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Abstract

I study price competition in settings where end products are combinations of components supplied by
different monopolists, nesting standard models of perfect complements and imperfect substitutes. I show
sufficient conditions for a discrete-choice demand system to yield demand for each product which is log-
concave in price, and has log-increasing differences in own and another product’s price, leading to strong
comparative statics results. Many results familiar from simple models, like the price effects of mergers or
changes in marginal costs, extend naturally to this more complex setting.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Much of our intuition for the effects of competition comes from the simple models of Cournot
and Bertrand – models featuring just one type of competition, either substitutes or complements.
For example, these models tell us that in a world where all products are substitutes, mergers lead
to higher prices, while in a world where all products are complements, mergers lead to lower
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prices. Real-world settings, however, often include both complements and substitutes. An impor-
tant question is whether the insights of these simple models apply in more complex situations.

Consider the following example, a variation on the setting studied empirically by Busse and
Keohane [8].1 A single city is served by three coal mines, each connected to the city by a separate,
independently-owned railroad. Buyers in the city have four choices: to buy coal from Mine 1 and
pay for transport on Railroad 1; to buy from Mine 2 and Railroad 2; to buy from Mine 3 and
Railroad 3; or to do without coal. Coal from the different mines may be delivered to different
points in the city and have different characteristics, and buyers have heterogeneous preferences
among them, making the three “end products” imperfect substitutes.

In this paper, I consider a model of imperfect competition in prices that captures this type
of situation. The products demanded by downstream consumers are non-overlapping sets of
necessary elements, each supplied by a different monopolist. I show straightforward sufficient
conditions on a discrete choice demand model under which our usual intuitions for complements
and substitutes extend: under which a merger between Mine 1 and Railroad 1 would lead to lower
equilibrium prices for customers of all three mines, while a merger between two of the railroads
would lead to higher prices for everyone.

These results follow from two key properties of the demand system: that the log demand
for each product is concave in its own price, and has increasing differences in its own and a
competing product’s price. I show that these two properties hold in a discrete choice setting if
consumer preferences are independent across products and drawn from distributions satisfying a
commonly-used regularity condition – log-concavity of both the cumulative distribution function
and survival function. (A stronger sufficient condition is for each preference distribution to have
a log-concave density function.)

Given log-supermodular demand, in the absence of complementarities – if only the coal
mines, without the railroads, were being studied – price competition would be a supermodular
game. With complementarities, the game is not supermodular – prices of different components
of the same product are strategic substitutes. However, I show that the pricing game has the same
equilibrium as a different, and simpler, supermodular game, leading to powerful comparative
statics as well as intuition for why they hold.

Aside from settings like the coal example above, the model in this paper can also be seen
as a model of retail competition among products containing elements supplied by other firms.
We can think of different car companies or personal computer manufacturers: a single firm sets
each retail price, but that price implicitly includes the prices of the various parts or components
that went into the product – tires and windshields, or microchips and DVD drives, purchased
from outside suppliers. The model also fits well with the licensing of intellectual property related
to third-generation (3G) wireless communication technologies. 3G is not a single standard, but
five different ones, each evolved from (and therefore backward-compatible with) one or more
second-generation technologies. Quoting a Department of Justice Business Review Letter [20],
“It is reasonably likely that essential patents associated with a single 3G technology... will be
complements rather than substitutes... [But] There is a reasonable possibility that the five 3G
radio interface technologies will continue to be substitutes for each other, and we would expect
the owners of intellectual property rights essential to these technologies to compete, including
through price...” These concerns led the DOJ to reject the proposed formation of a single plat-

1 Busse and Keohane [8] study a single coal mine, serving several towns; there are two railroads, one or both serving
each town.
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form governing the licensing of all 3G-related patents, and approve instead the formation of five
separate entities, each licensing patents related to one of the five competing technologies. As I
discuss later, this decision is fully in line with the findings of this paper. I also extend the model
to allow for components which are a required part of every product – for example, Intel chips
or Microsoft Windows in different manufacturers’ PCs – or for the prices of components to be
set through bilateral bargaining between upstream suppliers and downstream retailers prior to
downstream competition.

The rest of the paper proceeds as follows. In Section 2, I introduce the model. In Section 3,
I establish the main results of the paper: I show two key properties of the demand system that
hold under my assumptions, use them to characterize the equilibrium of the pricing game, and
establish comparative statics. In Section 4, I compare these results to those that would hold
under other models of demand. In Section 5, I consider two extensions to the baseline model:
one where downstream retailers negotiate wholesale prices through bilateral negotiations with
suppliers, and another to accommodate components required for every product. In Section 6,
I relate my findings to the existing literature; Section 7 concludes. All proofs are in Appendix A;
two examples referenced in the text, and material relating to the extensions, are contained in a
second, online-only appendix.

2. Model

There is a finite set of products K = {1,2, . . . ,K}. Each product k ∈ K has one or more
components; Tk will denote the components of product k. No two products share a common
component: for k′ �= k, Tk ∩ Tk′ = ∅.

Each component is produced by a separate monopolist, so the set T ≡ T1 ∪T2 ∪ . . .∪TK of all
components is also the set of firms. Each firm i ∈ T has zero fixed costs and constant marginal
costs ci , and sets a price pi for its component. The price of a product is the sum of the prices of
its components, Pk = ∑

i∈Tk
pi .2

Demand for the products comes from a measure 1 of price-taking consumers with unit demand
and quasilinear utility. Each consumer can consume a unit of one product, or nothing. Consumer
l gets payoff vl

k from product k, and vl
0 from consuming nothing. The demand for each product

is the fraction of consumers who prefer that product (given its price) to any of the others or the
outside option; letting P0 = 0, this demand is

Qk(P1, . . . ,PK) = Pr
(
vl
k − Pk = max

j∈K∪{0}
{
vl
j − Pj

})
(1)

(Assumption 1 below will imply that the set of consumers indifferent between two choices will
have measure zero, so ties can safely be ignored.)

The solution concept is Bertrand–Nash competition in prices; firms set prices simultaneously,
with firm i ∈ Tk seeking to maximize

πi = (pi − ci)Qk(pi,p−i ) (2)

where p−i are the prices set by firms j ∈ T − {i}.

2 This model applies equally well if one “retail” firm i ∈ Tk sets the retail price Pk for each product, by choosing the
profit-maximizing markup at the same time as its suppliers choose their wholesale prices.
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Table 1
Distributions with log-concave density, which therefore satisfy Assumption 1(c).

Name of distribution Support Density function

Uniform [0,1] 1

Normal (−∞,∞) 1√
2π

e−x2/2

Exponential (0,∞) λe−λx

Logistic (−∞,∞) e−x

(1+e−x )2

Extreme value (−∞,∞) e−xe−e−x

Laplace (double exponential) (−∞,∞) 1
2 e−|x|

Power function, c ≥ 1 (0,1] cxc−1

Weibull, c ≥ 1 [0,∞) cxc−1e−xc

Gamma, c ≥ 1 [0,∞) xc−1e−x

Γ (c)

Chi-squared, c ≥ 2 [0,∞) x(c−2)/2e−x/2

2c/2Γ (c/2)

Chi, c ≥ 1 [0,∞) xc−1e−x2/2

2(c−2)/2Γ (c)

Beta, ν ≥ 1 and ω ≥ 1 [0,1] xν−1(1−x)ω−1

B(ν,ω)

Maxwell Chi with c = 3

Rayleigh Weibull with c = 2

Throughout the paper, I will maintain the following set of assumptions about the distribution
of individual product-specific tastes vl

k :

Assumption 1. For k ∈K ∪ {0} and l ∈ [0,1],

(a) {vl
k} are independent across k and l.

(b) For each k, {vl
k} are i.i.d. draws from a massless distribution Fk with density fk .

(c) For each k, Fk and 1 − Fk are both log-concave.

Note that there is no symmetry assumption: each product may have a different distribution of
valuations Fk . While independence of {vl

k} is of course a strong assumption, Assumption 1(c) –
log-concavity of each CDF and survival function3 – holds for a large number of familiar prob-
ability distributions. Bagnoli and Bergstrom [3, Theorems 1 and 3] show that it holds for any
distribution with a differentiable and log-concave density function; Table 1, reproduced from
Bagnoli and Bergstrom, therefore gives a long list of well-known distributions for which As-
sumption 1(c) is known to hold. (In the next section, I will focus on distributions with unbounded
support in the positive direction, which still includes nearly all of this list.)

