µ)− ν)| otherwise.

Proof. Both elements of0 are not less than(λ − ν)/2+ ν = (λ + ν)/2, so if
|N | ≥ 2 then〈N,0〉 ≥ λ + ν and hence〈N,0〉 − λ /∈ (−ν, ν). Thus, onlyN =
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(1,0) and(0,1) contribute to�(f1), sof1(x) is at worst binomial; thusGf1, and
thereforeG, isAP -factorable. As for the partialAP indices, ifδ ≤ λ − 2ν then
ν + δ − λ ≤ −ν; sinceµ < δ, the same is true forµ, andf1(x) = 0. This
means thatGf1(x) = diag[eiνx, e−iνx ]. If only µ ≤ λ − 2ν, thenf1 is a mono-
mial with exponentν + δ − λ, so the partialAP indices are±(ν + δ − λ). If
ν + δ − λ ≤ 0, thenf1(x) ∈ AP− with highest exponentν + δ − λ, so the par-
tial AP indices are again±(ν + δ − λ). If ν + µ − λ ≥ 0, we havef1 ∈ AP+
with leftmost exponentν + µ− λ. If none of these degenerate cases hold,f1(x)

is a two-sided binomial and the diagonal terms ofGf1 are±ν, so the partialAP
indices are±minn∈Z|n(δ − µ)− ν)|.

5. Generalized Trinomials

Many of the results we obtained for trinomials can be generalized by consider-
ing polynomialsf that have—instead of three points in the Fourier spectrum—a
Fourier spectrum lying on a sort of “double-grid” generated by three points. If
we choose our first three points−ν, µ, δ then we can consider an almost periodic
polynomialf with �(f ) ⊂ {−ν + (ν + µ)Z + (ν + δ)Z} because (as will be
shown), under the BKST transformation, this new matrix will behave the same as
a trinomial.

Unfortunately, the case where�(f ) ⊂ {−ν+gZ+hZ} has not yet been solved
in full generality. (If it were then this would give a full understanding of trinomi-
als as a special case.) However, certain restrictions can be placed ong andh to
make the matrix behave well under the BKST transformation.

Double-grids are considered in [3, Sec. 4], but the ones considered there are
unions of two shifted grids with the same size step, and the size of the step is equal
to the absolute value of the leftmost exponent; [3] also requires thatλ lie in one
of the two grids whose union contains�(f ).We, on the other hand, propose four
different restrictions that would suffice to makeGf AP -factorable, but we do not
offer necessary conditions or more general results. There is some small overlap
between the cases considered here and in [3] (the case covered in Theorem 5.2, for
instance, meets the criteria in [3]), but in general we are using different conditions.

Theorem 5.1. If

Gf (x) =
[
eiλx 0
f(x) e−iλx

]
and�(f ) ⊂M = {−ν + gZ+ + hZ+} with ν, h, g > 0, and either

(a) h > g ≥ ν andh > λ,

(b) h > g > ν andg + h ≥ λ+ ν,
(c) h > g > ν andh ≤ (λ− ν)/([(λ+ ν)/g] − 1), or
(d) h > g > 2ν and3g > λ+ ν,
thenGf isAP -factorable.

Note that, except for the calculation of partialAP indices, this covers Theorems
4.2–4.7 and Corollary 4.8 as special cases whereµ = −ν + g, δ = −ν + h, and
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M −ν+ig+jh(f ) = 0 for i+j > 1.Also note that, in the first two cases, the “double
grid” M is nothing more than a single grid−ν + gZ with the single point−ν + h
added. Also, ifh/g is rational then we can writeh/g = p/q with p, q ∈Z and let
ξ = g/q; then�(f ) ⊂ {−ν + gZ+ + hZ+} ⊂ {−ν + ξZ} and so Theorem 2.4 is
applicable. Therefore, we are only interested inh/g irrational.

Proof. Applying the BKST transformation, the terms of0 are of the formα(i)1 g+
α
(i)
2 h (α

(i)
j ∈ Z+), so�(f1) ⊂ {〈N,0〉 − λ} = {(n1α

(1)
1 + · · · + npα(p)1 )g +

(n1α
(1)
2 + · · · + npα(p)2 )h− λ} = {n′1g + n′2h− λ}.

