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Pooling with Essential and Nonessential Patents†

By Daniel Quint*

Several recent technological standards were accompanied by pat-
ent pools—arrangements to license relevant intellectual property as 
a package. A key distinction made by regulators—between patents 
essential to a standard and patents with substitutes—has not been 
addressed in the theoretical literature. I show that pools of essen-
tial patents are always welfare increasing, while pools which include 
nonessential patents can be welfare reducing—even pools limited 
to complementary patents and stable under compulsory individual 
licensing. If pools gain commitment power and price as Stackelberg 
leaders, this reduces, and can reverse, the gains from welfare-
increasing pools. (JEL D43, D45, K21, L13, L24, O34)

When firms with market power sell complementary goods, their combined price 
will typically be higher than if both were sold by a single monopolist. This 

effect, first understood by Cournot (1838) and later termed double marginalization, 
can be particularly severe in the context of intellectual property. In high-tech fields 
where innovation is rapid and cumulative, a large number of patents may touch on 
the same new technology; double marginalization can make the technology expen-
sive to commercialize, harming downstream producers and consumers as well as the 
innovators the patent system was designed to reward.

One tool to address this problem is a patent pool—an agreement by multiple pat-
ent holders to share a group of patents among themselves or to license them as a 
package to third parties. Patent pools in the United States go back to the 1850s, the 
first one involving sewing machine patents. Lerner and Tirole (2007) claim that “in 
the early days of the twentieth century … many (if not most) important manufactur-
ing industries had a patent pooling arrangement.” In 1917, with airplanes needed 
for World War I, Franklin Roosevelt (then Assistant Secretary of the Navy) pushed 
US aircraft manufacturers into a patent pool because ongoing litigation between the  
Wright Company and Curtiss Company had choked off aircraft production. In  
the last decade, several patent pools have formed in conjunction with technological 
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standards, beginning with the MPEG-2 video and DVD standards in the late 1990s;1 
Lerner and Tirole (2007) cite one estimate that “sales in 2001 of devices based in 
whole or in part on pooled patents were at least $100 billion.”

When patents in a pool are complements, the pool can lower their combined price 
and increase licensing revenues—as well as reduce transaction costs (by reducing 
the number of individual licensing agreements required to make use of the tech-
nology) and the risk of holdup by the final patent holders. However, patent pools 
have also been used to eliminate competition between rival technologies, facilitate 
collusion, and even administer cartels. In the early 1900s, a pool administered by 
National Harrow specified which products its licensees could produce and fixed the 
prices in the downstream market.2 The Hartford-Empire pool dominated glassware 
manufacturing in the 1940s and used licensing terms to set production quotas and 
discourage entry into the market. In the early 1990s, Summit and VISX, which by 
1996 were the only two companies with FDA-approved technologies for laser eye 
surgery, formed a patent pool and set a standard licensing fee of $250 for each use 
of either firm’s technology; according to the FTC, “Instead of competing with each 
other, the firms placed their competing patents in the patent pool in order to share the 
proceeds each and every time a Summit or VISX laser was used.”

Antitrust treatment of patent pools has evolved significantly over time. In 1902, 
the Supreme Court upheld the National Harrow pool, noting that “The very object of 
these [patent] laws is monopoly” (E. Bement and Sons v. national Harrow, 186 US 
70 (1902)) and that patent law trumped the twelve-year-old Sherman Act. Within 
ten years, however, the court had backtracked and begun to examine overly restric-
tive licensing terms. The Hartford-Empire pool mentioned above was ruled to be an 
antitrust violation because it restricted downstream production; the Supreme Court 
ruled that the pool itself was legal and Hartford-Empire was free to charge whatever 
royalty rate it chose, but could not restrict its licensees further. Several other patent 
pools were found to be antitrust violations in the 1940s and early 50s, and very few 
new pools formed from the mid-1950s until the 1990s. In 1998, the Summit and 
VISX pool was dissolved following a settlement with the FTC. The 1995 FTC/DOJ 
Guidelines for the Licensing of Intellectual Property explicitly recognized the pro-
competitive possibilities of patent pools, and a number of pools related to techno-
logical standards appeared thereafter, beginning with MPEG-2 in 1997.

When evaluating the recent standard-based pools, regulators have drawn a key 
distinction between patents which are essential to comply with the standard and 
patents for which suitable substitutes exist. The recent pools have all been limited 
to essential patents, and provide for independent experts to determine which patents 
should be included on this basis; this is seen as a “competitive safeguard” to ensure 
that the pool does not have anticompetitive effects.3

1 In addition to the pioneering MPEG-2 pool and two pools related to DVD-ROM and DVD-Video, recent 
standard-based pools have included Firewire, Bluetooth, RFID, AVC, DVB-T, and MPEG-4.

2 The pool accounted for 90 percent of the US market for float spring tooth harrows, agricultural devices used 
to cultivate surface soil before planting.

3 In business letters issued by the Department of Justice in 1998 and 1999 in response to the proposed DVD 
pools, Joel Klein writes, “One way to ensure that the proposed pool will integrate only complementary patent rights 
is to limit the pool to patents that are essential to compliance with the Standard Specifications. Essential patents by 
definition have no substitutes; one needs licenses to each of them in order to comply with the standard.”
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As I discuss in the next section, the existing literature on patent pools fails to 
distinguish between essential and nonessential patents, treating only the polar cases 
where every patent is essential (users need licenses to all of the patents) or no patent 
is essential (any set of patents of a particular size is sufficient). The aim of this paper 
is to understand the effects of a patent pool in an environment in which essential 
and nonessential patents coexist; given the emphasis placed by regulators on distin-
guishing essential from nonessential, this seems to be an empirically important case. 
I find the following:

•	 Patent	pools	 containing	only essential patents lead to lower prices for every 
product using the technology; greater consumer surplus in the downstream 
market; and higher licensing revenue for all patent holders outside the pool. 
Such pools are always welfare increasing. As in earlier models, however, such 
pools may be inefficiently small when individual patent holders can opt out 
without disrupting pool formation.

•	 Patent	 pools	 containing	 patents	 required	 only	 for	 one	 of	 several	 competing	
products, or nonessential patents which are perfect complements, will reduce 
the price of one product, but can increase or decrease the prices of others. Such 
pools increase total consumer surplus, but may harm some individual consum-
ers; they increase revenues of outsiders whose patents are complementary to the 
pool, but decrease revenues to others. The overall welfare effect can be either 
positive or negative. This is in contrast to previous papers, which found that 
complementarity of the patents within the pool was sufficient for a pool to be 
welfare increasing. (The difference is that my model allows for the patents in a 
pool to be complements to each other, yet have substitutes outside the pool; in 
earlier models, this was impossible.)

•	 As	in	earlier	models,	pools	containing	patents	which	are	substitutes will tend to 
reduce consumer surplus and overall welfare.

•	 In	contrast	 to	previous	models,	 robustness	 to	compulsory individual licens-
ing (the forced availability of pooled patents individually as well as through 
the pool) is not a sufficient screen for efficiency: pools of complemen-
tary nonessential patents are robust to individual licensing, and may be 
welfare decreasing.

•	 To	the	extent	that	a	pool	is	less	flexible	than	individual	patent	holders	and	there-
fore acts as a Stackelberg-style leader, the welfare gains are reduced, and may 
even be reversed.

This suggests that, from a policy point of view, pools of essential patents should 
generally be allowed, and encouraged to be as inclusive as possible; pools which 
include complementary nonessential patents should be considered more cautiously, 
though not necessarily ruled out; and terms of a pooling arrangement which make 
the pool less flexible with respect to pricing (terms which “bind the pool’s hands”) 
should be eyed suspiciously, since (provided the same pool would have formed with-
out these terms) they lead to higher prices and lower welfare.

The rest of this paper proceeds as follows. Section I discusses existing lit-
erature on patent pools. Section II introduces a model of price competition in a 
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 differentiated-products setting and characterizes its equilibrium. Section III presents 
the results following from this model. Section IV concludes with a discussion of 
the limitations of the model and avenues for future work. All results in the text are 
proved in the Appendix.

I. Related Literature

A few recent papers have presented theoretical models of patent pools. Gilbert 
(2004) (along with a detailed history of antitrust litigation) and Shapiro (2001) 
give simple models of competition with perfect substitutes and perfect comple-
ments, emphasizing the double-marginalization problem in the latter case. Lerner 
and Tirole (2004) model a world with n identical patents which need not be per-
fect substitutes nor perfect complements. They show that a pool containing all the 
patents is more likely welfare increasing when patents are more complementary; 
and that forcing pool participants to also offer their patents individually (com-
pulsory individual licensing) destabilizes “bad” pools without affecting “good” 
ones. Brenner (2009) extends the Lerner and Tirole (2004) framework to consider 
smaller (“incomplete”) pools containing only some of the patents. He explicitly 
models the fact that some patent holders may do better by remaining outside of the 
pool, and examines which pools will form under different formation procedures. 
Brenner compares the welfare achieved under a particular formation protocol to 
the outcome without a pool, and shows that compulsory individual licensing is a 
good screen for efficiency under this formation rule. Aoki and Nagaoka (2005) 
use a coalition-formation model (based on the framework of coalition games with 
externalities in Maskin 2003) to show that even when the patents are all essential 
and the grand coalition is therefore desireable, it will not form when the number 
of patents is large. Kim (2004) shows that in the presence of a patent pool, vertical 
integration—the presence of patent-holding firms in the downstream market—
always lowers the price of the final product. Dequiedt and Versaevel (2008) show 
that allowing pool formation increases firms’ R&D investments prior to the pool 
being formed.

In all of these models, patents are assumed to be interchangeable; that is, users 
derive value based on the number of patents they license, not which ones. This 
means that either all or none of the patents are essential. Under this assumption, the 
authors generally find that as long as the patents are complements, pools are socially 
desirable. (One exception is Choi 2003, who observes that pooling of weak patents 
(patents which are unlikely to be upheld in court) may reduce the incentive for pro-
ducers to challenge them, leading to a loss in welfare even though the patents may 
be complements.) My model differs from these in allowing a given patent to have 
some complements and some substitutes.

In addition to this theoretical work, there have been several recent empirical exam-
inations of patents pools. Lerner, Strojwas, and Tirole (2007) examine the licensing 
rules of various patent pools, finding that pools of complementary patents are more 
likely to allow independent licensing and require grantbacks, consistent with their 
theory. Layne-Farrer and Lerner (2011) examine the rules by which revenues are 
allocated and the effect this has on participation. Lampe and Moser (2010, 2011) 
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find that patent pools appear to suppress further patenting and innovation related to 
the pool technology.

The discrete-choice logit model I use for consumer demand is similar to the one 
considered in Anderson, de Palma, and Thisse (1992) and Nevo (2000), among 
many others. These papers embed the various products in a multi-dimensional space 
of product characteristics, assuming that consumers have differentiated (generally 
linear) preferences over these characteristics. I focus on the simpler case where 
consumer preferences are over the products themselves, rather than their character-
istics. (Also see Berry and Pakes 1993 for a discussion of the use of these and other 
techniques in merger analysis.) Also related is the problem of tying and bundling 
of consumer goods—see Kobayashi (2005) for a recent survey of the bundling lit-
erature, and Chen and Nalebuff (2006) for a recent contribution. The key difference 
between my model and all of these is that here, products are overlapping sets of dif-
ferent components, which may be produced (and priced) by different firms.