3 Following the reliability theory literature, I refer to the function 1 − F as the survival function of a given distribu-
tion F .



270 D. Quint / Journal of Economic Theory 152 (2014) 266–290
3. Results

3.1. Properties of demand under Assumption 1

Assumption 1 leads to two key properties of the demand system {Qk}, viewed as a function
of aggregate prices {Pk}:

Theorem 1. Under Assumption 1, for each k, k′ ∈ K, demand Qk is continuous, differentiable,
and log-concave in Pk , and logQk has strictly increasing differences in Pk and Pk′ .

For my purposes, log-concavity of demand will ensure that firm best-responses are unique,
and characterized by first-order conditions, and that certain comparative statics results hold.
Weyl and Fabinger [33] discuss the fact that the log-curvature of demand – whether demand
is log-concave or log-convex – is closely related to the pass-through rate, the fraction of a cost
increase or tax which is borne by the consumer: under a variety of demand models with con-
stant marginal costs, pass-through is below 1 if demand is log-concave, and above 1 if demand
is log-convex.4

Increasing differences, which I will abuse terminology slightly and refer to as log-super-
modularity of demand,5 will in some sense make prices of competing products strategic com-
plements. This is a slight oversimplification, because in the model of competition I consider,
each product’s price is not determined by a single firm but by the collective actions of several
firms, but the intuition is roughly that of a standard supermodular game: an increase in one pro-
duct’s price will put upward pressure on the prices of the other products, which will lead to
intuitive comparative statics.

In Section 4, I examine whether other demand specifications lead to similar, or markedly
different, results to Theorem 1, and the implications this has for the conclusions of this section.

3.2. Characterization of equilibrium

Let nk = |Tk| be the number of components of product k, and Ck = ∑
i∈Tk

ci their combined
marginal costs. To establish comparative statics results on equilibrium prices, I will relate the
equilibrium of the pricing game described above to the equilibrium of a simpler auxiliary game.
In particular, I will replace each group of firms Tk with a single player, whose payoff function
causes him to set Pk exactly as the nk firms in Tk would have if they were acting separately.
While a monopolist firm would maximize log(p − c) + logQ, double-marginalization causes
the nk firms in Tk to collectively set the price that maximizes nk log(Pk − Ck) + logQk .6 Log-
concavity of Qk ensures that this is a valid exercise, as best-responses are fully characterized by
first-order conditions; log-supermodularity of Qk ensures that the resulting K-player game is a

4 In Fabinger and Weyl [16], the same authors suggest that pass-through rates less than 1 are likely a reasonable
expectation in settings where the distribution of consumer willingness-to-pay is unimodal; but that in settings where
resale is possible, the resulting floor on willingness-to-pay introduces a convexity, and pass-through rates above 1 might
be expected in those settings, citing Einav et al. [15] as an example.

5 The abuse of terminology is because logQk need only have increasing differences in Pk and Pj , not in Pj and Pj ′
(j ′ �= j �= k). Still, this is supermodularity in the same sense as payoffs in a supermodular game.

6 This is analogous to the observation that while a monopolist sets price such that the own-price elasticity of demand
is 1, n complementary monopolists collectively set prices such that the elasticity is n.
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supermodular game, which will lead to an easy proof of equilibrium existence and a number of
powerful comparative statics.

First, I impose one additional assumption about the demand system:

Assumption 2. For each k ∈ K, the support of Fk has no upper bound.

This assumption eliminates certain “no-trade”-type equilibria that would otherwise exist given
the type of perfect complementarities considered here,7 leading to uniqueness of equilibrium.
Let P−k = (P1, . . . ,Pk−1,Pk+1, . . . ,PK) denote the vector of aggregate prices of products other
than k.

Lemma 1. Under Assumptions 1 and 2, the simultaneous-move pricing game has a unique equi-
librium. Each firm i ∈ Tk sets equilibrium price

pi = ci + 1

nk

(P k − Ck) (3)

where (P 1,P 2, . . . ,P K) is the unique equilibrium of a different game with players {1,2, . . . ,K},
strategies Pk ∈ �+, and payoff functions8

uk(Pk,P−k) = nk log(Pk − Ck) + logQk(Pk,P−k) (4)

This latter K-player game is a supermodular game, indexed by both nk and Ck for every k.

3.3. Comparative statics on prices

Next, I consider the implications the supermodular structure established above has for equilib-
rium prices. Fix a product k and a firm i ∈ Tk , and let p−i = ∑

j∈Tk−{i} pj denote the combined
price of the other components of k. Differentiating firm i’s log-profit function, the marginal
benefit of raising its price is 1

pi−ci
+ ∂ log Qk

∂Pk
(pi + p−i , P−k); since Qk is log-concave and log-

supermodular, this is decreasing in p−i and increasing in P−k . This means the prices of the
other firms j ∈ Tk − {i} (manufacturers of the same product’s other components) are strategic
substitutes for pi , and the prices of firms j ∈ T − Tk (manufacturers of competing products)
are strategic complements. Given the supermodular structure of the equilibrium, these effects
are mutually reinforcing, and therefore persist when considered together. Thus, any exogenous
change causing an increase or decrease in a single firm’s best-response, will have predictable
effects on equilibrium prices:

Theorem 2. Under Assumptions 1 and 2,

1. An increase in any one firm’s marginal cost leads to higher prices for all products.
• Fix k ∈ K and i ∈ Tk . If firm i’s marginal cost ci is increased by �ci , then for any k′ �= k,

0 < �Pk′ < �Pk < �ci , where �P is the resulting change in the equilibrium price P . An

7 For example, if n1 > 1, supp(F1) = [a, b], and supp(F0) ⊆ �+, then it is an equilibrium for every firm i ∈ T1 to price
above b, giving Q1 = 0. Assumption 2 ensures that demand is positive at any price, eliminating this sort of equilibrium.

8 To be fully formal, uk is defined as −∞ for Pk ≤ Ck . Since Assumption 2 ensures Qk(·) is always strictly positive,
strategies Pk ≤ Ck are strictly dominated and can safely be ignored.
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increase in ci therefore results in lower demand Qk for product k and lower profits for all
firms i′ ∈ Tk .

2. A quality improvement to one product (defined as a constant increase in all consumers’
willingness to pay for that product, or a parallel right-shift in one distribution Fk) leads to
a higher price for that product and lower prices for all other products.
• If Fk is shifted to the right by �v, then for k′ �= k, �Pk − �v < �Pk′ < 0. A quality

improvement to product k therefore results in greater demand Qk for that product, and
greater profits for all firms i ∈ Tk making its components.

3. The introduction of a new product leads to lower prices for all existing products.

The supermodular structure of the equilibrium also allows us to characterize the effects
of mergers between firms. A vertical merger between two firms in Tk lessens the double-
marginalization problem, lowering Pk and, as a result, the other products’ prices as well. A hor-
izontal merger, on the other hand, causes the merged firm to raise its price; once again, the
supermodular structure of equilibrium prices then leads to higher prices for all products:

Theorem 3. Under Assumptions 1 and 2,

1. A merger between suppliers of components of the same product leads to lower prices for all
products.
• If the merger is between firms i, j ∈ Tk , then |�Pk′ | < |�Pk| for any k′ �= k, resulting in

an increase in Qk and greater profits for all firms i′ ∈ Tk − {i, j}.
2. A merger between suppliers of components of different products leads to higher prices for

all products.

3.4. Comparative statics on profits

Theorem 2 establishes that if the marginal cost of one of the components of product 2 in-
creases, the equilibrium prices of every product rise. It is tempting to assume that this must be
good news for the makers of components of the other products. For products with just one com-
ponent, this would indeed be the case. For example, if n1 = 1, the lone firm in T1 sees the price
of every competing product go up; and if it chooses in equilibrium to raise its own price P1, this
can only be to further increase profits.

However, when n1 > 1, it may not follow that an increase in a competing product’s cost is
good news. The increases in P2, . . . ,PK certainly increase the profits of each firm in T1; but at
least in principle, it is possible that these increases also change the shape of the residual demand
curve Q1 in such a way that the double-marginalization problem among the firms in T1 gets more
severe, leading to P1 increasing “too much” in equilibrium and actually lowering the profits of
these firms. (In the online-only appendix, I give an example where this occurs, although not in
an environment consistent with this paper’s model.)

