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Abstract. I present a numerical example illustrating the

revenue-superiority of an “open” over a “closed” auction

format (the linkage principle), and use it to calculate the

magnitude of the effect.

1 Introduction

One of the classic results of Milgrom and Weber’s (1982) seminal paper is that in a symmetric,

affiliated setting, an ascending auction will yield higher expected revenue if bidders are aware at

each point during the auction of how many of their competitors are still bidding. This result –

one of a set of related insights often collectively labeled the “linkage principle” – is well known:

Loertscher, Marx and Wilkening (2015), for example, quote FCC economist Evan Kwerel (in the

introduction to Milgrom (2004)) as citing it as a key consideration in the design of early U.S.

spectrum auctions. However, the mechanism by which it operates is a bit subtle, and I can’t recall

ever seeing an explicit example illustrating it, or calculating its magnitude. Here, I offer one.

2 Model

2.1 Valuations

Let N be the number of bidders. Suppose there’s an underlying state θ ∈ {0, 1}, equally likely, with

common values vi = θ. Each bidder gets a signal si which is i.i.d. conditional on θ, with density

f(s|θ) =

{
αsα−1 if θ = 1

α(1− s)α−1 if θ = 0

and therefore CDF

F (s|θ) =

{
sα if θ = 1

1− (1− s)α if θ = 0
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conditional on the true state, with α > 1. Note that an increase in α makes signals “more infor-

mative” about the realization of θ. While it’s not immediately apparent, since f(s|θ) satisfies the

monotone likelihood ratio property, {θ, s1, . . . , sN} are affiliated.1 Let s(1) > s(2) > s(3) > · · · > s(N)

denote the order statistics of the bidders’ signals.

2.2 Full-information versus no-information button auctions

As in Milgrom and Weber (1982), I model ascending auctions as button auctions, with either full

information (every bidder knows who else is active and at what price the inactive bidders dropped

out) or no information (bidders receive no feedback other than that the auction is still in progress

until it is over). Milgrom and Weber refer to the former as an English auction, and the latter as a

second-price auction. Symmetric, monotonic equilibria for both are established in Theorems 6 and

10 of their paper, and the revenue ranking result is Theorem 11.

2.3 Bidding in the no-information case

When there is no feedback during the auction, each bidder bids the expected value the asset would

have if he was exactly tied for the highest signal, or

b(s) = Pr(θ = 1|s(1) = s(2) = s)

By Bayes’ Law, this is

b(s) =
1
2 Pr(s(1) = s(2) = s|θ = 1)

1
2 Pr(s(1) = s(2) = s|θ = 1) + 1

2 Pr(s(1) = s(2) = s|θ = 0)

=
1
2N(N − 1)αsα−1 · αsα−1 · (sα)N−2

1
2N(N − 1)αsα−1 · αsα−1 · (sα)N−2 + 1

2N(N − 1)α(1− s)α−1 · α(1− s)α−1 · (1− (1− s)α)N−2

= 1

/(
1 +

(1− s)α−1

sα−1
· (1− s)α−1

sα−1
·
(

1− (1− s)α

sα

)N−2)

2.4 Bidding in the full-information case

In the full-information case, each losing bidder’s signal is revealed by the price at which he drops

out. Revenue depends on the bid function when only two active bidders remain, which depends

on the revealed signals of the N − 2 bidders who have dropped out to that point. I write this bid

function as b(s, t), where t = (t3, t4, . . . , tN ) are the revealed realizations of the order statistics s(3),

1Thus, if we think of bidder values as being vi = E(θ|{s1, . . . , sn}) instead of vi = θ, this example fits within the
general affiliated/interdependent model of Milgrom and Weber (1982).

2



s(4), etc. This bid function is

b(s, t) = Pr(θ = 1|s(1) = s(2) = s, s(3−N) = t)

= 1

/(
1 +

(1− s)α−1

sα−1
· (1− s)α−1

sα−1
·
N∏
i=3

(1− ti)α−1

tα−1i

)

3 Results

3.1 Example: expected revenue when N = 3, α = 2, and s(2) = 1
2

For an example we can solve analytically, let N = 3, α = 2, and consider the realization 1
2 of the

second-highest signal. Note that E(θ|s(2) = 1
2) = 1

2 , as s(2) = 1
2 is equally likely under either state.