II. Model

In this section, I introduce my model. Patent holders license their patents to down-
stream manufacturers, who sell products based on the patented technologies to con-
sumers. The products are substitutes, but consumers have differentiated tastes for 
them, so competition between patent holders is imperfect; I focus on this upstream 
competition by assuming the downstream sector is perfectly competitive. (Under 
perfect competition, the results are the same as if patent holders licensed their pat-
ents directly to end users, as in the previous literature.) The model is analogous to a 
model of two-level production: patent holders correspond to upstream (wholesale) 
suppliers of product components, which are assembled into products and sold by 
downstream retailers.

A. Patents, Products, and Patent Holders

There is a finite set  = {1, 2, … , K} of distinct products. There is a finite set 
 = {1, 2, … , J} of patents, each blocking one or more of the K products. For k ∈ , 
let   k  ⊂  denote the set of patents blocking product k, which must therefore be 
licensed in order to legally manufacture that product.

Define a patent to be essential if it is required for every product, that is, if it is 
contained in   k  for every k ∈ ; and let    E  =   1  ∩   2  ∩ ⋯ ∩   K  denote the set of 
essential patents. I will refer to patents outside of    E  as nonessential.

Next, we make the assumption that every nonessential patent blocks only a single 
product, that is, that the only overlap in the patents blocking any two products is the 
patents blocking all the products:

ASSUMPTION 1: for any two products  k′  ≠ k, (  k  −    E   ) ∩ (   k′   −    E   ) = ~.

I will let    k  n  =   k  −    E  denote the set of nonessential patents blocking a particu-
lar product; Assumption 1 is the assumption that   {    k  n  }    k∈  forms a partition of the 
set of nonessential patents.
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Assumption 1 is admittedly strong, but buys us a lot. It will lead to a supermodu-
lar structure on the pricing game, giving a number of sharp comparative statics. For 
motivation, one can think of the different products as competing applications or 
implementations of a common core technology—different cell phones that work on 
a particular network, for example. Essential patents are patents on the core technol-
ogy (or the technological standard the products are built to comply with); nonessen-
tial patents might be tied to other aspects of product design (a touch-screen interface 
for a cell phone).4

I assume each patent is owned by a separate patent holder, and thus identify each 
patent holder 1, … , J with the patent he or she owns.5 Patent holders face no mar-
ginal costs, and set licensing fees  p j  to maximize licensing revenue

where  Q k  is the demand for product k.

B. Manufacturers

Manufacturers (or retailers) license patents from patent holders and sell the prod-
ucts k ∈  to downstream consumers. I assume that manufacturers are perfectly 
competitive, with no fixed costs and constant marginal costs for each product which 
are the same across manufacturers (but may vary across the K products). Under per-
fect competition, manufacturers will charge consumers the patent holders’ licens-
ing fees plus their own marginal costs; for ease of exposition, I will assume that 
consumer utility terms (described below) are net of these marginal costs, so that the 
retail price of each product k is

(2)   P  k  ≡   ∑  
j∈  k 

  
 

    p j  .

4 One recent example that fits Assumption 1 is the intellectual property related to third-generation, or 3G, mobile 
telephony, which was designed to use five different radio interfaces, each backward-compatible with one second-
generation network. Some patents are tied to one of these interfaces, while others relate to the 3G network as 
a whole.

5 A patent holder with multiple patents of the same “type” (multiple essential patents, or multiple nonessential 
patents for the same product) would always license them together in equilibrium, so there is no loss in treating the 
entire portfolio as a single patent. A patent holder with different “types” of patents, however, would not fit well 
within this framework.

(1)  π j  (  p j ) = 

⎧
⎥
⎨
⎥
⎩

 p j   Q k for j ∈    k  n 

 p j   (    ∑  
 k  ′ ∈

  
 

    Q  k  ′   )  for j ∈    E  ,
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C. consumers

Demand for the products comes from a measure 1 of consumers l ∈ L, who have 
idiosyncratic preferences for the various products. If consumer l buys product k at 
price  P k  , her utility is

(3)   v  k  l
   −  P  k  .

Each consumer can buy at most one product; if consumer l declines to buy any of 
the products, her utility is  v  0  l

  .
While many of the comparative statics in this paper hold for more general demand 

systems,6 I will make a strong assumption here about the demand system in order 
to give sharper results.

ASSUMPTION 2 [Logit Demand]: for k ∈  ∪ {0},  v  k  l
   =  v k  +  ϵ  k  l

  , where  v 0  = 0,  
( v 1 , … ,  v K ) are constants, and  ϵ  k  l

   are i.i.d. draws (across k and l ) from the standard 
double-exponential distribution.7

Under Assumption 2, a fraction

(4)   Q k  =    e  v k − P k   __  
1 +  ∑  

 k  ′ ∈
  

 

    e  v  k  ′  − P  k  ′   
  

of consumers demand product k, and consumer surplus can be written as cS  
= Emax  {  v  0  l

  , ma x k∈  { v  k  l
   −  P  k } }  = log  ( 1 +  ∑   k  ′ ∈   

    e  v k − P k   )  .

D. Equilibrium

Manufacturers (retailers) and consumers are nonstrategic, so the licensing fees 
set by patent holders constitute the equilibrium, although consumer surplus will be 
included in welfare calculations. Define the following additional notation:

•	 	n E  ≡  |    E  |  the number of essential patents, and  P  E  ≡  ∑  
j∈   E 

   
    p j  their combined 

price
•	 	n k  ≡  |    k  n  |  the number of nonessential patents covering product k, and  P  k  n   

≡  ∑  
j∈   k  n 

   
    p j  their combined price.

The price of product k can be written as  P  k  =  P  E  +  P  k  n .

6 Specifically, Theorems 1, 2, 7, and 8—the price and welfare effects of pools of complements, and the effects 
of compulsory individual licensing and Stackelberg pools—rely mainly on the signs of the marginal effects of the 
number of each type of patent holder ( |    E  |  and  |    k  n  | ) on equilibrium outcomes; they therefore extend almost com-
pletely to more general demand systems satisfying certain regularity conditions. See Quint (2013) for a discussion 
of the required conditions.

7 f(x) = exp  ( −exp   ( −  ( x + γ )  )  ) , where γ is Euler’s constant. See McFadden (1974) or Anderson, de Palma, 
and Thisse (1992) for more on logit demand.
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LEMMA 1: under Assumptions 1 and 2, equilibrium exists, and is unique. 
Equilibrium values of “aggregate prices” ( P  1  n ,  P  2  n , … ,  P  K  n ,  P  E   ) are the unique solu-
tion to the system of equations

(5)   P  1  n  (1 −  Q 1 ) =  n 1 

  P  2  n  (1 −  Q 2 ) =  n 2 

   ⋮  

  P  K  n  (1 −  Q K ) =  n K 

   P  E  (1 −  Q 1  −  Q 2  − … −  Q K ) =  n E 

and individual patent holder prices are  p j  =   1 _  n k     P  k  n  for j ∈    k  n  and  p j  =   1 _  n E     P  E   
for j ∈    E .

The proof is in the Appendix.
A pool of n essential patent holders behaves as if it were a single essential patent 

holder, so its formation has the same effect on equilibrium prices as a reduction in  n E  
by n − 1. Similarly, a pool of n patent holders in    k  n  has the same effect on aggregate 
prices as a reduction in  n k  by n − 1. Thus, the effects of patent pools can be understood 
via the effects  n E  and  n k  have on equilibrium outcomes, through their effects on the 
solution to equation (5). While ( n E ,  n 1 , … ,  n K ) are integers, the solution to equation (5) 
varies continuously with these parameters; by differentiating these equations with 
respect to each of these parameters, we can solve explicitly for the marginal effect of  n E  
or  n k  on equilibrium prices, allowing us to sign many of the effects of pool formation.

III. Results

A. Welfare Effects of Pools of complements

Pools of Essential Patents.—Previous papers, such as Shapiro (2001) and Lerner 
and Tirole (2004), have suggested that pools are generally welfare increasing when 
the patents being pooled are sufficiently strong complements. In my setting, this is not 
always the case even when patents within the pool are perfect complements: pools of 
essential patents are always welfare increasing, but pools of complementary nones-
sential patents can be welfare decreasing. First, the result on pools of essential patents:

THEOREM 1: A pool containing only essential patents will:

 (i) Lower the price  P k  of every product and increase the surplus to each consumer.

 (ii) Increase the demand  Q k  for every product.

 (iii) Increase the profits of every patent holder (essential and nonessential) out-
side the pool.



VoL. 6 no. 1 31quint: pooling with essential and nonessential patents

 (iv) Increase total welfare.

If the pool is profitable for its members, it therefore represents a Pareto improvement.

The proof, in the Appendix, is mostly by brute-force calculation specific to the 
logit demand system, but intuition for what drives the results can be gained from 
Quint (2013). In that paper, I show that in a demand setting like this, the equilib-
rium values of aggregate prices correspond to the equilibrium of a separate aux-
iliary game, which is a supermodular game in ( P  1  n ,  P  2  n , … ,  P  K  n , −  P  E   ), indexed by  
( n 1 ,  n 2 , … ,  n K , −  n E ). A pool of essential patents corresponds to a reduction in  n E  ; 
this therefore leads to a decrease in the equilibrium value of  P  E , but increases in  P  k  n  
for each k. The decrease in  P  E  can be shown to be greater, leading to lower overall 
prices  P k  =  P  k  n  +  P  E  for every product. Such a pool can then be shown to always 
increase total welfare.

Pools of complementary nonessential Patents.—A pool of nonessential patents, 
corresponding to a decrease in  n k  , has more ambiguous effects. A decrease in  n k  
reduces the equilibrium level of  P  k  n , as well as (by supermodularity) the level of  P   k  ′   

n  
for every  k′  ≠ k; and increases  P  E . For  k′  ≠ k, either effect could dominate, so the 
price  P   k  ′   of a competing good could rise or fall in response to the pool. Likewise, the 
welfare effects are ambiguous:

THEOREM 2: choose a product k, and consider a pool of patent holders in    k  n . for 
each  k′  ≠ k, such a pool will:

 (i) Decrease  P  k  
n  and  P   k  ′   

n  and increase  P  E .

 (ii) Increase  Q k  and decrease  Q  k  ′   .

 (iii) Decrease  P  k  and have an ambiguous effect on  P   k  ′   .

 (iv) Increase total consumer surplus, although some individual consumers may 
be made worse off.

 (v) Increase profits of essential patent holders and outsiders in    k  
n  and decrease 

profits of patent holders in     k  ′   
n  .

 (vi) Have an ambiguous effect on total welfare.

To better understand the welfare effect, think of  n k  as a continuous parameter, 
affecting prices through its effect on the solution to the equilibrium conditions 
(equation (5)). A pool of m of the original n patent holders in    k  n  corresponds to 
a reduction of  n k  from n to n − m + 1; its effect on total welfare can be written as

(6)   ∫  
n−m+1

  
n

    [      ∑  
 k  ′ ∈−{k}

  
 

    w  k  ′    (  P  k  −  P   k  ′   )  +  w 0   P  k  ]  d n k  ,
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where  w  k  ′   and  w 0  are positive weights (varying with  n k ) with

(7)   w  k  ′   ∝   
 Q  k  ′   __  

1 +  P   k  ′   
n    

 Q  k  ′   _ 1 −  Q  k  ′  
  
    and   w 0  ∝   

1 −  ∑  
k∈

  
 

    Q k 
 _ 

1 +  P  E 
   .