To rule out this possibility, I introduce a new condition, which ensures that an increase in P2

leads to both greater demand for competing products, and higher profits for the firms making
their components, in equilibrium. Absent marginal costs, the change in Q1 resulting from an
increase in P2, followed by the equilibrium response of the firms in T1, can be shown to have
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the same sign as ∂
∂P1

(
ε1,1
ε1,2

), where ε1,1 and ε1,2 are the usual own- and cross-price elasticities of

demand.9 I therefore introduce the following assumption:

Assumption 3. For every k and every k′ �= k, εk,k/εk,k′ is increasing in Pk , where εk,k =
− ∂ log Qk

∂ log Pk
> 0 and εk,k′ = ∂ log Qk

∂ log Pk′ > 0 are the usual own- and cross-price elasticities.

Lemma 2. Under Assumptions 1, 2 and 3, an increase in Pk′ , followed by the adjustment of
prices by firms i ∈ Tk to their new mutual best-responses, leaves demand for product k higher
than before.

Assumption 3 is not so unnatural. We can write εk,k

εk,k′ as Pk

Pk′ (− ∂ log Qk

∂Pk
)/

∂ log Qk

∂Pk′ , and note that

Theorem 1 implies that both − ∂ log Qk

∂Pk
and ∂ log Qk

∂Pk′ are increasing in Pk ; Assumption 3 then
requires that the latter not increase too much faster than the former, so that any decrease in the
ratio − ∂ log Qk

∂Pk
/

∂ log Qk

∂Pk′ cannot overwhelm the increase in Pk

Pk′ . As noted above, it is exactly the
condition that is required, since the change in Qk (in response to a marginal increase in Pk′
followed by an adjustment by the firms in Tk) is proportional to ∂

∂Pk
(

εk,k

εk,k′ ). Assumption 3 leads

to additional comparative statics on competitor demand and profit:

Theorem 4. Under Assumptions 1, 2 and 3, any of the following lead to lower demand Qk for
product k and lower profits for all firms i′ ∈ Tk producing its components:

1. The introduction of a new competing product k′ �= k.
2. The reduction of the marginal cost ci of any component i ∈ Tk′ of any competing product

k′ �= k.
3. A quality improvement to any competing product k′ �= k.
4. A merger between two firms i, j ∈ Tk′ producing components of the same competing product

k′ �= k.

On the other hand, a merger between firms i ∈ Tk′ and j ∈ Tk′′ , with k′′ �= k′ �= k, leads to
increased demand Qk and increased profits for all firms i′ ∈ Tk .

As discussed in Section A.5, the weaker condition that εk,k−1
εk,k′ is increasing in Pk suffices to

ensure that the firms in Tk end up with higher profits, though not necessarily higher demand,
following an increase in Pk′ . This weaker condition would therefore suffice (along with Assump-
tions 1 and 2) for the results on profit in Theorem 4.

Theorems 3 and 4 together pin down the effect of a merger between two firms i, j ∈ Tk on
every firm other than the two merged firms: the effect on profits is positive for firms i′ ∈ Tk −
{i, j}, and negative for firms i′ ∈ T − Tk . However, I have not said anything about the effect on
the merged firms. The combined profits of all the firms in Tk are likely to be higher, but could
potentially be lower, post-merger, since Qk rose but Pk fell. And post-merger, the merged firms
get a fraction 1

nk−1 , rather than 2
nk

, of those joint profits. Whether a particular merger between

9 With positive marginal costs, elasticities of the form
∂ log Qk′

∂ log(Pk−Ck)
, rather than

∂ log Qk′
∂ log Pk

, need to be used, but as

shown in Section A.5, Assumption 3 (as written) is still sufficient for the result.
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complementary firms is profitable for them is an empirical question. (Quint [25] shows that under
logit demand, such a merger is profitable when nk is sufficiently large.)

Two special cases of this model are worth mentioning separately:

Pure Complements. If K = 1, all components are perfect complements. Then under Assump-
tion 1, cost reductions are Pareto-improving, as they increase both consumer surplus and every
firm’s profit. Provided a merger is profitable for the merging firms, it represents a Pareto-
improvement as well.

Pure Substitutes. If n1 = n2 = . . . = nK = 1 (each product has just one component), all com-
ponents are substitutes. Then Assumption 3 is not required for the profit results in Theorem 4:
under only Assumptions 1 and 2, a reduction in one firm’s marginal cost, a new product, or a
quality improvement to any existing product reduces the profits of all other firms. Additionally,
a merger between any two firms is now guaranteed to increase the profits of all firms, including
the joint profits of the merging firms.

Thus, as expected, mergers in a pure complements world are Pareto-improving, as they lessen
a double-marginalization problem, while mergers in a pure substitutes world represent a gain to
producers but a loss to consumers.

4. Comparison to other demand models

The proof of Lemma 1 (the supermodular characterization of equilibrium prices) uses the two
properties established in Theorem 1, log-concavity and log-supermodularity of demand. Theo-
rems 2 and 3 then follow from Lemma 1; Theorem 4 follows from Lemma 1 and an additional
condition, Assumption 3. In this section, we consider what happens when each of these prop-
erties – log-concavity, log-supermodularity, and Assumption 3 – is weakened or violated, and
whether they hold under other commonly-used demand systems.

4.1. Weakening the sufficient conditions

Log-concave demand, while a feature of my demand model, is a stronger assumption than
needed to prove Lemma 1. What is actually needed is strict quasi-concavity of both the indi-
vidual firm profit functions (pi − ci)Qk(pi + p−i , P−k) and the “virtual firm” payoff functions
nk log(Pk − Ck) + logQk , so that both problems’ maximizers are unique and characterized by
the corresponding first-order condition. As noted by Vives [30, p. 149], a sufficient condition
for quasi-concave profit functions is that the own-price elasticity of demand εk,k = − ∂ log Qk

∂ log Pk

is strictly increasing in Pk .10 Thus, if each εk,k is strictly increasing, Lemma 1 holds, with or
without log-concave demand. Conveniently, many demand functions (including some discussed

10 In my setting, if εk,k is strictly increasing in Pk , then for any n and a ≥ 0, n+ (Pk − a)
∂ log Qk

∂Pk
is strictly decreasing

on Pk > a, meaning n
Pk−a

+ ∂ log Qk
∂Pk

(Pk,P−k), which has the same sign, crosses zero at most once, from above, on

(a,+∞). Letting n = 1 and a = p−i + ci , this makes firm i’s log-profit function strictly quasiconcave; letting n = nk

and a = Ck , this makes the payoff function of the kth “virtual firm” in Lemma 1 strictly quasiconcave.
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Table 2
Some distributions with log-convex densities and their properties.

Name of distribution Support Density function F 1 − F

Power (c < 1) (0,1] cxc−1 log-concave neither

Weibull (c < 1) (0,∞) cxc−1e−xc
log-concave log-convex

Gamma (c < 1) (0,∞) xc−1e−x

Γ (c)
log-concave log-convex

Arc-sine [0,1] 1
π

√
x(1−x)

neither neither

Pareto [1,∞) βx−β−1 log-concave log-convex

Mirror-image Pareto (−∞,−1) β(−x)−β−1 log-convex log-concave

below) that are not log-concave still satisfy this weaker property; most of the results in Theo-
rems 2 and 3 therefore hold for these demand systems as well.11

If demand features increasing own-price elasticities but is not log-supermodular, the equilib-
rium characterization in Lemma 1 is still valid, but the K-player game described in the lemma is
not a supermodular game, so the comparative statics results in Theorems 2 and 3 do not hold. For
K > 2, analogous general results do not hold for the submodular case: even if each cross-partial
∂2 log Qk

∂Pk∂Pk′ were negative, this would not pin down the relevant comparative statics. (While all the
“direct effects” of a single price change would be negative, these would then lead to indirect
effects which were positive – an increase in Pk leading to an increase in Pk′′ through a decrease
in Pk′ – and it would be unclear which effects would dominate.)

Finally, as noted earlier, when Lemma 1 holds and demand is log-supermodular, we can relax
Assumption 3 and still maintain some, but not all, of the results in Theorem 4. Assumption 3
says that εk,k

εk,k′ must be increasing in Pk . Since, under Lemma 1, both εk,k and εk,k′ are increasing

in Pk , a weaker assumption, which I will refer to as Assumption 3′, is that εk,k−1
εk,k′ is increasing

in Pk . Under Assumption 3′, the parts of Theorem 4 relating to profits, though not demand, still
hold. (See Section A.5 for a discussion.) Two of the demand models discussed below satisfy
Assumption 3′ but not Assumption 3.