In the no-information case, when s(2) = 1
2 , the second-highest bidder drops out at a bid of

b(12) = 1

/(
1 +

1

1
· 1

1
·

1− 1
4

1
4

)
= 0.25

so revenue is 0.25. In the full-information case, given the realized value of the lowest signal, the

bidder with type 1
2 bids up to

b(12 , s
(3)) = 1

/(
1 +

1

1
· 1

1
· 1− s(3)

s(3)

)
= s(3)

so expected revenue when s(2) = 1
2 is E(s(3)|s(2) = 1

2). Now, conditional on the realizations of θ

and s(2), the distribution of s(3) is just the marginal (prior) distribution of a signal si, conditional

on θ, truncated above at s(2); so we can calculate expected revenue as

E
(
b
(
1
2 , s

(3)
)
|s(2) = 1

2

)
= E

(
s(3)|s(2) = 1

2

)
= Pr(θ = 1|s(2) = 1

2) · E(s(3)|s(2) = 1
2 , θ = 1)

+ Pr(θ = 0|s(2) = 1
2) · E(s(3)|s(2) = 1

2 , θ = 0)

=
1

2
·
∫ 1

2
0 (2s)sds∫ 1

2
0 2sds

+
1

2
·
∫ 1

2
0 2(1− s)sds∫ 1
2
0 2(1− s)ds

=
1

2
· 1

3
+

1

2
· 2

9
=

5

18
≈ 0.2778

So for this particular realization of s(2), expected revenue is 11% higher when the bidders learn the

realization of s(3) from equilibrium bidding than when they do not.
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3.2 What’s going on

To avoid ex post regret, the second-to-last bidder must give up before he would regret winning

the item if his opponent dropped out. This therefore stops him from bidding beyond the expected

value of θ conditional on s(1) = s(2) = 1
2 , and whatever other information he has. If the signal of

the lowest signal was observed, then its realization is also used to update the expected value of

θ. If not, then it is not; by iterated expectations, this is the same, in expectation, as using the

distribution of s(3) that would be consistent with s(1) = s(2) = 1
2 . But since this is pessimistic

relative to the truth s(1) > s(2) = 1
2 , and since the signals are affiliated, this depresses the expected

value of θ and therefore the second-highest bidder’s bid.

In numbers, as noted above, expected revenue with full information when s(2) = 1
2 is

E(s(3)|s(2) = 1
2) = Pr(θ = 1|s(2) = 1

2)E(s(3)|θ = 1, s(2) = 1
2)

+ Pr(θ = 0|s(2) = 1
2)E(s(3)|θ = 0, s(2) = 1

2)

=
1

2
· 1

3
+

1

2
· 2

9
=

5

18
,

while with no information, it’s

E(θ|s(1) = s(2) = 1
2) = Es(3)|s(1)=s(2)= 1

2
E(θ|s(1) = s(2) = 1

2 , s
(3))

= E(s(3)|s(1) = s(2) = 1
2)

= Pr(θ = 1|s(1) = s(2) = 1
2)E(s(3)|θ = 1, s(1) = s(2) = 1

2)

+ Pr(θ = 0|s(1) = s(2) = 1
2)E(s(3)|θ = 0, s(1) = s(2) = 1

2)

=
1

4
· 1

3
+

3

4
· 2

9
=

1

4
.

3.3 Ex ante expected revenue

While that explains the mechanism through which this effect operates, in terms of magnitude,

what we want is not revenue for a particular realization of signals, but expected revenue ex ante.

For various values of α and N , I’ve calculated ex ante expected revenue for the two formats via

numerical simulation, simulating 500,000 sets of signals and the resulting auction outcomes. Table

1 gives expected revenue (multiplied by 1, 000 for easier reading); keep in mind the expected value

of the asset is exactly 1
2 , so 500 minus revenue gives bidder surplus.