For intuition about equation (6), recall that payments from consumers to patent 
holders are welfare neutral, so total surplus is simply the average value of  v  k  l

   realized 
by consumers’ product choices. When consumer l switches from product  k′  to k in 
response to a change in relative prices, the change in total surplus is  v  k  l

   −  v   k′   l
   . On the  

margin, consumers who switch are indifferent, meaning  v  k  l
   −  P  k  =  v   k  ′   

l
   −  P   k  ′   , so  

the welfare change is  P  k  −  P   k  ′   . Similarly, a consumer who was demanding nothing 
and switches to product k, increases welfare by  P  k  . The weights  w  k  ′   and  w 0  represent 
the relative masses of consumers who move across each threshold in response to a 
marginal reduction in  n k  . A decrease in  n k  reduces  P  k  both absolutely and relative to   
P   k  ′   , so these weights are all positive.

Writing the welfare change, as in equation (6), gives some idea of when a pool of 
complementary, nonessential patents will be welfare increasing:

•	 If	product	k is expensive relative to the other products, due either to a high aver-
age value  v k  or a large number of nonessential patents  n k , then a pool containing 
patents in    k  n  is likely welfare increasing.

  In that case, consumers switching to k from other products increase welfare, 
as do consumers switching to k from nothing. (Prices  P   k  ′   and  P   k  ″   do not change 
identically, so there will also be some consumers switching between other prod-
ucts, but these effects will be overwhelmed by those consumers switching to 
product k.) If product k is still the most expensive product after the pool forms, 
then all terms in the integrand in equation (6) are positive over the whole range 
of integration, and the pool will be welfare increasing.8

•	 If	most	of	the	market	is	unserved—each		Q  k  ′   is small and 1 −  ∑   k  ′   
 
    Q  k  ′   large—

then regardless of the relative prices of the products, a pool of patents in    k  n  is 
likely welfare increasing.

  In that case, the last term of the integrand dominates; most of the “action” 
consists of consumers switching from demanding nothing to demanding prod-
uct k, which increases total surplus. This means, for example, that when  n E  is 
large, a pool of patents in    k  n  will be welfare increasing.

•	 On	the	other	hand,	if	most	of	the	market	is	being	served	and	product	k is already 
relatively cheap, then a pool of patents in    k  n  is likely to be welfare decreasing.

To illustrate the contrast between the last two cases, I offer the following exam-
ple. For all the examples in this paper, a full description of the equilibrium in each 
case, both before and after the pool in question forms, is given in the Appendix.

8 This can be seen as a loose analog to the “concertina theorem” in international trade (originally posited by 
Meade 1955): that in the absence of complementarities, when different goods face different tariffs, reducing the 
highest tariff is unambiguously welfare increasing. See Bertrand and Vanek (1971) for a discussion.
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Example 1: Let K = 3. Let ( v 1 ,  v 2 ,  v 3 ) = (10, 10, 5), and  n 1  =  n 2  =  n 3  = 3. Since 
product 3 is lower-value than 1 and 2, in the absence of a patent pool, its price will 
be lower in equilibrium. Consider a pool consisting of the three patents in    3  n .

First, suppose that  n E  = 3. In the absence of a pool, equilibrium prices are  
P 1  =  P 2  = 10.557 and  P 3  = 9.488, leading to a significant fraction of the market  
(46.3 percent) not being served. Even though product 3 is cheaper than the other 
two products, the pool in question is still welfare increasing: when the three patent 
holders in    3  n  form a pool, total welfare rises from 6.426 to 6.428.

Second, however, suppose that  n E  = 1. This leads to lower equilibrium prices— 
P 1  =  P 2  = 9.439 and  P 3  = 7.626 before pool formation—as well as a bigger gap 
between  P 3  and the other prices, and a smaller fraction of the market (21.8 percent) 
being unserved. In that case, a pool of patents in    3  n  decreases total welfare, from 
8.869 to 8.775.

Pools of Essential and nonessential Patents.—The addition of patents in    k  n  to an 
existing pool of essential patents will have the same effects as a decrease in  n k  ; the 
effects will therefore be the same as in Theorem 2. The formation of a pool contain-
ing patents in both    E  and    k  n  will correspond to decreases in both  n E  and  n k  . The 
results will be a hybrid of Theorems 1 and 2: the pool will result in a decrease in  P  k  ,  
an increase in  Q k  , an increase in total consumer surplus, and an increase in profits to 
outsiders in    E  and    k  n ; the other effects will be ambiguous.

B. Profitability of Pools of complements

When Will a Pool Be Profitable?—A trade-off between two forces determines 
when a pool of complementary patents will increase the profit of its members. 
Working in favor of the pool is the usual benefit of merger: the individual pat-
ent holders internalize the effect their pricing decisions have on each other (the 
double-marginalization problem among pool members is solved). Working again 
the pool, however, are the price responses of the patent holders outside the pool. 
When the pool contains essential patents, all outsiders (nonessential patent holders 
and any excluded essential patent holders) respond to the pool by raising their own 
licensing fees, reducing demand and lowering pool profit. When the pool contains 
nonessential patents for one product, nonessential patent holders for competing 
products lower their licensing fees, and essential patent holders again raise theirs, 
again lowering pool profitability.

However, when the double-marginalization problem is particularly severe, the 
first effect will dominate. Thus, fixing the other primitives of the model, when  n E  is 
sufficiently large, a pool of essential patents will always be profitable; and when  n k  
is sufficiently large, a pool of nonessential patents for product k will always be prof-
itable. This holds both for pools of a fixed size, and for pools whose size increases 
with  n E  or  n k .

THEOREM 3: fix m ≥ 0. If  n E  is sufficiently large,

 (i) a pool of m + 2 essential patents increases the profits of its members;
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 (ii) a pool containing all but m essential patents increases the profits of its 
members.

Similarly, fixing m ≥ 0 and k ∈ , if  n k  is sufficiently large,

 (iii) a pool of m + 2 patents in    k  n  increases the profits of its members;

 (iv) a pool containing all but m patents in    k  n  increases the profits of its members.

outsiders and the Incentive to free ride.—Thus, when the number of comple-
mentary patents is large, a pool will generally be profitable. However, as in many 
merger situations,9 much of the benefit of a pool goes not to the insiders but the 
outsiders, that is, the patent holders who remain outside the pool. This creates a free 
rider problem which may prevent pools from reaching their optimal size. Aoki and 
Nagaoka (2005) find that when all patents are essential, the grand coalition (which 
is both profit-maximizing and efficient) will only occur when the number of patent 
holders is small; for large numbers of patent holders, “the emergence of [an] out-
sider is inevitable, so … voluntary negotiation cannot secure the socially efficient 
outcome.” Brenner (2009) proposes an “exclusionary” formation rule, under which 
a patent pool proposed by one player must be unanimously accepted by its members 
or fail to form; this allows the grand coalition to be achieved when it is efficient but 
could not be reached by sequential negotiations.

In both these papers, the grand coalition maximizes total patent-holder profits 
but still may fail to form. In my setting, the problem is more severe, as a pool of 
all essential patents, while more efficient than a smaller pool, does not necessarily 
maximize the joint profits of the essential patent holders. This is due to strategic 
effects: as the pool grows and  P  E  falls, nonessential patent holders raise their prices 
in response. To illustrate this formation problem, consider the same example as 
before, but this time with  n E  = 6:

Example 2: As before, let K = 3, ( v 1 ,  v 2 ,  v 3 ) = (10, 10, 5), and  n 1  =  n 2  =  n 3  = 3. 
This time, let  n E  = 6, and consider patent pools containing some or all of the patents 
in    E .

Table 1 shows the equilibrium profit level of each essential patent holder under 
three scenarios: no pool, a pool containing five of the six essential patents, and a 
pool containing all six.

Relative to no pool, a pool of five essential patents does not increase the profits 
of the participating patent holders. A pool of all six increases their combined profits 
by 66 percent; but the addition of the sixth patent to the pool actually decreases the 
combined profits of the essential patent holders.

9 See, for example, Deneckere and Davidson (1985) for a discussion.
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Thus, as in previous models, pools of essential patents are welfare increasing, but 
may fail to achieve their efficient size (or form at all) if individual patent holders can 
opt out without destroying the pool.

Linking Profitability to Welfare When K = 2.—Theorem 2 showed that a pool of 
complementary, nonessential patents could have either positive or negative welfare 
effects. Theorem 3, and the discussion following, suggest that such pools will some-
times, but not always, be profitable for their members (and therefore likely to form 
in the absence of regulatory opposition).

When there are only two competing products, the two questions turn out to be 
linked: welfare-decreasing pools are unprofitable, and therefore endogenously 
occurring pools can be assumed to be welfare increasing overall:

THEOREM 4: Suppose K = 2, and fix k ∈ {1, 2}. If a pool contains only patents in  
  k  n  and is profitable, then it is welfare increasing.

The converse, however, does not hold: not all welfare-increasing pools are profit-
able. In addition, as Example 1 showed, Theorem 4 does not extend to K > 2, as the 
second pool considered in Example 1 was welfare decreasing, but nearly doubled 
its members’ profits.

Adding nonessential Patents to an Essential Pool.—Adding nonessential patents 
to an existing pool of essential patents can be either profitable or unprofitable; but 
if all the essential patents are already in the pool, and all the nonessential patents 
blocking a particular product are added, this is always profitable:

THEOREM 5: fixing k ∈ ,

 (i) the addition of one patent in    k  n  to a pool of essential patents may or may not 
increase the profits of its members;

 (ii) the addition of all the patents in    k  n  to a pool already containing all essential 
patents always increases the joint profits of the pool members.

Effects of one Pool on the Profitability of Another.—If the formation of one patent 
pool alters the incentives of other patent holders to form a different pool, it may not 
always suffice to consider the welfare effects of one pool in isolation. Unfortunately, 
the effect that one pool has on the profitability of another pool is ambiguous. To see 

Table 1—Effect of Pools on Essential Patent-Holder Profits

Per firm profits
Combined profits, 

all firmsFirms 1–5 Firm 6

No pool 0.371 0.371 2.224
Pool of {1, 2, 3, 4, 5} 0.369 1.843 3.685
Pool of {1, 2, 3, 4, 5, 6} 0.596 0.596 3.578
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how difficult it would be to make general statements about these effects, consider 
the following example, in which a seemingly unrelated change in primitives reverses 
the direction of the relationship between two pools.

Example 3: As before, let K = 3 and ( v 1 ,  v 2 ,  v 3 ) = (10, 10, 5). Let  n E  = 3 and  
n 1  = 5, and consider two possible pools: a pool of all five patents in    1  n , and a pool 
of all three patents in    E .

First, suppose that  n 2  = 5 and  n 3  = 3. Regardless of whether the second pool 
forms, the first pool—containing the five patents in    1  n —is always profitable for its 
members, increasing their combined profit by more than 10 percent. Thus, it is at 
least plausible to imagine that it might form. The second pool—the pool containing 
all the essential patents—turns out to be profitable for its members if the first pool 
does not form, but unprofitable if the first pool does form. Thus, there appears to be 
strategic substitutability between the two patent pools.

On the other hand, switch  n 2  and  n 3 , so that  n 2  = 3 and  n 3  = 5. Now the result is 
reversed. The pool of essential patents is now unprofitable if the first pool does not 
form, and profitable if the first pool forms, suggesting there is strategic complemen-
tarity between the two pools. (The pool of patents in    1  n  remains profitable, regard-
less of whether the essential patent-holders pool.)