4.2. Distributions with log-convex density

One way to interpret Theorem 1, combined with Theorems 1 and 3 of Bagnoli and
Bergstrom [3], is that if preferences are independent across products and drawn from distri-
butions with log-concave densities, demand is log-concave and log-supermodular. A natural
question, then, is whether these results would be reversed if product preferences were drawn
instead from distributions with log-convex densities.

Bagnoli and Bergstrom discuss several distributions with log-convex density functions.
Pulling from Tables 2 and 3 of their paper, Table 2 shows several such distributions.12 Theo-

11 The exception: if demand were not log-concave, firms i, j ∈ Tk would not have prices which were strategic substi-
tutes. Thus, for example, an increase in ci (and the resulting increase in pi ) would not necessarily lead to a lower price
pj and lower profit πj .
12 Several other common distributions – the lognormal, Student’s t , and Cauchy, as well as the beta and F distributions
for some parameter values – have density functions which can be log-concave, log-convex, or neither. For the most part,
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rems 2 and 4 of Bagnoli and Bergstrom imply that if a density function is log-convex and has
support (a,∞), then its survival function must be log-concave on its support. (As Table 2 illus-
trates, this can vary with the support of the distribution. A distribution with log-convex density
cannot have full support on �.) However, as pointed out by Block, Savits and Singh [6], a sur-
vival function cannot be log-convex on the entire real line: the inequalities defining log-convexity
must be violated at points outside the support of the distribution. For this reason, general results
analogous to Theorem 1 cannot be proven in the same way for the log-convex case.13

To better understand the log-convex case, I’ve examined numerical examples using three of the
distributions from Table 2 – specifically, Weibull and Gamma distributions with various shape
parameters below 1, as well as Pareto distributions. In the cases I’ve tried, demand has con-
sistently turned out to be log-convex and log-submodular, the opposite of Theorem 1. While
demand has been log-convex, the own-price elasticity has still been increasing, so the equilib-
rium characterization in Lemma 1 still appears to be valid; but since log-demand is submodular,
the comparative statics results do not hold. However, the examples have been limited to a small
number of products and a few specific distributions; I do not see a way to prove this as a general
result for log-convex distributions.

4.3. Demand systems with preferences over attributes

Assumption 1(a) requires consumer preferences to be uncorrelated across products. While it
looks standard, this is embedding an important implicit assumption: that it is the products them-
selves, not their attributes, over which consumers have preferences. In a random-coefficients-type
model like those considered by Caplin and Nalebuff [9], Berry, Levinsohn and Pakes [5], and
many others, consumers have heterogeneous preferences over product attributes; even if the in-
dividual preference parameters are independent and satisfy the distributional assumptions above,
this can still introduce correlation among {vl

k} which causes Theorem 1 to fail.
For example, consider the simple linear random-coefficients model with

vl
k = xk · βl + ξk + εl

k (5)

where xk is a vector of characteristics of product k and βl a vector of preference parameters
over those characteristics for consumer l. With the right assumption, log-concavity of demand
can again be shown theoretically: Theorem 1 of Caplin and Nalebuff [9] implies that if the joint
distribution of preference parameters has a log-concave density function, the resulting demand
functions will be log-concave as well.14 However, in a similar model with heterogeneous wealth
effects, where consumer l gets utility vl

k − αlPk from product k, log-concavity cannot be shown

these distributions also typically have CDFs and survival rates which are neither log-concave nor log-convex, giving less
hope that results analogous to Theorem 1 could be found.
13 A key step of the proof of Theorem 1 involves the result (from Karlin [22] via Barlow and Proschan [4]) that if
two independent random variables have log-concave survival functions, so does their sum. The proof depends on the
sign of an integral over (−∞,∞) of an integrand whose sign is determined by the local log-curvature of the survival
function. When a survival function is log-concave on the support of the distribution, its extension to the whole real line is
log-concave everywhere, so the sign of the integral is pinned down. Since log-convexity cannot hold over the whole real
line, the same trick does not work for the log-convex case; Barlow and Proschan note that no analogous result holds for
the case of decreasing hazard rates (log-convex survival functions), and give a simple counterexample to illustrate this.
14 Specifically, apply Theorem 1 of Caplin and Nalebuff with ρ = 0, and recall that in the limit ρ = 0, ρ-concavity is
equivalent to log-concavity.
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generally. And even in the model without wealth effects, log-supermodularity does not hold gen-
erally. In the online-only appendix, I show a simple example – two products and two attributes,
with preferences over attributes independently and uniformly distributed – in which log-demand
can be locally either supermodular or submodular, depending on the level of prices.

4.4. Commonly-used closed-form demand functions

Vives [31] considers a number of commonly-used demand systems which give closed-form
functions for Qk(P1, . . . ,PK). The first two models considered are the linear formulations of
Shapley and Shubik [28] and Bowley [7]. The third is the location model of Salop [27] with
uniformly-distributed customers, which near equilibrium prices is linear as well. The first three
models, then, can all be thought of as special cases of the demand equation

Qk = ak − bkPk +
∑
k′ �=k

ck,k′Pk′ (6)

with {bk} and {ck,k′ } all positive, and with each model imposing some further restrictions on
the values of these parameters. Differentiating gives ∂ log Qk

∂Pk
= − bk

Qk
, which is decreasing in Pk

and increasing in P ′
k (k′ �= k). Thus, any linear demand formulation gives demand which is log-

concave and log-supermodular, as in the model in this paper. In addition, under linear demand,
the ratio − ∂Qk

∂Pk
/

∂Qk

∂Pk′ = bk

ck,k′ remains constant as Pk increases, and as a result Assumption 3 can

be shown to hold as well.
The final four models considered by Vives are the constant elasticity of substitution (CES)

model, two formulations of a constant-expenditure model, and the logit model:

CES : Qk = S(βθ)
1

1−βθ
P

−1/(1−β)
k

(
∑

j P
−β/(1−β)
j )(1−θ)/(1−βθ)

, β, θ ∈ (0,1)

CE-exponential : Qk = S
e−βPk

Pk

∑
j e−βPj

, β > 0

CE-constant elasticity : Qk = S
P −σ

k∑
j P 1−σ

j

, σ > 1

Logit : Qk = S
e−Pk/μ∑
j e−Pj /μ

, μ > 0

(7)

The logit model, in fact, is a discrete-choice model with a particular choice of distribution
Fk satisfying Assumption 1(c); thus, by Theorem 1, it yields log-concave and log-supermodular
demand. In addition, under logit, − ∂Qk

∂Pk
/

∂Qk

∂Pk′ turns out to be constant in Pk , so Assumption 3
holds.

For the other three models, we can explicitly calculate derivatives and find that in all three
cases, demand is log-supermodular but not necessarily log-concave. However, while demand
can be locally either log-concave or log-convex depending on parameter values and prices, the
own-price elasticity is always increasing, so nearly all of our results still hold. For all three of
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Table 3
Summary of results comparing my results to other demand models.

Demand system Curvature of demand Strategic interaction Assumption 3 or 3′?
Discrete choice, independent preferences
over products, Fk and 1 − Fk log-concave

log-concave
(Theorem 1)

log-supermodular
(Theorem 1)

?a

Discrete choice, independent preferences
over products, fk log-convex

may be log-convexb may be log-submodularb

Discrete choice, prefs over characteristics eitherc either

Linear (Shapley-Shubik/Bowley/Salop) log-concave log-supermodular 3 holds

Logit log-concave log-supermodular 3 holds

Constant elasticity of substitution eitherd log-supermodular no

Constant expenditure – exponential eitherd log-supermodular 3′ but not 3

Constant expenditure – CES eitherd log-supermodular 3′ but not 3

a Assumption 3 holds for logit demand, which is a special case of this model; it’s not clear whether it holds generally.
b Specific examples (solved numerically) using the Weibull, Gamma, and Pareto distributions yielded log-convex,

log-submodular demand, but no general results are available.
c In a linear model without heterogeneous wealth effects, demand is log-concave if the joint density of preference

parameters is log-concave; with wealth effects, this need not hold.
d Own-price elasticity is strictly increasing, so whether demand is log-convex or log-concave, Lemma 1, and therefore

most of Theorems 2 and 3, still hold.

these models, Assumption 3 is often violated15; but the two constant-expenditure models do
satisfy the weaker Assumption 3′.