Note that revenue goes to 500, regardless of N , as α approaches either 1 or ∞. As α→ 1, the

distributions F (si|θ = 1) and F (si|θ = 0) approach each other, so the signals become uninformative;

bidders then share the common belief that E(θ) = 1
2 and earn no information rents. When α gets

large, signals are very informative, but therefore also highly correlated, so information rents once

again go to 0.
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Table 1: Expected revenue (×1000), as a function of N , α, and information assumption

No information Full information
α N = 3 N = 4 N = 5 N = 7 N = 10 N = 3 N = 4 N = 5 N = 7 N = 10

1.1 465 469 471 473 474 465 469 471 474 475
1.5 389 406 415 427 436 394 415 428 446 462
2.0 388 413 428 446 459 401 434 454 476 490
2.5 416 442 456 472 482 432 464 480 493 499
3.0 443 465 477 487 493 458 483 493 499 500
5.0 492 497 499 500 500 496 500 500 500 500

10.0 500 500 500 500 500 500 500 500 500 500

Table 2 gives the increase in expected revenue that would follow from a switch from a no-

information to a full-information format – that is, the magnitude of the linkage principle effect

relative to expected revenue.

Table 2: Increase in expected revenue from observability of bidder dropouts

α N = 3 N = 4 N = 5 N = 7 N = 10

1.1 0.0% 0.1% 0.1% 0.1% 0.2%
1.5 1.3% 2.3% 3.1% 4.5% 5.8%
2.0 3.3% 5.1% 6.1% 6.8% 6.7%
2.5 3.8% 5.1% 5.2% 4.6% 3.4%
3.0 3.4% 3.8% 3.4% 2.3% 1.3%
5.0 0.8% 0.4% 0.2% 0.1% 0.0%
10.0 0.0% 0.0% 0.0% 0.0% 0.0%

I should note that this example has one feature that may exaggerate the magnitude of this effect.

Here, θ takes only two values, with signal distributions differing dramatically between the two. If

θ varied over more “intermediate” values rather than taking just two extreme ones, correlation

would be reduced, and this effect might be significantly smaller. Another example I tried, with

f(s|θ = 1) = 1
2 +s and f(s|θ = 0) = 3

2 −s, generates a revenue difference of only 0.4% when N = 3.

4 Related Literature

Cho, Paarsch and Rust (2014) test the revenue ranking result empirically, comparing internet

auctions with no feedback to auction-house auctions where losing bidders’ bids are observed. They

find that the latter do indeed give higher revenue – by about 10 to 15% (when considered gross of

auction house fees) – although they concede they cannot rule out this being partly due to differences

in the (unobserved) number of potential bidders across the two environments.

Aside from the revenue ranking of “closed” versus ”open” ascending auctions, Milgrom and
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Weber (1982) give two other results which operate through similar mechanisms: that English

(or second-price) auctions should give higher expected revenue than first-price auctions, and that

expected revenue should increase when sellers commit to revealing any additional information

available which is affiliated with bidder valuations. (These three results are often collectively

refered to as the “linkage principle”; Krishna (2002) offers a more general formulation which nests

all three.) Levin, Kagel and Richard (1996) test the former (the revenue comparison with first-price

auctions) experimentally in a common-values setting. They find the opposite result: while bidders

in the English auctions do indeed respond to the drop-out prices of losing bidders, overbidding

(bidding above equilibrium levels) in first-price auctions overwhelms this effect. The latter result

– on the release of seller information – is examined experimentally by Kagel and Levin (1986),

and empirically by Tadelis and Zettelmeyer (2015). Kagel and Levin find that the presence of the

effect depends on the size of the auction: in large auctions, an increase in information reduces

out-of-equilibrium overbidding and therefore reduces revenue. In the setting considered by Tadelis

and Zettelmeyer, there are multiple auctions occurring simultaneously, so the disclosed information

improves the matching between bidders and auctions, increasing revenue but through a different

channel.

Cho, Paarsch and Rust (2014) also offer a more thorough review of related literature.
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