In the first case, ifn′2 ≥ 2 orn′2 = 1 andn′1 ≥ 1, then〈N,0〉−λ ≥ g+h−λ >
g ≥ ν.Define as usualw = 1+ [(λ−ν)/g]. Then ifn′2 = 0 andn′1 < w, 〈N,0〉 ≤
[(λ− ν)/g]g ≤ ((λ− ν)/g)g = λ− ν, and ifn′2 = 0 andn′1 ≥ w + 2, 〈N,0〉 ≥
wg + 2g ≥ λ − ν + 2g ≥ λ + ν; so�(f1) ⊂ {wg − λ, (w + 1)g − λ, h − λ}.
Sinceg ≥ ν andh − λ > 0, it follows thatGf is AP -factorable according to
Theorem 4.4 or 4.3.

In the second case, we again have 2h > h + g ≥ λ + ν, so again�(f1) ⊂
{wg − λ, (w + 1)g − λ, h − λ}. Sinceg > ν, the functionGf is AP -factorable
by Theorem 4.2 ifh = λ and by Theorem 4.4 otherwise.

In the third case, as in the proof of Theorem 4.7, if we letk = [(λ+ ν)/g], then
if n′1+ n′2 < k, 〈N,0〉 ≤ (k − 1)h ≤ (k − 1)((λ − ν)/(k − 1)) = λ − ν, and if
n′1+ n′2 > k, 〈N,0〉 ≥ (k + 1)g > ((λ + ν)/g)g = λ + ν. Therefore,�(f1) ⊂
{ n′1g+n′2h−λ : n′1+n′2 = k } = {(kg−λ)+n′2(h−g)} = ξ + (h−g)Z,which
we know from Theorem 2.4 is a sufficient condition forGf1, and thereforeGf , to
beAP -factorable.

In the fourth case,g > 2ν impliesλ+ ν−g ≤ λ− ν, or (λ− ν)/(λ+ ν−g) ≥
1. Now 3g > λ + ν implies that [(λ + ν)/g] ≤ 2, so [(λ + ν)/g] − 1 ≤ 1 ≤
(λ− ν)/(λ+ ν − g). Hence either [(λ+ ν)/g] = 1, in which caseg + h > 2g >
λ+ν and the second condition holds, or elseλ+ν−g ≤ (λ−ν)/([(λ+ν)/g]−1)
and thus, for anyh, eitherh ≥ λ+ ν − g and the second condition holds orh ≤
(λ− ν)/([(λ+ ν)/g] − 1) and the third condition holds.

Theorem 5.2. Consider the case whereg = ν and h = λ, that is,�(f ) ⊂
{−ν + νZ+ + λZ+}. Assumeλ/ν is irrational. Writef as

f(x) = ae−iνx
(

1− b0e
iλx −

m∑
k=1

bke
ikνx

)
with a, b0 6= 0. As usual, letw = 1+ [(λ− ν)/ν] = [λ/ν]. Let

c−1 =
∑

N :〈N,0〉=wν
yNa

−1, c0 = b0a
−1,

c1 =
∑

N :〈N,0〉=(w+1)ν

yNa
−1, and β = λ− wν

−λ+ (w + 1)ν
.

ThenGf has partialAP indices equal to zero if it isAP -factorable, and isAP -
factorable if and only if|cβ1 c−1| 6= |c1+β

0 |.
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Note that ifb0 = 0 then distances between exponents are commensurable,Gf
is factorable, and Theorem 2.5 gives necessary and sufficient conditions for zero
partialAP indices. Furthermore, note thatβ is rational if and only if 1+ β =
ν/(−λ + (w + 1)ν) is rational if and only ifν/λ is rational, which is false by
assumption.

Proof. Under the BKST transformation,Gf (x) transforms toGf1(x) where
�(f1) ⊂ {wν − λ,0, (w + 1)ν − λ} unlessλ/ν ∈ Z, which we know to be
untrue. By definition,c−1 = Mwν−λ(f1), c0 = M 0(f1), andc1 = M (w+1)ν−λ(f1);
by applying Theorem 4.1 we find thatGf1 and thereforeGf isAP -factorable with
zero partialAP indices if|cβ1 c−1| 6= |c1+β

0 |. (The last case of Theorem 4.1, where
c1c−1 = c0 = 0, violates our assumption thatb0 6= 0 sincec0 = b0a

−1.)