4.5. Summing up

Table 3 summarizes the results on other demand specifications. The linear and logit models
satisfy all the assumptions of this paper; the CES model and the two constant-expenditure models
considered by Vives do not satisfy these assumptions exactly, but still yield most of the same re-
sults. On the other hand, discrete choice with log-convex distributions, or BLP-style preferences
over product characteristics, have substantially different properties, and the results of this paper
do not apply to those demand systems.

5. Extensions to the baseline model

5.1. Wholesale pricing through bilateral negotiation

A different, but closely related, model of firm competition would be if each product k ∈ K was
sold by a single retailer, who purchased the necessary components from the remaining (upstream)
firms in Tk . In such a setting, a more natural assumption than simultaneous price-setting might
be that upstream prices were determined through a series of bilateral negotiations between the
retailer and each component manufacturer prior to downstream competition. In a separate online-
only appendix, I analyze such a model. I assume that the wholesale price of each component is
set via Nash bargaining between the component manufacturer and the corresponding retailer.

15 Assumption 3 holds under the CE-exponential model when there are many products or product prices are close to the
same, but not necessarily otherwise. Under the CES and CE-CES models, it is generally violated.
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Bargaining with correct beliefs about each wholesale price’s impact on downstream competition
is too complicated a model to work with, so a simpler assumption, in the spirit of conjectural
variations, is used: each Nash bargain is struck under the assumption that wholesale prices are
passed through to downstream prices at a constant rate, although this rate can again be different
for each firm. Under these assumptions, I show that a simple transformation maps this bargaining
model to the baseline model above, and that identical results therefore hold.

5.2. Essential components

Next, I extend the model to allow for components which are common to all products. That
is, instead of requiring no overlap in the components of the various products (Tk ∩ Tk′ = ∅),
I now allow for a common, nonempty overlap, Tk ∩ Tk′ = T1 ∩ T2 ∩ . . .∩ TK ≡ T E . I refer to the
components required for every product as essential – think of these as monopolists in a supply
chain (a single national railroad that transports coal for all coal companies), or necessary com-
ponents with no substitutes (Microsoft Windows for the mainstream PC market). To differentiate
the other components from the essential ones, let T N

k = Tk − T E denote the set of components
required only for product k.

I assume that the essential suppliers do not price-discriminate, that is, they set a single price
for the entire market. Let P E = ∑

i∈T E pi denote the combined price of all the essential com-
ponents, and P N

k the combined price of the nonessential components of product k. A consumer
wishing to consume product k must therefore buy each of the components in T E ∪T N

k , at a price
Pk = P E + P N

k .
Similar to Lemma 1, the equilibrium of the pricing game here can be linked to the equi-

librium of a different game, now with K + 1 players, which is a supermodular game in
(P 1

1 , . . . ,P N
K ,−P E). This requires logQk to be concave in P N

k and have increasing differences
in (P N

k ,P N
k′ ) and (P N

k ,P E); and logQA = logΣk∈KQk to be concave in P E with increasing
differences in (P E,P N

k ). The first three properties follow directly from Assumption 1. The last
two, however, do not. I have not found a simple condition on model primitives which guarantees
these conditions; instead, I explicitly assume what I need, and then argue that it’s a reasonable
assumption.

Assumption 4. ∂ log QA

∂PE is decreasing in P E and in P N
k .

In the online-only appendix, I discuss why this is a reasonable assumption. Note that it holds
under linear and logit demand, but not under the other closed-form demand systems consid-
ered by Vives [31]. As with the baseline model, Assumptions 1, 2 and 4 together guarantee
log-concave profit functions and supermodularity of a transformed game characterizing equi-
librium prices, which leads to comparative statics on price. The equilibrium characterization is
given in the online-only appendix. This then leads to results analogous to Theorems 2 and 3.
Results for essential firms are similar to those for firms in a pure-complements model; results for
non-essential firms are similar to those in the baseline model:

Theorem 5. Under Assumptions 1, 2 and 4,

1. A decrease in costs ci for i ∈ T N
k , or a merger between two firms i, j ∈ T N

k , lead to...
• a lower price Pk and greater demand Qk for product k
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• higher markups for (nonmerging) firms i′ ∈ T N
k

• lower prices for firms i′ ∈ T N
k′ for k′ �= k, and higher prices for firms i′ ∈ T E

• an ambiguous effect on the prices Pk′ of other products
2. A decrease in costs ci for i ∈ T E , or a merger between two firms i, j ∈ T E , both lead to

lower prices for every product and higher markups for every (nonmerging) firm.

As in the baseline model, an additional assumption (an analog to Assumption 3) would allow
for comparative statics on the effect of mergers and price changes on other firms’ equilibrium
demand and profit level. For brevity, I omit these further results, as the conditions required are not
intuitive. (The added conditions do, however, hold under logit demand. Quint [25] analyzes the
model with essential components under logit demand, focusing on the application of the model
to patent pools.)

6. Related literature

The discrete-choice demand framework I use is closely related to work done by others. De-
neckere and Davidson [14] consider mergers of firms producing substitutes in a linear demand
system, and show that such mergers are profitable for both the merging firms and for outsiders.
Perloff and Salop [24] consider the symmetric case (Fk = Fk′ ) of the discrete choice model I use,
and show existence and uniqueness of a “single-price” equilibrium. Chen and Riordan [13] con-
sider the two-firm case, with a more general (symmetric) joint distribution of valuations. Gabaix
et al. [17] characterize equilibrium prices in the limit as the number of (identical) firms in the
market goes to infinity. Anderson, de Palma and Thisse [1] and many subsequent papers explore
the logit demand model, which is frequently used in empirical work (and satisfies the assump-
tions of this paper). The most general model of this sort that I’m aware of is that of Caplin and
Nalebuff [9]. They situate each product in an m-dimensional space of product attributes over
which consumers have preferences. They allow preferences over these different product dimen-
sions to be correlated; they show that a condition similar to log-concavity of the density function
(but slightly weaker) is sufficient to guarantee existence of an equilibrium, although they show
uniqueness and log-supermodularity only for special cases. Berry, Levinsohn and Pakes [5] use
a similar model as the framework for empirical estimation. I focus on competition in prices (à la
Bertrand) as opposed to quantities (à la Cournot)16; Vives [30], among others, explores sufficient
conditions for equilibrium existence, uniqueness, and other properties under both models, and
compares insights across the two models.

A number of other recent papers examine settings with both complements and substitutes. Tan
and Yuan [29] use a model similar to mine, but with two products, to study the incentives of an
integrated firm to divest. Horn and Wolinsky [19] consider the duopoly case as well, assuming
each downstream firm bargains over wholesale prices with a single supplier. Casadesus-Masanell,
Nalebuff and Yoffie [11] consider a downstream monopolist (Microsoft) and perfect competition
among two upstream suppliers (Intel and AMD); Chen and Nalebuff [12] consider a monopo-
list in one market (Microsoft as the supplier of an operating system) who also competes in a

16 Jaffe and Weyl [21] point out that what differs across these two models (among others) is not so much the name
attached to each firm’s strategic variable, but what assumptions they make about other firms’ responses to their own
actions – that is, what they hold fixed when they optimize behavior – and focus on empirical merger evaluation in a
framework that nests both models.



D. Quint / Journal of Economic Theory 152 (2014) 266–290 281
complementary market (Microsoft and Netscape in the browser market). The recent literature
on two-sided markets (such as newspapers, which must attract both advertisers and readers) and
competition among platforms (such as XBox and PlayStation, which may be substitutes for con-
sumers but are each accompanied by a collection of complementary products) also considers both
complementarities and substitutes, although the focus is different – see, for example, Carrillo
and Tan [10], Rochet and Tirole [26], Armstrong [2], and Weyl [32]. Coexistence of substitutes
and complements is also explicitly allowed in the recent extension of the two-sided matching
literature to supply chains and other settings: see Ostrovsky [23] and Hatfield and Kominers
[18].

7. Conclusion

Certain received wisdom about price competition – for example, that mergers lead to higher
prices when firms produce substitutes, but lower prices when firms produce complements –
comes from simple models where only one type of competition is considered. I show that these
effects persist in a setting where a given good has both complements and substitutes. In particu-
lar, when competing supply chains do not overlap, vertical mergers are consumer-friendly, while
horizontal mergers between levels of competing supply chains are not.