C. Pools containing Substitutes

Shapiro (2001) and Lerner and Tirole (2004) showed that when pooled patents are 
not available to be licensed separately, pools of substitute patents lead to higher prices 
and lower welfare. I give two examples along the same lines in the current setting.

THEOREM 6: (i) A pool containing two nonessential patents blocking different 
products always decreases total consumer surplus.

 (ii) A pool containing one nonessential patent blocking each product always 
decreases total consumer surplus and total welfare.

A pool containing several nonessential patents blocking each product would, in 
essence, be replacing many nonessential patents with a single essential patent. If 
enough nonessential patents were included, this would likely lower all prices  P k  and 
increase total welfare. However, one can imagine decomposing the formation of 
such a pool into two steps:

 (i) First, K separate pools are created, each containing nonessential patents for a 
single product.

 (ii) Second, these K pools are combined into a single pool.

The second part of Theorem 6 implies that the second step is welfare decreasing. 
Thus, even if the overall welfare effect of such a pool (relative to no pool) is posi-
tive, it is less positive than if separate pools were maintained for each product. In 
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fact, this is effectively what was done in the 3G case. The general structure was 
originally intended to be a single “patent platform,” with a single body determining 
standard (a la carte) licensing fees for all relevant patents; antitrust concerns led 
instead to the establishment of five separate Licensing Administrators to oversee 
selection of patents and licensing fees separately for each of the five radio interfaces 
making up the 3G standard.

D. compulsory Individual Licensing

Lerner and Tirole (2004) propose compulsory individual licensing—mandating 
that participants in a patent pool also offer their patents individually—as a solu-
tion to welfare-decreasing pools. Define a pool to be stable to individual licens-
ing if equilibrium prices are the same with and without individual licensing, and 
weakly unstable to individual licensing if in at least some equilibria, after the pool 
names its profit-maximizing price, individual licensing causes prices to revert to 
their  pre-pool levels. Lerner and Tirole show that in their setting, welfare-increasing 
pools are stable to compulsory individual licensing, while welfare-decreasing pools 
are weakly unstable. Thus, they claim that compulsory individual licensing func-
tions as a screen for efficient pools.

In Brenner’s (2009) setting (an extension of Lerner and Tirole’s 2004 model 
where pools smaller than the grand coalition are considered), all welfare-increasing 
pools are stable to individual licensing, but some welfare-decreasing pools may be 
as well. However, pools which form in equilibrium under an “exclusive” formation 
rule—where participants must agree unanimously to a proposed pool or it does not 
form, rather than patent holders being able to opt in or out individually—are stable 
to individual licensing if and only if they are welfare increasing.

In my setting, compulsory individual licensing does not always distinguish wel-
fare increasing from welfare-decreasing pools. In particular:

THEOREM 7: Any pool containing only essential patents is stable to individual 
licensing.

Any pool containing only complementary nonessential patents is stable to indi-
vidual licensing.

Both these types of pools are unaffected by compulsory individual licensing; but 
Theorem 2 established that pools of complementary nonessential patents can be 
welfare decreasing. Thus, compulsory individual licensing is not a sufficient screen 
against socially inefficient pools.

Like in Lerner and Tirole (2004), a pool containing substitute patents in my set-
ting would be unstable to individual licensing. Consider a pool containing a single 
nonessential patent blocking each product. Each patent holder in the pool has an 
incentive to slightly undercut the pool’s price, to capture the entire revenue from 
manufacturers building his product rather than sharing it with the rest of the pool; 
prices would collapse to those set in the absence of the pool. Thus, compulsory indi-
vidual  licensing in my setting is disruptive to some welfare-decreasing pools, but is 
not a perfect screen for efficiency.
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E. Pools as Stackelberg Leaders

Since a patent pool involves joint action by multiple firms, a pool might be less 
flexible than an individual patent holder in its ability to adjust the licensing fees 
it demands. This would give a pool commitment power, allowing it to act like a 
Stackelberg leader, expecting the outside patent holders to best respond.10 Such 
commitment power would make any pool weakly profitable (since at worst it could 
commit to its pre-pool prices), and most pools strictly profitable; but it would also 
typically result in the pool demanding a higher price than the static model suggests, 
reducing and sometimes reversing the welfare results.

THEOREM 8: Define a Stackelberg pool as a patent pool which commits to prices 
before individual patent holders (and cannot adjust them afterwards). fix all primitives 
but  n E  , and fix the number  n o  of essential patent holders who remain outside the pool.

 (i) A Stackelberg pool of all but  n o  of the essential patent holders is always more 
profitable than a regular pool of the same patent holders, but the latter is 
always more efficient.

 (ii) There exists an integer  n ∗  ≥  n o  + 2 such that
•	 If  n E  ≥  n ∗ , a Stackelberg pool of all but  n o  of the essential patent holders 

is a Pareto improvement over no pool.
•	 If  n E  <  n ∗ , a Stackelberg pool of all but  n o  of the essential patent holders 

is less efficient than no pool, raises all prices  P  k  , and reduces the payoffs 
to everyone (consumers and patent holders) outside the pool.

The following example illustrates Theorem 8:

Example 4: As before, let K = 3 and ( v 1 ,  v 2 ,  v 3 ) = (10, 10, 5). Let  n 1  =  n 2  = 6 and  
n 3  = 9. Table 2 shows the combined profit of the essential patent holders; the com-
bined profit of all nonessential patent holders; consumer surplus; and total welfare, 
for various values of  n E  in the absence of a pool, as well as in the presence of an 
ordinary patent pool containing all essential patents and a Stackelberg pool contain-
ing all essential patents.

In this case, with  n o  = 0 (the Stackelberg pool considered contains all essen-
tial patents),  n ∗  = 3: relative to no pool, the Stackelberg pool represents a Pareto 
improvement when  n E  = 3 or 4, but lowers total welfare when  n E  = 2. The regular 
patent pool gives higher total welfare than any of the other alternatives, but only 
increases essential patent-holder profits when  n E  ≥ 4.

The analogous result holds for pools of nonessential complements as well. 
Choosing k and fixing everything but  n k  , there exists an  n ∗  such that when  n k  ≥  n ∗ , 
the effects of a Stackelberg pool containing all but  n o  patent holders in    k  n  are 

10 One example of this might be a standard-setting organization which was able to commit to licensing policies 
at the time the standard was being chosen.
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described by Theorem 2; when  n k  <  n ∗ , the effects are the opposite of those in 
Theorem 2; but for any  n k , the pool is profitable.

IV. Conclusion

In this paper, I have introduced a differentiated-products model for price compe-
tition in settings where overlapping sets of patents block competing products, and 
applied the model to understand the static effects of patent pools on pricing. The 
same framework could also be used to model competition among certain “aggre-
gate” goods such as personal computers, which are made up of components built by 
different wholesalers, and to understand the effect of mergers between such whole-
sale suppliers. (The results extend easily to the case where each component is built 
at a constant but positive marginal cost.)

As it pertains to patent pools, the model does have certain limitations. I ignore 
uncertainty about patent scope and enforceability, treating each patent as unassail-
able and having bright-line boundaries. Firms that own nonessential patents blocking 
different products do not fit within my framework. If the downstream manufacturing 
sector were not assumed to be perfectly competitive, we would need to consider 
the separate incentives of vertically integrated firms and patent holders who do not 
participate in downstream production.

In this paper, I do not attempt to explicitly model pool formation or predict which 
pool or pools will form in a given setting. My model defines a mapping from coalition 
structures (a particular pool or set of pools) to payoffs (patent-holder profit and con-
sumer surplus); any cooperative or noncooperative model of coalition formation could 
therefore be applied, taking these payoffs as given, to attempt to answer this question.

Like most of the existing literature on patent pools, this paper treats both the tech-
nology and the set of patents as exogenous; that is, it abstracts away from the question 
of innovation (and with it the endogeneity of which patents are essential). Again, this 
paper can be thought of as specifying the final-stage payoffs, this time of a dynamic, 
multi-firm patent or R&D race; a formal model of this race, taking the “endgame” 
profits as given, would allow examination of the effects of pools on innovation.

Appendix

Throughout, let n = ( n E ,  n 1 , … ,  n K ) denote the number of patents of each type, 
and  Q 0  = 1 −  ∑  k∈   

    Q k  the fraction of consumers who demand none of the products.

Table 2—Effects of Regular and Stackelberg Pool on Total Welfare

Essential
patent-holder

profits

Nonessential
patent-holder

profits
Consumer

surplus
Total

welfare

No pool,  n E  = 4 1.165 1.525 0.256 2.946
No pool,  n E  = 3 1.367 2.227 0.375 3.969
No pool,  n E  = 2 1.438 3.173 0.542 5.154

Regular pool 1.223 4.550 0.799 6.572

Stackelberg pool 1.440 3.033 0.517 4.990
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PROOF OF LEMMA 1:
The logit demand system satisfies Assumptions 1 and 3 of Quint (2013), so 

by Lemma 5 of that paper, an equilibrium exists, and is unique, and corresponds 
to the simultaneous solution to the J patent holders’ first-order  conditions.11 
Given the payoff functions in equation (1), these  first-order conditions are 
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conditions are necessary and sufficient for best responses, equilibrium therefore 
corresponds to solutions to the K + 1 simultaneous equations  n k  =  P  k  n (1 −  Q k ) and  
n E  =  P  E  Q 0 , along with  p j  =   1 _  n k     P  k  n  if j ∈    k  n  and   1 _  n E     P  E  if j ∈    E .

PROOF OF THEOREM 1:

Marginal Effect of  n E  on Prices.—Payoffs to patent holders and consumers can 
be written as functions of aggregate prices  (  P  E ,  P  1  n , … ,  P  K  n  ) . A pool of essential pat-
ents affects aggregate prices like a decrease in  n E . From the supermodular-games 
approach in Quint (2013), we know that  P  E  is increasing in  n E  and  P  k  n  decreasing 
in  n E . To calculate the exact effects, we can treat  n E  as a continuous variable, affect-
ing equilibrium prices through the simultaneous equations  P  k  n (1 −  Q k ) =  n k  and  
 P  E  Q 0  =  n E  , and differentiate these with respect to  n E  :
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11 An earlier version of this paper included a separate proof of equilibrium existence and uniqueness under logit 
demand even in the absence of Assumption 1. Even with patents blocking arbitrary subsets of products and patent 
holders owning multiple patents of different “types,” one can show that under logit demand, patent holders opti-
mally offer their entire portfolio at a single price, and strategies can therefore be assumed to be one-dimensional. 
Taking the log of patent-holders’ payoff functions, the resulting game can then be shown to be a potential game (à la 
Monderer and Shapley 1996), with a strictly concave potential function; the unique maximizer of that function then 
corresponds to the unique equilibrium of the game among patent holders.
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n   Q  k  ′  
   )   

>  0. Finally, since  P  k  n (1  −   Q k )  =   n k  does not change with  n E ,  

  
∂  ( log  P  k  n  + log(1 −  Q k ) )   __  ∂  n E 

   =   1 _ 
 P  k  n 

     
∂  P  k  n 

 _ ∂  n E 
   −   1 _ 1 −  Q k 

     
∂  Q k  _ ∂  n E 

   = 0, which implies   ∂  Q k 
 _ ∂  n E 
   =   1 −  Q k  _ 

 P  k  n 
     

∂  P  k  n 
 _ ∂  n E 
    

= −   
(1 −  Q k )  Q k  _  

1 −  Q k  +  P  k  n   Q k 
     δ _ 

1 +  P  E 
   .
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Welfare.—First, note that consumer surplus can be written as