6. The Matrix Case

The BKST transformation technique can be also applied (under certain restric-
tions) to matrix functions of the form

GF =
[
eλIn 0
F e−λIn

]
, (6.1)

whereλ > 0 andF is ann × n matrix whose entries are almost periodic poly-
nomials. Defining the Fourier coefficientsM α(F ) = M (e−αF ) entrywise, we let
�(F ) = {α ∈R : M α(F ) 6= 0 }. As in Section 2, denote by−ν the smallest point
of �(F ) ∩ (−λ, λ), and bya the corresponding Fourier coefficientM −ν(F ).We
have now to impose the additional condition that then× n matrixa is invertible;
of course, in the scalar case(n = 1) this condition was satisfied automatically.
Then we can write, analogously to (1.3),

F = ae−ν
(
I −

m∑
k=1

bkeγk

)
, (6.2)

where 0< γ1 < · · · < γm < λ + ν and whereb1, . . . , bm are nonzeron × n
matrices. For anyN = (n1, . . . , nm) with nj ∈Z+, define

yN(F ) =
∑

bj1bj2 · · · bjw , (6.3)

wherew = n1+ · · · + nm and the sum in (6.3) is taken over all orderedw-tuples
(j1, j2, . . . , jw) of integers exactlynk of which are equal tok for k = 1, . . . , m.
Using (6.3) in place of (2.2), a calculation similar to the one given in Section 2
yields the equality

eνM
+
1 F + eλ+νM+2 = I.

Thus, the analog of Theorem 2.1 holds.
Of course, for commuting matricesb1, . . . , bm formula (6.3) can be written in

the same form (2.2) as in the scalar(n = 1) case. The applicability of the BKST
transformation in this setting was observed in [3, Sec. 7].

The result of Theorem 2.2 (forF with nonnegative Fourier spectrum) remains
valid forGF provided an invertibility condition is satisfied.



94 Daniel Qu int, L eiba Rodman, & Ilya M. Sp i tkovsk y

Proposition 6.1. Suppose�(F ) ⊂ [0, λ) and assume thatM µ(F ) is invert-
ible, whereµ (≥ 0) is the smallest element of�(F ). ThenGF isAP -factorable
with partialAP indices equal to±µ (n pairs). If µ = 0, then

d(GF ) =
[

0 −a−1

a L

]
, (6.4)

wherea = M (F ) and

L = a
∑

N :〈N,0〉=λ
yN(F )a

−1.

Observe thatL can also be written as
∑

N :〈N,0〉=λ yN(F
(1)) with F (1)(x) =

aF(x)a−1 = ae−ν(I −
∑
b
(1)
k eγk ), b

(1)
k = abka−1. Coefficientsb(1)k appear natu-

rally if, instead of (6.2), a representation

F =
(
I −

m∑
k=1

b
(1)
k eγk

)
ae−ν

is used. The corresponding form of (6.4), along with other statements of Propo-
sition 6.1, was established in [13]. We give here a different proof based on the
BKST transformation.

Proof. Setting−ν = µ in (6.2) and applying the BKST transformation, we obtain

GF1 =
[
e−µI 0

0 eµI

]
. (6.5)

Hence,GF1 (and thereforeGF ) is AP -factorable with partialAP indicesµ (n

times) and−µ (n times).
If µ = 0, (6.5) and (2.7) tell us that

d(GF1) = I2n =
[−a 0
X a−1

]
d(GF )

[
0 I

I 0

]
,

whereX =∑N :〈N,0〉=λ yN . Thus,

d(GF ) =
[ −a−1 0
aXa−1 a

][
0 I

I 0

]
=
[

0 −a−1

a aXa−1

]
,

as required.

It turns out that the invertibility hypothesis is essential in Proposition 6.1, in view
of the following result.