The Department of Justice ruling on 3G patent licensing was fully in line with these insights.
The DOJ rejected a proposal to create a single Patent Platform (similar to a traditional patent
pool, but with more flexibility) which would handle licensing of all 3G-related patents; instead,
five separate Patent Platforms were formed, one for each competing radio interface technology.
In other words, full vertical integration was allowed – for pricing purposes, each set of com-
plementary firms was replaced by a single entity – while the proposed horizontal merger was
not. This is consistent with the DOJ’s mandate to promote competition, as this policy would be
expected to lead to the lowest possible licensing costs.

Many other applications might fit this model reasonably well. The market for Windows-
compatible personal computers involves many competing retailers (Acer, Dell, Gateway, HP,
Lenovo, etc.); some essential components (Intel and Microsoft); and lots of nonessential manu-
facturers (sources for hard drives, optical drives, and other components). Similarly, to the extent
that competing car manufacturers have non-overlapping supply chains, the model presented
above could apply. The market for delivered coal, discussed in Busse and Keohane [8], does
not fit the model perfectly, as many of the power plants purchasing coal are serviced by only
one railroad, and therefore do not face the full menu of available “products”, and railroads each
deliver coal from many mines; but the model could potentially be adapted to this type of market.
A similar modification might apply the model to the cell phone market, where phone manufac-
turers (Nokia, Samsung, LG, Motorola, Sony Ericsson, Apple) partner with service providers
(AT&T, Verizon, Sprint).

One significant limitation of the model considered in this paper is the exclusive focus on
single-product firms. When each firm produces multiple components, or a single retailer offers
several different products, the supermodular equilibrium structure demonstrated above does not
hold, as a single firm’s log-profit function need not have increasing differences in any two of
its own prices. Finding conditions under which comparable results can be achieved for multi-
product firms is a significant challenge left for future work.
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Appendix A. Omitted proofs

A.1. Proof of Theorem 1

As noted in the text (footnote 13), Barlow and Proschan [4, p. 100] use techniques from
Karlin [22] to show that if two independent random variables have distributions with increas-
ing hazard rates, so does their sum: that is, if X1 and X2 are independent, with X1 ∼ G1 and
X2 ∼ G2, and G is the distribution of X1 + X2, then if 1 − G1 and 1 − G2 are log-concave, so
is 1 − G. So fix k ∈ K, and apply this result with X1 = vk and X2 = −maxj∈K−{k}∪{0}{vl

j − Pl}.
Under Assumption 1, 1 − G1 = 1 − Fk is log-concave; as for G2,

1 − G2(t) = Pr
(−max

{
vl
j − Pj

}
> t

)
= Pr

(
max

{
vl
j − Pj

}
< −t

)
=

∏
j∈K−{k}∪{0}

Fj (−t + Pj )

log
(
1 − G2(t)

) =
∑

j∈K−{k}∪{0}
logFj (−t + Pj )

Since each Fj is log-concave (Assumption 1), log(1 − G2) is the sum of concave functions, and
therefore concave. Given these definitions for X1 and X2, demand Qk is

Qk = Pr
(
vl
k − Pk > max

j∈K−{k}∪{0}
{
vl
j − Pj

})

= Pr(X1 − Pk > −X2) = Pr(X1 + X2 > Pk) = 1 − G(Pk)

so Qk is log-concave.
To prove the second part of the theorem, we follow a similar outline to the proof in Barlow

and Proschan, but with several changes. This time, we want to show that logQk has increasing
differences in Pk and Pk′ . We will therefore fix k ∈K and k′ ∈K−{k}, let X1 = vl

k , and this time
let X2 = maxj∈K−{k}∪{0}{vl

j − Pj }, and this time let G denote the distribution of the difference
X1 −X2, so that once again Qk = 1 −G(Pk). We will think of G as a function of two arguments
– the point at which it is evaluated, and the value of Pk′ . As in Barlow and Proschan, we will let
G denote 1 − G (and likewise for other distributions).

Letting t1 > t2 and a1 > a2, establishing that logQk has increasing differences in Pk and Pk′
is equivalent to showing that the determinant

D =
∣∣∣∣ G(t1, a1) G(t1, a2)

G(t2, a1) G(t2, a2)

∣∣∣∣
is positive. Since this part of the argument is not based directly on Barlow and Proschan [4], we
give the argument in full detail. First, since G is now the distribution of a difference rather than
a sum,

G(t, a) = EX2|Pk′=a Pr(X1 > t + X2) =
∞∫

−∞
G1(t + s)g2(s, a)ds

(Note that G1 = Fk does not depend on Pk′ , so only g2 is written with a as an argument.) We
can rewrite D as
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D =
∣∣∣∣∣∣
∫ ∞
−∞ G1(t1 + s)g2(s, a1)ds

∫ ∞
−∞ G1(t1 + s)g2(s, a2)ds

∫ ∞
−∞ G1(t2 + s)g2(s, a1)ds

∫ ∞
−∞ G1(t2 + s)g2(s, a2)ds

∣∣∣∣∣∣
which, after a little bit of manipulation, can be written as

D =
∞∫

−∞

s1∫
−∞

G1(t1 + s1)G1(t2 + s2)
(
g2(s1, a1)g2(s2, a2) − g2(s2, a1)g2(s1, a2)

)
ds2ds1

−
∞∫

−∞

∞∫
s1

G1(t1 + s1)G1(t2 + s2)
(
g2(s2, a1)g2(s1, a2) − g2(s1, a1)g2(s2, a2)

)
ds2ds1

Switching the order of integration in the second integral, and then exchanging the names of the
variables s1 and s2 in the second integral, gives

D =
∞∫

−∞

s1∫
−∞

G1(t1 + s1)G1(t2 + s2)
(
g2(s1, a1)g2(s2, a2) − g2(s2, a1)g2(s1, a2)

)
ds2ds1

−
∞∫

−∞

s1∫
−∞

G1(t1 + s2)G1(t2 + s1)
(
g2(s1, a1)g2(s2, a2) − g2(s2, a1)g2(s1, a2)

)
ds2ds1

Recalling that dG1 = −g1 and dG2 = g2, evaluate both inner (ds2) integrals by parts, giving

D =
∞∫

−∞

[
G1(t1 + s1)G1(t2 + s2)

(
g2(s1, a1)G2(s2, a2) − G2(s2, a1)g2(s1, a2)

)∣∣s2=s1
s2=−∞

+
s1∫

−∞
G1(t1 + s1)g1(t2 + s2)

(
g2(s1, a1)G2(s2, a2) − G2(s2, a1)g2(s1, a2)

)
ds2

]
ds1

−
∞∫

−∞

[
G1(t1 + s2)G1(t2 + s1)

(
g2(s1, a1)G2(s2, a2) − G2(s2, a1)g2(s1, a2)

)∣∣s2=s1
s2=−∞

+
s1∫

−∞
g1(t1 + s2)G1(t2 + s1)

(
g2(s1, a1)G2(s2, a2) − G2(s2, a1)g2(s1, a2)

)
ds2

]
ds1

Plugging s2 = −∞ into G2(s2, a) in the first and third lines gives 0; plugging in s2 = s1 in the
first and third gives the four terms

∞∫
−∞

G1(t1 + s1)G1(t2 + s1)
(
g2(s1, a1)G2(s1, a2) − G2(s1, a1)g2(s1, a2)

)
ds1

−
∞∫

−∞
G1(t1 + s1)G1(t2 + s1)

(
g2(s1, a1)G2(s1, a2) − G2(s1, a1)g2(s1, a2)

)
ds1

which conveniently cancel, leaving
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D =
∞∫

−∞

s1∫
−∞

G1(t1 + s1)g1(t2 + s2)
(
g2(s1, a1)G2(s2, a2) − G2(s2, a1)g2(s1, a2)

)
ds2ds1

−
∞∫

−∞

s1∫
−∞

g1(t1 + s2)G1(t2 + s1)
(
g2(s1, a1)G2(s2, a2) − G2(s2, a1)g2(s1, a2)

)
ds2ds1

=
∞∫

−∞

s1∫
−∞

∣∣∣∣∣
G1(t1 + s1) g1(t1 + s2)

G1(t2 + s1) g1(t2 + s2)

∣∣∣∣∣
∣∣∣∣∣

g2(s1, a1) g2(s1, a2)

G2(s2, a1) G2(s2, a2)

∣∣∣∣∣ds2ds1

The first determinant has the same sign as

g1(t2 + s2)

G1(t2 + s1)
− g1(t1 + s2)

G1(t1 + s1)
= g1(t2 + s2)

G1(t2 + s2)

G1(t2 + s2)

G1(t2 + s1)
− g1(t1 + s2)

G1(t1 + s2)

G1(t1 + s2)

G1(t1 + s1)

By assumption, g1

G1
= fk

1−Fk
is increasing in its argument and t1 > t2, so g1(t2+s2)

G1(t2+s2)
<

g1(t1+s2)

G1(t1+s2)
;

and since G1 is log-concave, G1(t + s) is log-submodular in (t, s), so G1(t1 + s1)G1(t2 + s2) <

G1(t1 + s2)G1(t2 + s1), or G1(t2+s2)

G1(t2+s1)
<

G1(t1+s2)

G1(t1+s1)
. This means the first determinant is negative.