(A6)  cS =  E  ϵ  0  l  ,  ϵ  1  l  ,  ϵ  2  l  , … ,  ϵ  K  l    max  {  ϵ  0  l
  ,  max   

 k  ′ ∈
    {  v  k  ′   −  P  k  ′   +  ϵ   k  ′   

l
   }  }  = log  ( 1 +  ∑  

 k  ′ ∈
  

 

    e  v  k  ′  − P  k  ′    ) 

and differentiating,   ∂ cS _ ∂  P k 
   = − Q k  . Total patent-holder profits are  P  E   (  ∑    k  ′ ∈   

    Q  k  ′   )  +  

∑   k  ′ ∈   
    P   k  ′   

n   Q  k  ′   =  ∑   k  ′ ∈   
    P  k  ′    Q  k  ′  , so the effect of one price on total welfare is

(A7)    
∂ Welfare

 _ 
∂  P k 

   =   ∂ cS _ 
∂  P k 

   +   ∂ _ 
∂  P k 

     ∑  
 k  ′ ∈

  
 

    P  k  ′    Q  k  ′  

 = −  Q k  −  P k   Q k  (1 −  Q k ) +  Q k  +  ∑  
 k  ′ ≠k

  
 

    P  k  ′    Q  k  ′    Q k 

 = −  P k   Q k  +  ∑  
 k  ′ ∈

  
 

    P  k  ′    Q  k  ′    Q k 

 =  Q k   (  
_
 P   −  P k  ) ,

where  
_
 P   ≡  ∑   k  ′ ∈   

    Q  k  ′    P  k  ′   . Summing over k,

(A8)    
∂ Welfare

 _ 
∂  P  E 

   =  ∑  
k∈

  
 

     
∂ Welfare

 _ 
∂  P k 

   =  ∑  
k∈

  
 

    Q k   (  
_
 P   −  P k  ) 

 =  
_
 P    ∑  
k∈

  
 

    Q k  −  
_
 P   = −  Q 0   

_
 P  .

Using these,

(A9)    
∂ Welfare

 _ 
∂  n E 

   =   
∂ Welfare

 _ 
∂  P  E 

     ∂  P  E  _ 
∂  n E 

   +  ∑  
 k  ′ ∈

  
 

     
∂ Welfare

 _ 
∂  P   k  ′   

n 
     

∂  P   k  ′   
n 
 _ 

∂  n E 
  

 = −  Q 0   
_
 P     ∂  P  E  _ 
∂  n E 

   +  ∑  
 k  ′ ∈

  
 

    Q  k  ′    (  
_
 P   −  P   k  ′   )    

∂  P   k  ′   
n 
 _ 

∂  n E 
  

 = −  Q 0   
_
 P    ( 1 +   1 _ 

 Q 0 
    ∑  

 k  ′ ∈
  

 

    Q  k  ′     
1 −  Q  k  ′   __  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

   )    δ _ 
1 +  P  E 

  

 −  ∑  
 k  ′ ∈

  
 

    Q  k  ′    (  
_
 P   −  P   k  ′   )    

 P   k  ′   
n   Q  k  ′   __  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

     δ _ 
1 +  P  E 

   ,

which simplifies to

(A10)    
∂ Welfare

 _ 
∂  n E 

   =   δ _ 
1 +  P  E 

    ∑  
 k  ′ ∈

  
 

    Q  k  ′    P  k  ′    (    P   k  ′   
n   Q  k  ′   __  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

   − 1 )  < 0.

Pools of essential patents have the same impact on equilibrium prices as a 
decrease in  n E ; we can integrate the marginal effect to calculate the effect of a pool.

We showed above that each price  P k  =  P  k  n  +  P  E  is increasing in  n E  , so each price  
P k  is lower following the formation of a pool; so total consumer surplus (as well as 
each individual consumer’s payoff) is increased by a pool.
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We showed that for each k,  P  k  n  and  Q k  are both decreasing in  n E , and therefore higher 
after a pool. For j ∈    k  n ,  π j  =   1 _  n k     P  k  n  Q k , so  π j  is higher after a pool for every j ∈  −    E .  
As for essential patent holders who remain outside of a pool, they earn profits of  
  1 _  n E     P  E  (1 −  Q 0 ) both before and after the pool forms. Since  P  E   Q 0  =  n E , we can rewrite 

this as   1 _  Q 0 
   (1 −  Q 0 ) =   1 _  Q 0 

   − 1. Since each  Q k  is decreasing in  n E ,  Q 0  is increasing in  

n E , so   1 _  n E     P  E  (1 −  Q 0 ) =   1 _  Q 0 
   − 1 is decreasing in  n E  and therefore higher after a pool.

Finally, we showed that total welfare is decreasing in  n E , and therefore higher 
after a pool.

PROOF OF THEOREM 2:

Marginal Effect of  n 1  on Equilibrium Prices.—Again, we begin by calculating 
the marginal effect, this time of  n 1 , on equilibrium prices through the simultaneous 
equations characterizing them. Differentiating, we find

(A11)   P  1  n  (1 −  Q 1 ) =  n 1 

 (1 −  Q 1 )   
∂  P  1  n 

 _ 
∂  n 1 

   −  P  1  n   (   ∑  
 k  ′ ∈

  
 

     
∂  Q 1  _ 
∂  P   k  ′   

n 
     
∂  P   k  ′   

n 
 _ 

∂  n 1 
   +   

∂  Q 1  _ 
∂  P  E 

     ∂  P  E  _ 
∂  n 1 

   )  = 1

(1 −  Q 1 )   
∂  P  1  n 

 _ 
∂  n 1 

   −  P  1  n   ( −  Q 1  (1 −  Q 1 )   
∂  P  1  n 

 _ 
∂  n 1 

   +  ∑  
 k  ′ ≠1

  
 

    Q 1   Q  k′     
∂  P   k  ′   

n 
 _ 

∂  n 1 
   −  Q 1   Q 0    

∂  P  E  _ 
∂  n 1 

   )  = 1

 (1 −  Q 1  +  P  1  n   Q 1 )   
∂  P  1  n 

 _ 
∂  n 1 

   −  P  1  n   Q 1   (    ∑  
 k  ′ ∈

  
 

    Q  k  ′     
∂  P   k  ′   

n 
 _ 

∂  n 1 
   −  Q 0    

∂  P  E  _ 
∂  n 1 

   )  = 1

 P  k  n  (1 −  Q k ) =  n k 

 (1 −  Q k )   
∂  P  k  n 

 _ 
∂  n 1 

   −  P  k  n   (   ∑  
 k  ′ ∈

  
 

     
∂  Q k  _ 
∂  P   k  ′   

n 
     
∂  P   k  ′   

n 
 _ 

∂  n 1 
   +   

∂  Q k  _ 
∂  P  E 

     ∂  P  E  _ 
∂  n 1 

   )  = 0

 (1 −  Q k )   
∂  P  k  n 

 _ 
∂  n 1 

   −  P  k  n   ( −  Q k  (1 −  Q k )   
∂  P  k  n 

 _ 
∂  n 1 

   +  ∑  
 k  ′ ≠k

  
 

    Q k   Q  k′     
∂  P   k  ′   

n 
 _ 

∂  n 1 
   −  Q k   Q 0    

∂  P  E  _ 
∂  n 1 

   )  = 0

 (1 −  Q k  +  P  k  n   Q k )   
∂  P  k  n 

 _ 
∂  n 1 

   −  P  k  n   Q k   (    ∑  
 k  ′ ∈

  
 

    Q  k  ′     
∂  P   k  ′   

n 
 _ 

∂  n 1 
   −  Q 0    

∂  P  E  _ 
∂  n 1 

   )  = 0

 P  E   Q 0  =  n E 

  Q 0    
∂  P  E  _ 
∂  n 1 

   +  P  E   (   ∑  
 k  ′ ∈

  
 

     
∂  Q 0  _ 
∂  P   k  ′   

n 
     
∂  P   k  ′   

n 
 _ 

∂  n 1 
   +   

∂  Q 0  _ 
∂  P  E 

     ∂  P  E  _ 
∂  n 1 

   )  = 0

  Q 0    
∂  P  E  _ 
∂  n 1 

   +  P  E   (   ∑  
 k  ′ ∈

  
 

    Q 0   Q  k  ′     
∂  P   k  ′   

n 
 _ 

∂  n 1 
   +  Q 0  (1 −  Q 0 )   

∂  P  E  _ 
∂  n 1 

   )  = 0

 (  Q 0  +  P  E   Q 0  )    
∂  P  E  _ 
∂  n 1 

   +  P  E   Q 0   (    ∑  
 k  ′ ∈

  
 

    Q  k  ′     
∂  P   k  ′   

n 
 _ 

∂  n 1 
   −  Q 0    

∂  P  E  _ 
∂  n 1 

   )  = 0.
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Let Λ =  ∑   k  ′ ∈   
    Q  k  ′     

∂  P   k  ′   
n 
 _ ∂  n 1 
   −  Q 0    ∂  P  E  _ ∂  n 1 

   , which (as before) we know from supermodular-
ity is positive; then

(A12)    
∂  P  1  n 

 _ 
∂  n 1 

   =   1 __  
1 −  Q 1  +  P  1  n   Q 1 

   +   
 P  1  n   Q 1  __  

1 −  Q 1  +  P  1  n   Q 1 
   Λ

   
∂  P  k  n 

 _ 
∂  n 1 

   =   
 P  k  n   Q k  __  

1 −  Q k  +  P  k  n   Q k 
   Λ

   ∂  P  E  _ 
∂  n 1 

   = −    P  E  _ 
1 +  P  E 

   Λ

and, plugging these into the definition of Λ and solving for Λ, Λ =    Q 1  _  
1 −  Q 1  +  P  1  n  Q 1 

   δ, 

with (as before)   1 _ δ   =  ∑   k  ′ ∈   
      Q  k  ′  (1 −  Q  k  ′  )  _  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

   +    Q 0  _ 
1 +  P  E 

   . We can also rewrite   ∂  P  1  n 
 _ ∂  n 1 
   as

(A13)    
∂  P  1  n 

 _ 
∂  n 1 

   =  ( 1 +   1 _ 
 Q 1 

   (   ∑  
 k  ′ ≠1

  
 

     
 Q  k  ′   (1 −  Q  k  ′  )  __  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

   +   
 Q 0  _ 

1 +  P  E 
   )  )  Λ

to show   ∂ P  1  n 
 _ ∂ n 1 
   > Λ, and therefore that  P 1  =  P  1  n  +  P  E  is increasing in  n 1 . For k ≠ 1,

(A14)    
∂  ( log  P  k  n  + log (1 −  Q k ) )    __  

∂  n 1 
   =   

∂ log  n k  _ 
∂  n 1 

   = 0 

 →   
∂  Q k  _ 
∂  n 1 

   =   
1 −  Q k  _ 

 P  k  n 
     

∂  P  k  n 
 _ 

∂  n 1 
   =   

 Q k  (1 −  Q k )  __  
1 −  Q k  +  P  k  n   Q k 

   Λ.