Theorem 6.2. Letm, n be positive integers, at least one of them larger than1,
and letµ ∈ [0, λ) and δ ∈ (0, (λ − µ)/2) be such that(λ − µ)/δ is irrational.
Then there exists anAP polynomialm× n matrixF such that

�(F ) =
{
µ,µ+ δ, λ+ µ

2
, δ + λ+ µ

2

}
⊂ [0, λ)

and the(m+ n)× (m+ n) matrix function
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G =
[
eλIn 0
F e−λIm

]
is notAP -factorable.

For the proof of Theorem 6.2 we need a lemma.

Lemma 6.3 [19, Lemma 2.1]. LetG be a block diagonalAP matrix

G =
[
G1 0
0 G2

]
,

and let one of its diagonal blocksG1,G2 beAP factorable. ThenG itself isAP
factorable only simultaneously with its other diagonal block.

Proof of Theorem 6.2.It is easy to see that, in view of Lemma 6.3, we need only
consider two cases: (1)m = 1, n = 2; and (2)m = 2, n = 1.

Consider case (1). Let

F = [0 1]eµ + [h 0]e(λ+µ)/2,

whereh is anAP -polynomial with

�(h) =
{
δ − λ− µ

2
,0, δ

}
for which the matrix function

[
e(λ−µ)/2 0

h e−(λ−µ)/2

]
is notAP -factorable. The exis-

tence of suchh is guaranteed by Theorem 4.1. Then

G =
[

eλ 0 0
0 eλ 0

he(λ+µ)/2 eµ e−λ

]
. (6.6)

We perform now the following elementary operations: subtract from the second
row the third row multiplied byeλ−µ; subtract from the third column the sec-
ond column multiplied bye−λ−µ; add the first row multiplied byhe(λ−µ)/2 to the
second row; interchange the second and third rows. Call the resulting matrixG̃:

G̃ =
[

eλ 0 0
he(λ+µ)/2 eµ 0

0 0 −e−µ

]
.

By Lemma 1.1, the matricesG andG̃ are simultaneouslyAP -factorable (observe
here that�(he(λ−µ)/2) = (λ− µ)/2+�(h) ⊂ R+). On the other hand, in view
of the choice ofh, the matrix[

eλ 0
he(λ+µ)/2 eµ

]
= e(λ+µ)/2

[
e(λ−µ)/2 0
h e−(λ−µ)/2

]
is notAP -factorable. Hence (by Lemma 6.3)̃G, and thereforeG, is notAP -
factorable.

Consider now case (2). DefineG by (6.6). Then, as we have seen already,G is
notAP -factorable. Therefore,
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(G−1)T =
[
e−λ 0 −he(λ+µ)/2

0 e−λ −eµ
0 0 eλ

]
is also notAP -factorable. It remains to observe that[

eλ 0 0
−he(λ+µ)/2 e−λ 0
−eµ 0 e−λ

]
=
[0 0 1

1 0 0
0 1 0

]
(G−1)T

[0 1 0
0 0 1
1 0 0

]
. (6.7)

Thus the left-hand side of (6.7) satisfies the requirements of Theorem 6.2.

Next, we state the “big-gap” result (a matrix generalization of Theorem 2.3). It
will be convenient to treat the case of zero partialAP indices separately.

Theorem 6.4. Assume that�(F ) ⊂ {−ν} ∪ [λ − ν, λ), whereν ∈ (0, λ). As-
sume further that the matricesM −ν(F ) andM µ(F ) are invertible, whereµ is the
leftmost element of�(F ) \ {−ν}. ThenGF isAP -factorable and the partialAP
indices ofGF are±(ν + µ− λ) (n pairs).