The second determinant has the same sign as

g2(s1, a1)

G2(s2, a1)
− g2(s1, a2)

G2(s2, a2)
= g2(s1, a1)

G2(s1, a1)

G2(s1, a1)

G2(s2, a1)
− g2(s1, a2)

G2(s1, a2)

G2(s1, a2)

G2(s2, a2)

This time,

G2(t) = Pr
(
max

{
vl
j − Pj

}
< t

)
= Pr

(
vl
j < Pj + t ∀j

)
=

∏
j∈K−{k}∪{0}

Fj (Pj + t)

logG2(t) =
∑

j∈K−{k}∪{0}
logFj (Pj + t)

(
logG2(t)

)′ =
∑

j∈K−{k}∪{0}

fj (Pj + t)

Fj (Pj + t)

which, since each Fj is log-concave by assumption, is decreasing in Pj , so G2 is log-submodular

in t and Pk′ = a. This means that g2(s1,a1)
G2(s1,a1)

<
g2(s1,a2)
G2(s1,a2)

and G2(s1,a1)
G2(s2,a1)

<
G2(s1,a2)
G2(s2,a2)

, so the second
determinant is negative.

Thus, both determinants are negative, making the integrand everywhere positive and therefore
D > 0, so Qk = Fk(Pk) is log-supermodular in (Pk,Pk′). �
A.2. Proof of Lemma 1

Fix k ∈K and i ∈ Tk , and let p−i = ∑
j∈Tk−{i} pj . Given other firms’ prices, firm i solves

max
{
log(pi − ci) + logQk(pi + p−i , P−k)

}
(A.1)
pi
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By Theorem 1, Qk is log-concave in Pk , so the maximand in (A.1) is strictly concave in pi ; so
pi is a solution if and only if it satisfies the first-order condition

1

pi − ci

= − ∂

∂pi

logQk(pi + p−i , P−k) = −∂ logQk

∂Pk

(Pk,P−k) (A.2)

The right-hand side of (A.2) depends on k but not i, so in equilibrium, every firm i ∈ Tk sets the
same markup pi − ci ; so Pk − Ck = nk(pi − ci), and (A.2) becomes

nk

Pk − Ck

= −∂ logQk

∂Pk

(Pk,P−k) (A.3)

This is the first-order condition to the maximization problem

max
Pk

{
nk log(Pk − Ck) + logQk(Pk,P−k)

}
(A.4)

which is strictly concave, so (A.3) is satisfied if and only if Pk solves (A.4). So all firms
i ∈ Tk are simultaneously best-responding to P−k if and only if their markups are equal to
each other and their combined price solves (A.4). Since this holds for every k, the aggregate
prices in the equilibrium of the actual pricing game simultaneously maximize (A.4) for each
k ∈ {1,2, . . . ,K}, and therefore correspond to the equilibrium of the K-player game with pay-
offs given by (A.4); and the equilibrium prices of this new game, along with each firm i ∈ Tk

setting markup pi − ci = 1
nk

(Pk − Ck), satisfy (A.2) and therefore solve (A.1), and are therefore

an equilibrium of the full game. By Theorem 1, ∂uk

∂Pk
= nk

Pk−Ck
+ ∂ log Qk

∂Pk
is increasing in Pk′ for

every k′ �= k, so the new K-player game is a supermodular game.
Next, we establish existence of an equilibrium of this new game. Since the game is supermod-

ular, player k’s best-response is bounded above by the limit of his best-responses as Pk′ → +∞
for Pk′ . This is finite, since even if all other products had infinite prices, product k would still
be competing against the (free) outside option; even without any other products available, Qk

is still strictly log-concave under Assumption 1, so − ∂ log Qk

∂Pk
is strictly positive and increasing,

and therefore nk

Pk−Ck
= − ∂ log Qk

∂Pk
has a finite solution. Letting P ∗

k denote this solution, it’s easy to
show that prices above P ∗

k are strictly dominated by P ∗
k , and can therefore be eliminated without

loss. Given supermodularity, best-responses are similarly bounded below by the best-response to
zero prices by all competitors, which will be strictly above Ck . Thus, we can eliminate strategies
for player k outside of some range [P k,P

∗
k ] with P k > Ck and P ∗

k < ∞. (The lower bound is
needed because we focus on log-profits, and log(Pk − Ck) is not continuous at Pk = Ck .) Con-
tinuous supermodular games on bounded strategy spaces are guaranteed to have an equilibrium,
and one can be found by iterating best-responses from either the “lower-left” or “upper-right”
corner of the strategy space.

Next, we establish uniqueness of this equilibrium. Suppose instead that there were two distinct
equilibria, with aggregate prices (P 0,P 1,P 2, . . . ,P K) and (P ′

0,P
′
1,P

′
2, . . . ,P

′
K). Note that we

include imaginary prices for the outside option (buying nothing), but P 0 = P ′
0 = 0. (Since the

outisde option is treated symmetrically to any other option, ∂ log Qk

∂Pk
would be increasing in P0;

the proof is identical to the proof of the last part of Theorem 1.) Fix k ∈ arg maxj∈K |P ′
j −

P j |, assume without loss of generality that P ′
k > P k , and let ε = P ′

k − P k > 0. Let P−k + ε

denote adding ε to every price in P−k . Each consumer’s problem, and therefore demand and
price elasticity, are unaffected when the same constant is added to every price including the price
of the outside good; so
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∂ logQk

∂Pk

(P k,P 0,P −k) = ∂ logQk

∂Pk

(P k + ε,P 0 + ε,P −k + ε) >
∂ logQk

∂Pk

(
P ′

k,P
′
0,P

′−k

)

The latter inequality holds because ∂ log Qk

∂Pk
is increasing in Pk′ for every k′ ∈ K ∪ {0} − {k} (by

Theorem 1), P ′
0 = 0 < ε = P + ε, and P ′

k′ ≤ P k′ + ε for every k′ ∈K−{k}. But since P k < P ′
k ,

nk

P k−Ck
>

nk

P ′
k−Ck

as well, so the first-order condition (A.3) cannot hold at both equilibria, giving

a contradiction.
Finally, since ∂

∂Pk
(nk log(Pk − Ck) + logQk) = nk

Pk−Ck
+ ∂ log Qk

∂Pk
is increasing in nk and Ck ,

the game is indexed by nk and Ck for every k. �
A.3. Proof of Theorem 2

Part 1. Since the supermodular game described in Lemma 1 has a unique equilibrium and is
indexed by Ck , an increase in Ck leads to higher prices for all products. By the same logic as the
uniqueness proof in Lemma 1, if k′ ∈ arg maxk′′ �Pk′′ and k′ �= k, then both nk′

Pk′−Ck′ and ∂ log Qk′
∂Pk′

are lower after the change, and the first-order condition nk′
Pk′−Ck′ = − ∂ log Qk′

∂Pk′ could therefore not

hold both before and after the change; so �Pk > �Pk′ . But since �Pk > �Pk′ for every k′,
∂ log Qk

∂Pk
is lower after the change, so nk

Pk−Ck
must be higher, meaning Pk − Ck is lower or �Pk <

�Ck . Since Pk rose, and rose by more than the price of any other product, Qk must fall; in
addition, pi′ − ci′ = 1

nk
(Pk − Ck) fell for any i′ ∈ Tk , giving lower profits (pi′ − ci′)Qk .

Part 2. Let t ∈ {0,1} indicate whether or not the right-shift in Fk has occurred, and let
Qt (P1, . . . ,PK) = (Qt

1( · ), . . . ,Qt
K( · )) denote the demand system before and after the shift.