As for  Q 1 ,   
∂  Q 1  _ ∂  n 1 

   =   ∂  Q 1  _ 
∂  P  1  n 

     ∂  P  1  n 
 _ ∂  n 1 
   +  ∑   k  ′ ≠1

   
     ∂  Q 1  _ 

∂  P   k  ′   
n 
     
∂  P   k  ′   

n 
 _ ∂  n 1 
   +   ∂  Q 1  _ 

∂  P  E 
     ∂  P  E  _ ∂  n 1 

   , which simplifies to

(A15)    
∂  Q 1  _ 
∂  n 1 

   = − (    ∑  
 k  ′ ≠1

  
 

     
 Q  k  ′   (1 −  Q  k  ′  )  __  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

   +   
 Q 0  _ 

1 +  P  E 
   )  Λ < 0.

consumer Surplus.—As noted above,   ∂ cS _ ∂  P k 
    =  − Q k  , so   ∂ cS _ ∂  n 1 

    =  − Q 1    
∂  P  1  n 

 _ ∂  n 1 
    −  

 ∑   k  ′ ≠1
   

    Q  k  ′     
∂  P   k  ′   

n 
 _ ∂  n 1 
   −  ∑   k  ′ ∈   

    Q  k  ′     
∂  P  E  _ ∂  n 1 

   ; plugging in the expressions above and simplify-

ing gives   ∂ cS _ ∂  n 1 
   = −   1 _ 

1 +  P  E 
   Λ < 0.

Welfare.—As noted above,   ∂ Welfare
 _ ∂  P k 

   =  Q k  ( 
_
 P   −  P k ) and   ∂ Welfare

 _ 
∂  P  E 

   = −  Q 0   
_
 P  , so

(A16)    
∂ Welfare

 _ 
∂  n 1 

   =  Q 1  ( 
_
 P   −  P 1 )   

∂  P  1  n 
 _ 

∂  n 1 
   +  ∑  

 k  ′ ≠1
  

 

    Q  k  ′   ( 
_
 P   −  P   k  ′  )   

∂  P   k  ′   
n 
 _ 

∂  n 1 
   −  Q 0   

_
 P     ∂  P  E  _ 
∂  n 1 

   .
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Plugging in the expressions above and simplifying gives

(A17)    
∂ Welfare

 _ 
∂  n 1 

   

   =  (   ∑  
 k  ′ ≠1

  
 

    P   k  ′     
 Q  k  ′   (1 −  Q  k  ′  )  __  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

   −  ∑  
 k  ′ ≠1

  
 

    P  1    
 Q  k  ′   (1 −  Q  k  ′  )  __  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

   −  P  1    
 Q 0  _ 

1 +  P  E 
   )  Λ.

Proof of Theorem.—A pool of patent holders in    1  n  has the same effect on equilib-
rium prices as a decrease in  n 1 . We showed above that  P  k  n  is increasing in  n 1  for every 
k (including 1);  P  E  is decreasing in  n 1 ;  Q 1  is decreasing in  n 1 ;  Q k  (k ≠ 1) is increas-
ing in  n 1 ; and  P  1  is increasing in  n 1 . Examples in the text show that  P  k  can increase 
or decrease in  n 1 . We showed above that total consumer surplus is decreasing in  n 1 ;  
but a pool which increases  P  k  (k ≠ 1) will harm some individual consumers (at a 
minimum, those who still purchase product k after the pool).

For k ≠ 1,  P  k  n  and  Q k  are both increasing in  n 1 , so   1 _  n k     P  k  n   Q k  is increasing in  n 1 , so 
profits of patent holders in    k  n  are lower following the pool. Since  P  E   Q 0  =  n E  and  
P  E  is decreasing in  n 1 ,  Q 0  must be increasing in  n 1 , so   1 _  n E     P  E (1 −  Q 0 ) is decreasing in  
 n 1 , so profits of patent holders in    E  are higher after the pool. As for outsiders within  
   1  n , they earn   1 _  n 1     P  1  n   Q 1 ; since  P  1  n (1 −  Q 1 ) =  n 1 , we can rewrite this as    Q 1  _ 1 −  Q 1 

  ; since  
Q 1  is higher after the pool, these outsiders earn more. Examples in the text show 
both welfare-increasing and welfare-decreasing pools.

PROOF OF THEOREM 3: 
Note that claims 1 and 3 are stated slightly differently here from in the text, but 

are obviously equivalent.

CLAIM 1: fix m ≥ 1. If  n E  is sufficiently large, a pool of m + 1 essential patents 
increases the profits of its members.

I will treat  n E  as the name of the variable,    ̃  n  E  as its starting value, and    ̃  n  E  − m 
as its ending value (after pool formation). Let  Π E (·) be the equilibrium value of  
 P  E   ∑   k  ′ ∈   

    Q  k′  , as a function of  n E . Combined profits of the patent holders forming the 

pool are   m + 1
 _    ̃  n  E     Π E  (   ̃  n  E ) before pool formation, and   1 _    ̃  n  E  − m    Π E (   ̃  n  E  − m) after. We can 

therefore write the gain in profits as

(A18)  dπ =   
 
 (m + 1 ) r    

 Π E  (   ̃  n  E  − (1 − r)m)
  __  

   ̃  n  E  − (1 − r)m
   |   

r  =1

  
r  =0

  

 = − ∫  
0
  
1

    d _ 
dr

    ( (m + 1 ) r    
 Π E  (   ̃  n  E  − (1 − r)m)

  __  
   ̃  n  E  − (1 − r) m

   )  dr.
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Thus, it will suffice to show that for    ̃  n  E  sufficiently large,  

(m + 1 ) r     Π E (   ̃  n  E  − (1 − r)m)
  __     ̃  n  E  − (1 − r)m   is decreasing in r for all r ∈ (0, 1), or

(A19)   0 >   ∂ _ 
∂r

    ( (m + 1 ) r    
 Π E  (   ̃  n  E  − (1 − r)m)

  __  
   ̃  n  E  − (1 − r)m

   )  

 =   d _ 
dr

    (  e r log(m+1)    
 Π E  (   ̃  n  E  − m + rm)

  __  
   ̃  n  E  − m + rm

   ) .

Taking the derivative, plugging in the expressions above, and simplifying, we can 
show that the derivative is proportional to

(A20)    
log(m + 1)
 _ m    Q  0  2   [    ∑  

 k  ′ ∈
  

 

    Q  k  ′     
 P   k  ′   

n   Q  k  ′   _  
1 −  Q  k  ′   +  P   k  ′   

n   Q  k  ′  
  

  __  
 ∑  
 k  ′ ∈

  
 

    Q  k  ′     
1 −  Q  k  ′   _  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

  
   ]  

   +   
log (m + 1)

  _ m    Q 0   P  E  (1 −  Q 0 ) −  ( 1 −   
log(m + 1)
 _ m    Q 0  ) ,

which we can rewrite as

(A21)    
log (m + 1)

  _ m    Q  0  2   [   wtd avg  P   k  ′   
n   Q  k  ′    __  

wtd avg 1 −  Q  k  ′  
   ]  

   +   
log (m + 1)

  _ m    Q 0   P  E  (1 −  Q 0 ) −  ( 1 −   
log (m + 1)
 _ m    Q 0  ) ,

where the weighted averages are taken with respect to weights    Q  k  ′   _  
1 −  Q  k  ′   +  P   k  ′   

n   Q  k  ′  
   , nor-

malized to sum to 1.

Now,  Q k  =   
exp ( v k  −  P k )  __  

1 +  ∑   k  ′ ∈   
   exp ( v  k  ′   −  P  k  ′  )

   <  e  v k    e − P  E   and  P  E  >  n E , so as  n E  grows without 

bound,  P  k  n   Q k  and  P  E (1 −  Q 0 ) go to 0 and 1 −  Q k  does not, so the first two terms 

vanish. For m ≥ 1,   
log(m + 1)
 _ m   < 0.7, so the term in parentheses is at least 0.3. Pick    ̃  n  E  

sufficiently large so that the whole expression is negative for  n E  ≥    ̃  n  E  − m and the 
integrand is negative on (0, 1), making the pool profitable.

(Conversely, since the lead term is positive, the integrand will be positive when-

ever   
log (m + 1)
 _ m   ( Q 0  +  P  E  (1 −  Q 0 ) Q 0 ) > 1. For m = 1, this will hold for all r ∈ (0, 1) 

if prior to pool formation, (   ̃  n  E  − 2)(1 −  Q 0 ) >   1 _  log 2   − 1 ≈ 0.442.)

CLAIM 2: fix m ≥ 0. If  n E  is sufficiently large, a pool containing all but m of the 
essential patents increases the profits of its members.
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Let π be the equilibrium profits of each essential patent holder in the game with 
the same primitives except that there are only m + 1 essential patents. Note that 
π > 0. Should a pool form containing all but m of the  n E  essential patents, π would 
be the pool’s total revenue; divided up equally, this would give each participant a 
payoff of   π _  n E  − m   . In the absence of a pool, each essential patent-holder’s profits are  

   P   E  _  n  E     ∑  k∈   
    Q k . We know that

(A22)   ∑  
k∈

  
 

    Q k  =   

 ∑  
k∈

  
 

    e  v k − P  k  n − P  E  

  __  
1 +  ∑  

k∈
  

 

    e  v k − P  k  n − P  E  
   <  ∑  

k∈
  

 

    e  v k − P  k  n − P  E   <  e − P  E    ∑  
k∈

  
 

    e  v k  

and so

(A23)     P  E  _  n E      ∑  
k∈

  
 

    Q k  <   1 _  n E     P  E   e − P  E   V,

where V ≡  ∑  k∈   
    e  v k  . To prove the result, we need to show that for  n E  sufficiently 

large,   π _  n E  − m   >   1 _  n E     P  E   e − P  E  V. Since  n E  >  n E  − m, a sufficient condition is   π _ V   >  

 P  E   e − P  E  .   π _ V   is a constant, and x  e −x  decreases to 0 as x increases; since  P  E  >  n E  
increases without bound as  n E  → ∞, the result follows.

CLAIM 3: fix m ≥ 1. If  n k  is sufficiently large, a pool of m + 1 patent holders in    k  n  
increases the profits of its members.

Like the proof of the first claim above, note that when m + 1 nonessential patents 
blocking technology 1 form a pool, the change in their joint profits is

(A24)  dπ =   
 
 (m + 1 ) r    

 Π 1 (   ̃  n  1  − (1 − r)m)
  __  

   ̃  n  1  − (1 − r)m
   |   

r  =1

  
r  =0

 

 = − ∫  
0
  
1

    d _ 
dr

    ( (m + 1 ) r    
 Π 1 (   ̃  n  1  − (1 − r)m)

  __  
   ̃  n  1  − (1 − r)m

   )  dr,

where  Π 1  is the equilibrium value of  P  1  n   Q 1  as a function of  n 1 . Differentiating and 
letting  n 1  =    ̃  n  1  − (1 − r)m, the integrand is

(A25)  log (m + 1) e r log (m+1)    
 P  1  n   Q 1  _  n 1    +  e r log (m+1)  m   ∂ _ 

∂  n 1 
    (    P  1  n   Q 1  _  n 1    ) 

which, after a lot of simplification, is proportional to

(A26)   
log(m + 1)
 _ m   (1 −  Q 1 ) −   1 __  

1 −  Q 1  +  P  1  n  Q 1 
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⎜
⎜
⎜
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1 −  Q 1  +  P  1  n  Q 1 

  
  __   
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As  n 1  increases to infinity,  P  1  n  grows unboundedly and  Q 1  and  P  1  n   Q 1  shrink to 0. The 

term   
 Q 1 (1 −  Q 1 ) _  

1 −  Q 1  +  P  1  n  Q 1 
   <  Q 1  vanishes; since  Q 0  increases in  n 1  and  P  E  decreases,    Q 0  _ 

1 +  P  E 
   

does not vanish; so the messy fraction goes to 0 and the term within parentheses 
goes to 1.   1 _  

1 −  Q 1  +  P  1  n  Q 1 
   goes to 1 as well, so the entire second expression goes to 1, 

while the first expression is bounded above by   
log(m + 1)
 _ m   < 0.7. So when  n 1  is suf-

ficiently large, the integrand is negative and the pool is profitable.