Proof. Applying the BKST transformation,0 = (γ1, . . . , γm)with γi ≥ λ; there-
fore, 〈N,0〉 ≥ λ unless〈N,0〉 = 0. Hence�(F1) ⊆ {〈N,0〉 − λ} ∩ (−ν, ν) ⊂
R+. By Proposition 6.1,GF1, and thereforeGF , isAP -factorable, with nonnega-
tive partialAP indices equal to the smallest elementγi − λ, which by definition
equalsν + µ− λ.
Theorem 6.5. Assume that�(F ) ⊂ {−ν} ∪ [µ, λ), whereν ∈ (0, λ) andµ =
λ − ν. ThenGF is AP -factorable with zero partialAP indices if and only if the
matricesM −ν(F ) andM µ(F ) are invertible. In this case,

d(GF ) =
[ −q 0
LM −ν(F ) −p

]
, (6.8)

wherep = M µ(F )(M −ν(F ))−1, q = (M µ(F ))
−1M −ν(F ), and

L =
∑(−M γj1−ν(F )M µ(F )

−1
) · · · (−M γjw−ν(F )M µ(F )

−1
)
. (6.9)

The summation in(6.9) is over all N = (0, n2, . . . , nm) ∈
(
Z+
)m

such that∑m
j=2 njδj = ν, where

{δ2, . . . , δm} = {α − µ : α ∈�(F ) \ {−ν, µ} },
and, for every suchN, over all w-tuples of indices{j1, . . . , jw}, exactlynk of
which are equal tok, k = 2, . . . , m. Here−ν < γ1− ν = µ < · · · < γm − ν are
the numbers in�(F ).

A lemma is needed for the proof of Theorem 6.5.

Lemma 6.6. LetF be anAP polynomialn×nmatrix such that�(F )∩ (−λ,0]
consists of at most one point. IfGF isAP -factorable with zero partialAP indices,
then the set�(F ) ∩ (−λ,0] is indeed nonempty, and the corresponding Fourier
coefficient is nonsingular.
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Proof. Arguing by contradiction, we may assume that

F =
[

0 0
0 Im

]
e−ν + F1, (6.10)

wherem < n, ν ∈ (0, λ) and�(F1) ⊂ (0,∞). Consider the homogeneous Rie-
mann boundary problem

φ+ +GF φ− = 0, (6.11)

whereφ+ andφ− are unknown vectors with components inAP+ andAP−, re-
spectively. It follows from (6.10) that the problem (6.11) has an infinite dimen-
sional set of solutions. Indeed, denote byε the smallest point in�(F1); then for
everyg ∈AP with �(g) ⊂ (−ε,0) we have the solution

φ− = [g,0, . . . ,0]T , φ+ = −GF [g,0, . . . ,0]T = −GF1[g,0, . . . ,0]T .

On the other hand, theAP -factorability ofGF with zero partialAP indices would
imply that (6.11) has only constant solutions.

A similar idea was used in [3] in the case ofF with pairwise commuting coeffi-
cients.

Proof of Theorem 6.5.If M −ν(F ) andM µ(F ) are invertible, thenGF is AP -
factorable with zero partialAP indices, by Theorem 6.4. IfGF isAP -factorable
with zero partialAP indices, then (by Lemma 6.6)M −ν(F ) is invertible and, ap-
plying the BKST transformation, we see thatM µ(F ) is invertible as well (cf. the
proof of Theorem 6.4).

It remains to prove the formula (6.8). We argue analogously to the proof of
Theorem 2.3. The formula forF1(x) shows that

M 0(F1) = −a−1M µ(F )a
−1,

wherea = M −ν(F ). By formula (6.4) we have

d(GF1) =
[

0 −M 0(F1)
−1

M 0(F1) L

]
,

where
L = M 0(F1) ·

∑
N ′ :〈N ′,0 ′ 〉=ν

yN ′(F1) ·M 0(F1)
−1.

On the other hand, by the matrix analog of (2.7),

d(GF1) =
[−a 0

0 a−1

]
d(GF )

[
0 I

I 0

]
.

Thus,

d(GF ) =
[−M µ(F )

−1a 0
aL −M µ(F )a

−1

]
.

The matrixL is computed analogously to the proof of Theorem 2.3. We have

F1 =
m∑
j=1

yj(F )a
−1eγj−λ,
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where
yj(F ) = −(M −ν(F ))−1M γj−ν(F ).

Straightforward algebra now yields the formula (6.8).

We conclude this section with a matrix generalization of Theorem 3.1.