Given quasilinear consumer preferences, a price reduction would have the same effect on de-
mand as a quality increase, so Q1(Pk,P−k) = Q0(Pk − �v,P−k); or, letting P t

k ≡ Pk − t�v

denote the “quality-adjusted price” of good k, Qt (Pk,P−k) = Q0(P t
k ,P−k). Thus, rather than

the demand system changing, we can think of the demand system remaining constant, but as a
function of P t

k . Firms i ∈ T − Tk have the same payoff functions as before, but as a function
of P t

k , and so their aggregate prices solve maxPk′ {nk′ log(Pk′ − Ck′) + logQ0
k′(Pk′ ,P t

k ,P−k,k′)};
the aggregate price of product k now solves

maxP t
k

{
nk log

(
P t

k + t�v − Ck

) + logQ0
k

(
P t

k ,P−k

)}
This relabeled game is as before a supermodular game in (P t

k ,P−k), and is indexed by −t ; so
opposite to Part 1, the increase in t (from 0 to 1) causes P t

k and Pk′ to fall, with P t
k falling by more

(thus �P t
k = �Pk − �v < �Pk′ < 0). Since P t

k falls by more than each Pk′ , ∂ log Qk

∂P t
k

is higher

than before, so 1
P t

k+t�v−Ck
must be lower than before if the first-order condition is to hold; thus

Pk −Ck = P t
k + t�v −Ck has risen, or �Pk > 0. Since P t

k falls by more than each Pk′ , Qk rises,
and since pi − ci = 1

nk
(Pk − Ck) also rises for each i ∈ Tk , profits are higher.

Part 3. The introduction of a new product can be thought of as the limit, as M → +∞, of a
reduction in product k’s costs from Ck + M to Ck ; by the reverse of part 1, this implies lower
prices for all products. �
A.4. Proof of Theorem 3

Part 1. Since the supermodular game in Lemma 1 is indexed by nk , a reduction in nk while
holding Ck constant (a merger between complements with no cost synergies) lowers all prices.
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By the same logic as in the proof of uniqueness in Lemma 1, Pk must fall more than any of the
other prices, since otherwise, whichever product’s price fell the most could not have satisfied
its first-order condition (A.3) both before and after the merger. By the same logic, since �Pk <

�Pk′ < 0, ∂ log Qk

∂Pk
is higher than before, so for any i′ ∈ Tk − {i, j}, pi′ must rise in order for

1
pi′−ci′

= − ∂ log Qk

∂Pk
to hold before and after. Since Pk fell by more than any other price, Qk must

rise, so these firms i′ sell more at a higher markup and therefore earn higher profits. (However,
since Pk fell and pi′ rose for all i′ ∈ Tk −{i, j}, the merged firm must be setting a lower combined
price than before, and such a merger may not profitable.)

Part 2. Note that a merger between substitutes destroys the supermodular structure of the
game, so the uniqueness proof from earlier no longer holds; however, the second result holds for
any post-merger equilibrium, provided one exists. Suppose the merger is between firms i ∈ T1
and j ∈ T2. The merged firm maximizes (pi − ci)Q1 + (pj − cj )Q2; the first-order condition
with respect to pi is Q1 + (pi − ci)

∂Q1
∂P1

+ (pj − cj )
∂Q2
∂P1

= 0, or rearranging,

1

pi − ci

(
1 + pj − cj

Q1

∂Q2

∂P1

)
= −∂ logQ1

∂P1

Let x be the equilibrium value of
pj −cj

Q1

∂Q2
∂P1

, so this becomes

pi − ci = 1 + x

−∂ logQ1/∂P1

Along with the usual first-order condition pi′ − ci′ = 1
−∂ log Q1/∂P1

of the firms i′ ∈ T1 − {i}, this
establishes

P1 − C1 = n1 + x

−∂ logQ1/∂P1

or

P1 = arg max
P1

{
(n1 + x) log(P1 − C1) + logQ1

}

By identical arguments,

P2 = arg max
P2

{
(n2 + y) log(P2 − C2) + logQ2

}

where y is the equilibrium value of pi−ci

Q2

∂Q1
∂P2

. Since components i and j are substitutes, nonpos-
itive markups for either product are strictly dominated for the merged firm, and so x, y > 0; so
the merger corresponds to increases in (n1, n2) from their old values to (n1 + x,n2 + y). Since
the K-player game described in Lemma 1 is supermodular and indexed by n1 and n2, this means
all prices are higher post-merger. �
A.5. Proof of Lemma 2

What we actually need is for

− ∂ logQk

∂ log(Pk − Ck)
· 1

εk,k′

to be increasing in Pk , which is weaker than Assumption 3 because
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− ∂ logQk

∂ log(Pk − Ck)
· 1

εk,k′
= −(Pk − Ck)

∂ logQk

∂Pk

· 1

εk,k′
= Pk − Ck

Pk

εk,k

εk,k′

and Pk−Ck

Pk
is increasing in Pk . Letting εk,k ≡ − ∂ log Qk

∂ log(Pk−Ck)
, rearranging (A.3) shows that the

mutual best-responses of the nk firms i ∈ Tk are the unique solution to εk,k = nk . Consider an
incremental increase in logPk′ of d logPk′ , followed by the resulting change in log(Pk − Ck) of
d log(Pk − Ck). Since εk,k = nk holds both before and after,

∂εk,k

∂ logPk′
d logPk′ + ∂εk,k

∂ log(Pk − Ck)
d log(Pk − Ck) = 0

Defining � = d logPk′/ ∂εk,k

∂ log(Pk−Ck)
, which we know is positive, we get

d logPk′ = ∂εk,k

∂ log(Pk − Ck)
� and d log(Pk − Ck) = − ∂εk,k

∂ logPk′
�

The net effect on logQk , then, is

d logQk = ∂ logQk

∂ logPk′
d logPk′ + ∂ logQk

∂ log(Pk − Ck)
d log(Pk − Ck)

= ∂ logQk

∂ logPk′
∂εk,k

∂ log(Pk − Ck)
� − ∂ logQk

∂ log(Pk − Ck)

∂εk,k

∂ logPk′
�

= εk,k′
∂εk,k

∂ log(Pk − Ck)
� − (−εk,k)

∂2(− logQk)

∂ logPk′∂ log(Pk − Ck)
�

Switching the order of the two partial derivatives in the last term gives

d logQk = εk,k′
∂εk,k

∂ log(Pk − Ck)
� − εk,k

∂

∂ log(Pk − Ck)

(
∂ logQk

∂ logPk′

)
�

= εk,k′εk,k�

[
1

εk,k

∂εk,k

∂ log(Pk − Ck)
− 1

εk,k′
∂εk,k′

∂ log(Pk − Ck)

]

= εk,k′εk,k�

[
∂ log εk,k

∂ log(Pk − Ck)
− ∂ log εk,k′

∂ log(Pk − Ck)

]

= εk,k′εk,k�
∂

∂ log(Pk − Ck)
log

εk,k

εk,k′

Under Assumption 3, εk,k/εk,k′ is increasing in Pk , so log(εk,k/εk,k′) is increasing in log(Pk −
Ck), so d logQk > 0. For a “large” change in P N

k′ , �Qk = ∫
dQk > 0, so Qk ends up higher

than it started. �
We can similarly calculate the change in log-profits d(log(Pk − Ck) + logQk); this turns out

to be positive if (εk,k − 1)/εk,k′ is increasing in Pk . So under this weaker condition, the changes
considered in Lemma 2 leave the profits of the firms in Tk higher, though not necessarily the
demand for product k; and thus the results on profit, though not demand, in Theorem 4 would
still hold under this weaker condition.
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A.6. Proof of Theorem 4

Following any of these changes, decompose the move from old equilibrium prices to new
prices into K−1 steps: in each step, for one k′′ ∈ K−{k}, the firms in Tk′′ change from their old to
their new equilibrium prices, and the firms in Tk move to their new simultaneous best-responses.
By Theorems 2 and 3, each step involves a reduction in Pk′′ (or, in the case of firm k′ following
a right-shift in Fk′ , a reduction in the quality-adjusted price Pk′ − �v); by Lemma 2, then, each
step leaves Qk lower than before. Since Qk and Pk both end up lower than before, for j ∈ Tk ,
firm j ’s profits πj = 1

nk
(Pk −Ck)Qk are lower than before. For the merger between firms i ∈ Tk′

and j ∈ Tk′′ , the same logic holds in reverse. �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2014.05.004.
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