CLAIM 4: fix m ≥ 0. If  n k  is sufficiently large, a pool containing all but m patents 
in    k  n  increases the profits of its members.

This time, let π denote equilibrium profits to each player in    k  n  after the pool 
formed (that is, with  n k  = m + 1). Since there are  n k  − m pool members, each 
earns   1 _  n k  − m   π given the pool. Without the pool, each earns   1 _  n k     P  k  n  Q k  . Pick  n k  suf-

ficiently large that π e − v k   >  n k   e − n k  . Since  P  k  n  >  n k  and x  e    x  is decreasing above 1,  
π e − v k   >  P  k  n  e − P  k  n  , so π >  P  k  n  e  v k − P  k  n   >  P  k  n  Q k  , so

(A27)    1 _  n k  − m   π >   1 _  n k    π >   1 _  n k     P  k  n   Q k 

and the pool is profitable.

PROOF OF THEOREM 4: 
Using the results on the effects of  n 1  on equilibrium prices given above, we can 

calculate (for general K  )

(A28)   
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which eventually simplifies to   
∂  ( Welfare −  P  1  n   Q 1  )   __ ∂  n 1 

   =  (  ∑   k  ′ ≠1
   

      P   k  ′   
n   Q k  _  

1 −  Q  k  ′   +  P   k  ′   
n   Q  k  ′  

   − 1 ) Λ. 

When K = 2, the summation has only one term, which is less than 1, so the expres-
sion is negative; so a decrease in  n 1  (a pool of patent holders in    1  n   ) has a net posi-
tive externality on everyone outside of    1  n . Since we already showed that it has a 
positive externality on outsiders within    1  n , if it increases the profits of its members, 
the overall welfare impact must be positive.
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PROOF OF THEOREM 5: 

Adding All of    k  n  to a Pool of All    E .—Consider the effects of the addition of 
these patents to the pool as occurring in four stages:

 (i) The profits of these nonessential patents begin to accrue to the pool, without 
any changes in any prices.

 (ii) The pool reduces the prices of these patents to 0 and adjusts the price of the 
pool, as a static best response to the prices of the nonessential patents block-
ing other technologies.

 (iii) The nonessential patent holders blocking other technologies change their 
prices to the new equilibrium levels.

 (iv) The pool changes its prices to its new equilibrium level.

Stage 1 does not change the joint profits of the pool and the patents being added, 
it just allows us to focus on the profits going to essential patent holders in the last 
three stages.

We showed above that an essential patent holder cannot gain by charging dif-
ferent prices to producers accessing different technologies. Thus, stage 2 increases 
essential patent-holder (pool) profits, increasing joint profits.

Since the new equilibrium corresponds to a decrease in  n k  , the prices of nonessen-
tial competing patents  P   k  ′   

n  decrease in equilibrium; this increases essential patent-
holder profits. So stage 3 increases the joint profits we’re looking at.

Finally, stage 4 increases joint profits, since the pool will only change prices to 
increase profits.

Thus, each stage increases the joint profits, so the net effect is to increase joint profits.

Adding Some Patents in    k  n  to a Pool containing Some Patents in    E .—If a 
single essential patent (or a pool) joins with a single essential patent blocking tech-
nology 1, we can write the change in their joint profits as

(A29)  dπ =  ∫  
0
  
1

    d _ 
dr

     1 _  n E     Π E  (   ̃  n  1  − r) + (1 − r)   
 Π 1  (   ̃  n  1  − r)
 _ 

   ̃  n  1  − r
   dr,

where    ̃  n  1  is the starting value of  n 1  and  Π E  and  Π 1  are the equilibrium values of  P  E 
(1 −  Q 0 ) and  P  1  n  Q 1 , respectively, as a function of  n 1 . We find conditions for this to 
be negative. Taking the derivative and letting  n 1  =    ̃  n  1  − r, we can show the integrand 
is proportional to

(A30)   

  1 _ 
 Q 0 

     1 _ 
1 +  P  E 

     
1 −  Q 1  __  

1 −  Q 1  +  P  1  n  Q 1 
   −  (  ∑  

k∈
  

 

     
 Q k  (1 −  Q k )  __  

1 −  Q k  +  P  k  n   Q k 
   +   

 Q 0  _ 
1 +  P  E 

   ) 

                      

+ (1 − r)   1 _ 
1 −  Q 1 

     1 __  
1 −  Q 1  +  P  1  n   Q 1 

    (     ∑  
k∈−{1}

  
 

     
 Q k (1 −  Q k )  __  

1 −  Q k  +  P  k  n   Q k 
   +   

 Q 0  _ 
1 +  P  E 

   ) 

  

.



50 AMErIcAn EconoMIc JournAL: MIcroEconoMIcS fEBruAry 2014

If  Q 1  ≥   1 _  Q 0 
     1 _ 

1 +  P  E 
   =   1 _  Q 0  +  n E    and 1 ≥ (1 − r)   1 _ 1 −  Q 1 

     1 _  
1 −  Q 1  +  P  1  n  Q 1 

   , then the k = 1 

piece of the second term dominates the first term, and the remainder of the second 
term dominates the third term, making the whole expression negative. The latter 
requires that

(A31)  1 ≥   1 − r  __   
(1 −  Q 1  ) 2  +  P  1  n   Q 1  (1 −  Q 1 )

   

 =   1 − r  __  
1 − 2  Q 1  +  Q  1  2  +  n 1   Q 1 

   =   1 − r  __   
1 − 2  Q 1  +  Q  1  2  + (   ̃  n  1  − r)  Q 1 

   .

If    ̃  n  1  ≥ 2, the condition 1 ≥   1 − r  __  
1 + (   ̃  n  1  − 2) Q 1  +  Q  1  2  − r  Q 1 

   holds for all r ∈ [0, 1]. 
Thus,    ̃  n  1  ≥ 2, along with the condition that  Q 1 ( Q 0  +  n E ) ≥ 1 at each  n 1  =    ̃  n  1  − r, 
guarantees all negative integrands. Since  Q 1  is decreasing in  n 1 , if  Q 1  n E  ≥ 1 at r = 0 
(before the pool forms/grows), then  Q 1  n E  ≥ 1 at all r, which will suffice.

So when  n E  >   1 _  Q k 
   (there are at least   1 _  Q k 

   − 1 outsiders to a pool of essential pat-

ents) and  n k  ≥ 2, the addition of a single patent holder in    k  n  to the pool decreases 
combined profits.

For a concrete example, let K = 3, v = (10, 10, 5),  n E  = 1 (a pool already exists 
containing all essential patent holders), and  n 1  =  n 2  =  n 3  = 3. Solving numeri-
cally for equilibrium prices and other outcomes, adding a single one of the patent 
holders in    2  n  to the existing pool decreases their combined profit, as shown in 
Table A1. Combined profits of the pool and a single patent holder in    2  n  are 3.578 +  
  1 _ 3  (1.861) = 4.198 to begin, and 4.171 after the patent holder is added to the pool.

PROOF OF THEOREM 6:
For the first claim, suppose the patents block technologies 1 and 2. The pool sets 

price  p ∗  to maximize p( Q 1  +  Q 2 ), leading to first-order condition  p ∗ (1 −  Q 1  −  Q 2 )  
= 1, which is equivalent to

(A32)   p ∗  (1 −  Q 1 ) =   
1 −  Q 1  _  

1 −  Q 1  −  Q 2 
   = 1 +   

 Q 2  _  
1 −  Q 1  −  Q 2 

  

   p ∗  (1 −  Q 2 ) =   
1 −  Q 2  _  

1 −  Q 1  −  Q 2 
   = 1 +   

 Q 1  _  
1 −  Q 1  −  Q 2 

   .

Along with the best-response functions for the other patent holders in  T  1  n  and  T  2  n , 
this leads to

(A33)  P  1  n  (1 −  Q 1 ) =  n 1  +   
 Q 2  _  

1 −  Q 1  −  Q 2 
   ,   P  2  n (1 −  Q 2 ) =  n 2  +   

 Q 1  _  
1 −  Q 1  −  Q 2 
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in equilibrium, along with the usual conditions  P  E  ( 1 −  ∑  k∈   
    Q k  )   =   n E  and  

 P  k  n (1 −   Q k ) =   n k  for k ∈  − {1, 2}. Thus, the equilibrium effect of the pool is 
equivalent to increases in  n 1  and  n 2 , each of which reduces producer surplus.

As for the second, a pool containing one nonessential patent blocking each tech-
nology has the same effect as an increase (by one) of  n E  and decreases (by one) 
of each  n k . Using the expressions calculated earlier for the welfare effects of each 
parameter, we can calculate that
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Each unordered pair {k,  k′ } contributes two terms to the first double summation and 
one term to the second; collecting these three terms
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they can be shown to be negative, so summing up over all {k,  k′ } pairs gives   ∂ W _ ∂  n E 
   −  

∑      
 

     ∂ W _ ∂  n k 
   < 0, making the pool welfare-destroying.

As for consumer surplus, we calculated earlier that
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Table A1—Equilibrium Outcomes Before and After  
One Nonessential Patent Is Added to an Essential Pool

n  P  E  P  1  
n
  P  2  

n
  P  3  

n
  Q 1  Q 2  Q 3 

(1, 3, 3, 3) 4.578 4.861 4.861 3.048 0.383 0.383 0.016
(1, 3, 2, 3) 5.171 4.354 3.904 3.024 0.311 0.488 0.008

n  Π E  Π 1  Π 2  Π 3 cS W

(1, 3, 3, 3) 3.578 1.861 1.861 0.048 1.521 8.869
(1, 3, 2, 3) 4.171 1.354 1.904 0.024 1.643 9.096
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and

   ∂ cS _ 
∂  n k 

   = −   δ _ 
1 +  P  E 

     
 Q k  __  

1 −  Q k  +  P  k  n   Q k 
   .

Since 1 −  Q k  =  Q 0  +  ∑   k  ′ ≠k
   

    Q  k′   >  Q 0 ,   ∂ cS _ ∂  n E 
   −  ∑   k  ′ ∈   

     ∂ cS _ ∂  n  k′  
   < 0, so such a pool lowers 

consumer surplus.

PROOF OF THEOREM 7:
We assume, as in Lerner and Tirole (2004) and Brenner (2009), that in the pres-

ence of a patent pool with compulsory individual licensing, pricing occurs in two 
stages:

 (i) The patent pool, and patent holders outside the pool, name prices.

 (ii) The members of the patent pool name prices for their individual patents.

Producers then choose a technology, licensing pooled patents as needed, either indi-
vidually or through the pool, whichever is cheaper.

I will show that if the patents in a pool are perfect complements—each one is 
only consumed with all the others in the pool—and in stage 1, the pool sets a price 
which is a static best response to the prices of the patents outside the pool, then no 
pool member will license his patent outside the pool in stage 2; so individual licens-
ing does not destabilize the equilibrium with that pool.