Theorem 6.7. Let 0 < ν < λ, let s ∈ Z+ be such thats < λ/ν − 1, and de-
fine the intervalRs(λ, ν) by (3.1). LetF(x) be an almost periodicn × n matrix
polynomial such that�(F ) ⊂ {−ν} ∪Rs(λ, ν)∪ [λ− ν, λ), and assume that the
matrix M −ν(F ) is invertible. Let0 = {α + ν : α ∈�(F ) \ {−ν} } and letQ =
min

{ {〈N,0〉 − λ : N ∈ (Z+)m} ∩ (−ν, ν) }.
(i) If the matrix ∑

N :〈N,0〉=Q+λ
yN(F ) (6.12)

is invertible, thenGF isAP -factorable.
(ii) GF isAP -factorable with zero partialAP indices if and only ifQ = 0 and

the matrix(6.12)is invertible.

The proof of (i) is analogous to that of Theorem 3.1, using Proposition 6.1. To
prove part (ii), Theorem 6.5 is used.

Under the hypothesis of Theorem 6.7, ifGF isAP -factorable with zero partial
AP indices, a formula ford(G) could be given using the matrix BKST transfor-
mation and Proposition 6.1; however, the formula is too cumbersome to state and
is therefore omitted.

7. Applications: Convolution Equations
on a Finite Interval

Following [11], consider the convolution type equation

(k ∗ u)(t) = f(t), t ∈E, (7.1)

on the finite intervalE = (0, λ). We suppose that the Fourier transformK = Fk
of then×n kernelk hasAPW -asymptotics at±∞. The latter condition means that
there exist matrix functionsK± ∈ AP with absolutely convergent Fourier series∑

µ∈�(K±) M µ(K±)eµ and such that

lim
x→±∞(K(x)−K±(x)) = 0. (7.2)

Equation (7.1) will be treated in aBessel potentialssetting:

f ∈Hn
σ,p(E), u∈

0
Hn
σ,p(E), (7.3)

wherep ∈ (1,∞),Hσ,p is the Bessel potentials spaceF −1(1+x2)−σ/2FLp(R)on

the real line,Hσ,p(E) stands for its restriction onE,
0
Hσ,p(E) = {φ ∈Hσ,p(E) :

suppφ ∈ Ē }, andσ ∈ R. A particular case ofσ = 0 corresponds to the more
traditional settingf, u∈Lnp(E).
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Recall that a linear operatorA acting from a Banach spaceX into a Banach
spaceY is Fredholmif its range ImA is closed and the defect numbersα(A) =
dim KerA andβ(A) = codim ImA are finite; the differenceα(A)−β(A) is called
the indexof A and is denoted by indA. The equationAx = y (y ∈ Y given,x ∈
X unknown) is, by definition, Fredholm ifA is. Its defect numbers and its index
are defined as the defect numbers and the index ofA, respectively.

The next theorem follows from [11, Thm. 2.6].

Theorem 7.1. Equation(7.1) is Fredholm if and only if

(1) the matrix functions

K̃± =
[
eλIn 0
K± e−λIn

]
areAP -factorable with zero partialAP indices, and

(2) for all the eigenvaluesξ1, . . . , ξ2n of d(K̃−)−1d(K̃+), the numbers

θj = σ − 1

2π
argξj − 1

p

are not integers.

Under conditions(1) and (2), the index of(7.1)equals

2n∑
j=1

(θj − [θj ] − 1+ 1/p − σ).

Combined with the results of Sections 3–6, this theorem yields concrete Fred-
holm criteria for equations (7.1) in terms of the asymptotic behavior of the Fourier
transforms of their kernels. For example, Theorem 6.5 implies the following.