The logic is as follows. In stage 2, each member of the pool, by naming a suffi-
ciently high price, can “sabotage” individual licensing, that is, ensure that nobody 
will license any of the pooled patents individually. Thus, if pool members name 
prices which sum to less than the price of the pool, it must be that each of them  
is earning weakly higher profits than they would without individual licensing. 
Since the price of the pool was the unique maximizer of the pooled patent hold-
ers’ combined profits, this is only possible if the sum of the individual prices of 
the pooled patents is the same as the price of the pool; so total prices, and each 
patent-holder’s revenue, is the same as without individual licensing. Anticipating 
this in stage 1, the pool has no reason to play anything other than a static best 
response, and the same prices emerge as in equilibrium without individual licens-
ing of pooled patents.

PROOF OF THEOREM 8:
A Stackelberg pool names a price  p ∗  to maximize profits  p ∗  Q A  after all other pat-

ent holders have best responded. At these equilibrium prices, let    n   =  P  E   Q 0  −  n 0 .  
Aggregate prices correspond to the solution to equation (5), with  n E  =    n   +  n 0 . A 
regular pool corresponds to the case of  n E  = 1 +  n 0 . Setting  n ∗  to be the lowest 
whole number greater than or equal to    n   +  n 0 , and the fact that welfare and all out-
sider payoffs are decreasing in  n E , will complete the proof once we show that    n   > 1.

By optimality, the outsider patent holders j ∈    E  set prices  p j  =   1 _  Q 0 
  , so  P  E   

=  p ∗  +    n 0  _  Q 0 
  , so    n   =  P  E   Q 0  −  n 0  =  p ∗   Q 0  +  n 0  −  n 0  =  p ∗   Q 0 . Since    n   +  n 0  =  P  E   Q 0 ,  
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p ∗  =      n   _    n   +  n 0 
    P     n  + n 0   E

  , where  P  x  E  is the static equilibrium price when  n E  = x; since  P  E  

is increasing in  n E ,      n   _    n   +  n 0 
    P     n  + n 0   

E
   is strictly increasing in    n  , from 0 at    n   = 0 to infinity 

as    n   → ∞; so instead of choosing a price, envision the pool choosing    n   and then 
getting payoff      n   _    n   +  n 0 

    P     n  + n 0   E
    Q A .

Now, increasing    n   has two effects: a direct one (it increases the pool’s price, which 
can increase or decrease profits), and a strategic one (it causes other patent holders to 
adjust their prices). Both   1 _  n E     P  E  and  P  k  n  are decreasing in  n E , so all outside patent hold-
ers (both essential and nonessential) demand lower prices as    n   increases; so the stra-
tegic effect always favors raising    n  . At    n   < 1, the pool’s price is below the static best 
response, so raising it is strictly beneficial; at    n   = 1, the pool’s price is exactly its static 
best response, so the direct effect of increasing    n   is second order and the strategic effect 
dominates. Thus, the Stackelberg pool maximizes profits by setting    n   > 1.

A. Examples 1, 2, 3, and 4

For all four examples discussed in the text, K = 3 and ( v 1 ,  v 2 ,  v 3 ) = (10, 10, 5). For 
each example, the tables below show the “effective” value of n, both before and after 
the pool in question forms; equilibrium aggregate prices  P  E  and  P  k  n ; demand for each 
good  Q k  ; combined profits for all essential patent holders,  Π E , and for all patent hold-
ers in    k  n ,  Π k  , for each k ∈ {1, 2, 3}; consumer surplus cS, and total welfare W. The 
examples were solved numerically; it is straightforward to verify that each demand  Q k  
is correct (according to equation (4)) given ( v 1 ,  v 2 ,  v 3 ) and the equilibrium prices, and 
that prices and demand together satisfy each first-order condition in equation (5) and 
therefore constitute an equilibirum. Profit is then calculated as  Π E  =  P  E ( Q 1  +  Q 2  +  
Q 3 ) and  Π k  =  P  k  n  Q k  ; consumer surplus as cS = log  ( 1 +  e  v 1 − P 1   +  e  v 2 − P 2   +  e  v 3 − P 3   ) ; 
and welfare as W =  Π E  +  Π 1  +  Π 2  +  Π 3  + cS.

Example 1: Here,  n 1  =  n 2  =  n 3  = 3, and  n E  = 3. Equilibrium outcomes before 
and after a pool of the three patents in    3  n  (reducing  n 3  from 3 to 1) are shown in 
Table A2; total welfare increases from 6.426 to 6.428 when the pool forms.

On the other hand, if we consider the same exercise when  n E  = 1, the results are 
shown in Table A3; total welfare decreases from 8.869 to 8.775 when the pool forms.

Example 2: Table A4 shows equilibrium effects of various pools of essential 
patents. Again,  n 1  =  n 2  =  n 3  = 3, but this time,  n E  = 6. The first row represents no 
pool, the second row a pool of five of the six essential patents, and the third row 
a pool of all six. Note that in the first and third cases, each essential patent holder 

earns   1 _ 6    Π E , but in the second case, each member of the pool earns   1 _ 5      Π E 
 _ 2   and the 

single outsider earns    Π E 
 _ 2  .

Example 3: First, let  (  n E ,  n 1 ,  n 2 ,  n 3  )  = (3, 5, 5, 3). Table A5 shows the profitability 
of a pool containing the three essential patent holders: the joint profits of the essen-
tial patent holders increase from 2.012 to 2.047 when the pool forms.
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Table A6 shows the profitability of the same pool, if a pool of the five patent hold-
ers in    1  n  has already formed. In that case, combined profits of the three essential 
patent holders fall, from 4.397 to 4.235, when they form a pool.

Table A2—Change in Equilibrium Outcomes when the Three Patents  
in    3  

N  Form a Pool,  n E  = 3

n  P  e  P  1  n  P  2  n  P  3  n  Q 1  Q 2  Q 3 

(3, 3, 3, 3) 6.472 4.085 4.085 3.016 0.266 0.266 0.005
(3, 3, 3, 1) 6.562 4.024 4.024 1.035 0.254 0.254 0.034

n  Π e  Π 1  Π 2  Π 3 cs W

(3, 3, 3, 3) 3.472 1.085 1.085 0.016 0.769 6.426
(3, 3, 3, 1) 3.562 1.024 1.024 0.035 0.783 6.428

Table A3—Change in Equilibrium Outcomes when the Three Patents  
in    3  

N  Form a Pool,  n E  = 1

n  P  e  P  1  n  P  2  n  P  3  n  Q 1  Q 2  Q 3 

(1, 3, 3, 3) 4.578 4.861 4.861 3.048 0.383 0.383 0.016
(1, 3, 3, 1) 4.818 4.647 4.647 1.091 0.354 0.354 0.084

n  Π e  Π 1  Π 2  Π 3 cs W

(1, 3, 3, 3) 3.578 1.861 1.861 0.048 1.521 8.869
(1, 3, 3, 1) 3.818 1.647 1.647 0.091 1.572 8.775

Table A4—Change in Equilibrium Outcomes from Pools of Essential Patents

n  P  e  P  1  n  P  2  n  P  3  n  Q 1  Q 2  Q 3 

(6, 3, 3, 3) 8.224 3.466 3.466 3.004 0.135 0.135 0.001
(2, 3, 3, 3) 5.685 4.410 4.410 3.026 0.320 0.320 0.009
(1, 3, 3, 3) 4.578 4.861 4.861 3.048 0.383 0.383 0.016

n  Π e  Π 1  Π 2  Π 3 cs W

(6, 3, 3, 3) 2.224 0.466 0.466 0.004 0.315 3.477
(2, 3, 3, 3) 3.685 1.410 1.410 0.026 1.045 7.577
(1, 3, 3, 3) 3.578 1.861 1.861 0.048 1.521 8.869

Table A5—Profitability of a Pool of Three Essential Patents,  
in the Absence of a Pool of Patents in    1  

N , when  n 2  = 5 and  n 3  = 3

n  P  e  P  1  n  P  2  n  P  3  n  Q 1  Q 2  Q 3 

(3, 5, 5, 3) 5.012 6.151 6.151 3.084 0.187 0.187 0.027
(1, 5, 5, 3) 3.047 7.068 7.068 3.285 0.293 0.293 0.087

n  Π e  Π 1  Π 2  Π 3 cs W

(3, 5, 5, 3) 2.012 1.151 1.151 0.084 0.513 4.911
(1, 5, 5, 3) 2.047 2.068 2.068 0.285 1.114 7.582
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Next, we do the same, but starting with  (  n e ,  n 1 ,  n 2 ,  n 3  )  = (3, 5, 3, 5). Table A7 
shows the effects of the pool before the pool of patent holders in    1  n ; joint profits of 
the essential patent holders drop from 2.748 to 2.632.

Table A8 shows the same change after the pool of all five patent holders in    1  n ; 
joint profits of the essential patent holders now increase, from 4.772 to 5.001.

Example 4: This time, ( n 1 ,  n 2 ,  n 3 ) = (6, 6, 9). Table A9 shows equilibrium out-
comes for various values of  n e  (unpooled), as well as under pool of all essential 
patents and a Stackelberg pool of all essential patents. The regular pool corresponds 
to  n e  = 1. The Stackelberg pool, with the pool moving first and the nonessential pat-
ent holders moving second, gives the same outcome as the static equilibrium of the 
game with the (continuous) value of  n e  that maximizes  Π e  , which was calculated 
numerically to be  n e  ≈ 2.129.

Table A6—Profitability of a Pool of Three Essential Patents,  
in the Presence of a Pool of Patents in    1  

N , when  n 2  = 5 and  n 3  = 3

n  P  e  P  1  n  P  2  n  P  3  n  Q 1  Q 2  Q 3 

(3, 1, 5, 3) 7.397 2.279 5.162 3.005 0.561 0.031 0.002
(1, 1, 5, 3) 5.235 3.452 5.503 3.022 0.710 0.091 0.007

n  Π e  Π 1  Π 2  Π 3 cs W

(3, 1, 5, 3) 4.397 1.279 0.162 0.005 0.902 6.745
(1, 1, 5, 3) 4.235 2.452 0.503 0.022 1.655 8.867

Table A7—Profitability of a Pool of Three Essential Patents,  
in the Absence of a Pool of Patents in    1  

N , when  n 2  = 3 and  n 3  = 5

n  P  e  P  1  n  P  2  n  P  3  n  Q 1  Q 2  Q 3 

(3, 5, 3, 5) 5.748 5.700 4.641 5.008 0.123 0.354 0.002
(1, 5, 3, 5) 3.632 6.530 5.806 5.035 0.234 0.483 0.007

n  Π e  Π 1  Π 2  Π 3 cs W

(3, 5, 3, 5) 2.748 0.700 1.641 0.008 0.650 5.747
(1, 5, 3, 5) 2.632 1.530 2.806 0.035 1.290 8.293

Table A8—Profitability of a Pool of Three Essential Patents,  
in the Presence of a Pool of Patents in    1  

N , when  n 2  = 3 and  n 3  = 5

n  P  e  P  1  n  P  2  n  P  3  n  Q 1  Q 2  Q 3 

(3, 1, 3, 5) 7.772 1.980 3.405 5.001 0.495 0.119 0.000
(1, 1, 3, 5) 6.001 2.675 3.782 5.002 0.626 0.207 0.000

n  Π e  Π 1  Π 2  Π 3 cs W

(3, 1, 3, 5) 4.772 0.980 0.405 0.001 0.952 7.109
(1, 1, 3, 5) 5.001 1.675 0.782 0.002 1.792 9.253
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