Theorem 7.2. Let the kernelk of equation(7.1)be such thatK± in (7.2)areAP
polynomials satisfying the big-gap condition:

�(K+) ⊂ {−ν+} ∪ [µ+, λ), �(K−) ⊂ {−ν−} ∪ [µ−, λ), (7.4)

whereν± ∈ (0, λ) andµ± = λ− ν±. Then equation(7.1) is Fredholm if and only
if the following two conditions hold:

(1) the matricesM −ν−(K−), M −ν+(K+), M µ−(K−), M µ+(K+) are invertible;
and

(2) for all the eigenvaluesξj of

A = M −ν−(K−)
−1M µ−(K−)M µ+(K+)

−1M −ν+(K+)

andηj of

B = M −ν−(K−)M µ−(K−)
−1M µ+(K+)M −ν+(K+)

−1,

the numbers

θj = σ − 1

2π
argξj − 1

p
, ωj = σ − 1

2π
argηj − 1

p
(j = 1, . . . , n)

are not integers.
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Under these conditions, the index of(7.1) is

n∑
j=1

(
θj − [θj ] − 1+ 1

p
− σ

)
+

n∑
j=1

(
ωj − [ωj ] − 1+ 1

p
− σ

)
.

Proof. Condition (1) is necessary and sufficient for matrix functions̃K± to be
AP -factorable with zero partialAP indices. If this condition is satisfied, formula
(6.8) yields

d(K̃−)−1d(K̃+) =
[
A 0
∗ B

]
.

Since eigenvalues of block triangular matrices and of their diagonal blocks coin-
cide, condition (2) and the index formula follow immediately from those of The-
orem 6.5.

It is interesting to observe that Fredholm properties of the equation (7.1) in the
setting (7.4) depend only on the two leftmost Fourier coefficients ofK±.

An important subcase of (7.2) occurs ifK itself lies inAPW :

K =
∑
j

cj eλj , where
∑
j

‖cj‖ <∞.

Equation (7.1) can then be rewritten as∑
j

cju(t − λj ) = f(t), t ∈ (0, λ). (7.5)

The corresponding version of Theorem 7.1 reads as follows.

Theorem 7.3. Equation(7.5) is Fredholm in the Bessel potentials setting if and
only if the matrix function

K̃ =
[

eλI 0∑
j cj eλj e−λI

]
isAP -factorable with zero partialAP indices andσ−1/p /∈Z. If these conditions
are satisfied, then the defect numbers of(7.5) equalnmax{0, −1− [σ − 1/p]}
andnmax{0, 1+ [σ − 1/p]}.

It follows from Theorem 7.3 that equation (7.5) has a unique solution for every
right-hand side if and only ifK̃ isAP -factorable with zero partialAP indices and
σ ∈ (1/p − 1,1/p). In theLp-setting (i.e., forσ = 0) this result is stated in [9].

Proof. ForK ∈ APW, assumption (7.2) is obviously satisfied withK+ = K− =
K. Condition (1) of Theorem 7.1 is therefore equivalent toAP -factorability ofK̃
with zero partialAP indices. In its turn,d(K̃−)−1d(K̃+) = I2n, so that allθj in
condition (2) are equal tos − 1/p. From here follows the Fredholm criterion.

To prove the formulas for defect numbers, use Theorem 2.1 of [11], according
to which (7.5) is equivalent to the Wiener–Hopf operatorWS with the symbol



Almost Periodic Factorization of Triangular Matrix Functions 101

S(x) =
(
x − i
x + i

)−σ
K̃(x),

considered onLnp(R+). Because of the factorability of̃K with zero partialAP
indices,WS has the same defect numbers as the direct sum ofn copies of the
operator

W((x−i)/(x+i))−σ : Lp(R+)→ Lp(R+).

It remains to apply the well-known result on one-side invertibility and the index
formula for Wiener-Hopf operators with piecewise continuous symbols [5].

We conclude with a concrete version of Theorem 7.3 that is valid by virtue of
Theorem 6.7.

Theorem 7.4. Let all the shiftsµj in the difference equation

u(t + ν)−
J∑
j=1

bju(t − µj) = f(t), 0< t < λ, (7.6)

lie in Rs(λ, ν) ∪ [λ− ν, λ) for a certain integers < λ/ν − 1 andRs(λ, ν) given
by (3.1). Then(7.6)is Fredholm(resp. invertible) if and only if σ −1/p /∈Z (resp.
σ ∈ (−1+ 1/p, 1/p)),min

{ {〈N,0〉 − λ : N ∈ (Z+)m} ∩ (−ν, ν) } = 0, and the
matrix

∑
N :〈N,0〉=λ yN(F ) with yN(F ) defined by(6.3) is invertible.
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