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Abstract. I consider identification of a symmetric, independent private values

model with additively separable unobserved heterogeneity from observation of

winning bids in English auctions. If the number of bidders N is observable,

the model is identified given exogenous variation in N , and N need only take

two values. If N is not observable, the model is identified if observations are

available from auctions under two different known probability distributions of

N – for example, if N follows a Poisson distribution, with a mean that varies

in a known way as a function of an observable “participation shifter” that is

independent of valuations.

1 Introduction

It’s known (Athey and Haile 2002) that in English auctions, a symmetric independent private

values model is identified by bid data, while a general symmetric private values model is not.

Athey and Haile (2007, section 6.1) speculate that given exogenous (observed) variation in the

number of bidders, an IPV model with additively separable unobserved heterogeneity might be

identified; such a model has proved quite tractable in first-price auctions, and is appealing for

empirical work.1

Aradillas-López, Gandhi and Quint (2013) consider English auctions under a more general

correlated private values model, and show that exogenous variation in N leads to identification of

bounds on the objects of most interest (expected revenue and bidder surplus as a function of reserve

price), but without identifying the entire model. There, identification requires “a lot” of variation

in N : point identification occurs only in the limit as N varies unboundedly, and the identified

bounds are wide when N takes only a few values.

Here, I show that the model with additively-separable unobserved heterogeneity is indeed iden-

tified, and that this requires only the minimal possible variation in N : observation of just two sizes

1When bidder valuations are independent conditional on auction-specific information observed by the bidders but
not the analyst, different bidders’ bids in the same auction can be interpreted as independent noisy signals of that
underlying information. This “measurement error” approach introduced by Li and Vuong (1998) has been applied, or
extended, by Li, Perrigne and Vuong (2000), Krasnokutskaya (2011), and Hu, McAdams and Shum (2013), and Athey,
Levin, and Seira (2011), among others. Much of this work has assumed that the “common” and “idiosyncratic” value
components are either additively or multiplicatively separable. This technique does not naturally extend to English
auctions, however, since multiple “independent” bids are not available from each auction.
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of auctions suffices to fully identify the model. Of course, this means that if N varies more than

that, the model is overidentified, and the assumption of exogenous N (or the joint assumptions of

exogenous N and additive separability) is therefore testable.

I also consider the case where the number of bidders in each auction cannot be observed. When

N is unobservable, I model it as a random variable with a known distribution. I assume the

researcher has access to a “participation shifter” – a variable that affects the distribution of N ,

but not the distribution of valuations. If the researcher has access to transaction price data from

auctions with two distinct distributions of N , then the model is again identified. For example, if

auctions were held on two different days of the week, with Saturday auctions having a different

(known) distribution of N than Wednesday auctions, this would suffice.

I will show the result for observable N first, followed by the result for unobservable N . I prove

the results for two different versions of the model: one with distributions with continuous support

under a strong smoothness condition, and one with distributions with discrete support (and no

additional conditions). For the continuous model, observation of auctions with any two known

distributions of N suffices for identification; for the discrete model, I assume that N follows a

Poisson distribution, and that the researcher observes auctions with two different (known) Poisson

parameters. Proofs omitted from the text are contained in the appendix.

2 General Model

The model is symmetric independent private values with additively separable unobserved hetero-

geneity. Let N denote the number of bidders in an auction. Bidder i’s private value is

vi = θ + εi

where θ is a common term (observed by all bidders but not the econometrician) and {εi} are i.i.d.

and independent of θ. I assume that θ and {εi} take nonnegative values; I assume that 0 is the

lowest point in the support of both, but this is just a normalization. I will deal separately with the

cases where θ and εi are discrete-valued and continuous-valued.

I assume that any variation in N is exogenous – i.e., that it is independent of θ and {εi}, whose

distributions are the same regardless of N .

Finally, I assume that data on past auctions includes the number of bidders N and the winning

bid (or transaction price) T , and that the winning bid in each auction is equal to the second-highest

valuation.2 Thus, I assume that the distribution of the second-highest valuation, conditional on N ,

is identified for certain values of N . Importantly, I assume the past auctions did not have binding

reserve prices, so that the distribution of T is observed all the way down to the bottom of the

support of θ + εi.

2Like Aradillas-López, Gandhi and Quint (2013), I ignore losing bids, to avoid worrying about how to interpret
them. Unlike in the “incomplete” model of Haile and Tamer (2003), however, I do assume that the transaction
price perfectly matches the second-highest valuation, which would not be exactly true in auctions with a discrete bid
interval or jump bidding. See Aradillas-López, Gandhi and Quint (2013), p. 493, for a discussion of this assumption.
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3 Observable N

3.1 Continuous Valuations

First, as is common in auction theory, I consider the case where θ and εi are continuous-valued. Let

Fθ and Fε denote the distributions of θ and εi, with fθ and fε the corresponding density functions.

Suppose the support of fθ is either <+ or [0, θ] for some finite θ, and likewise the support of fε is

either <+ or [0, ε] for some finite ε.

When N is observable, any exogenous variation in N is sufficient to identify the model, provided

both fε and fθ satisfy a strong smoothness condition:

Theorem 1. If fθ and fε are known to be analytic on their supports, and if N varies exogenously

and takes at least two values, then observation of N and T nonparametrically identifies the model.

That is, as long as N varies exogenously, observation of the distribution of T for two values of

N suffices to recover the distributions of θ and εi.

Let FT |N denote the distribution of transaction prices conditional on N , and fT |N its density

function. For any density function f , let f (m) denote its mth derivative, with f (0) = f . If fε and

fθ are analytic, then they are infinitely differentiable and locally equal to their Taylor series. This

means that in an open neighborhood around 0, they are uniquely determined by the infinite series

of derivatives {f (k)ε (0), f
(k)
θ (0)}k=0,1,2,.... The proof of Theorem 1 will therefore follow from the

following lemma:

Lemma 1. Fix n and n′, with n′ > n ≥ 2, and let fθ and fε be analytic.

1. fθ(0) and fε(0) can be recovered from the derivatives f
(n−1)
T |n (0) and f

(n′−1)
T |n′ (0).

2. For any k > 0, the derivatives f
(k)
θ (0) and f

(k)
ε (0) can be recovered from the derivatives

f
(n−1+k)
T |n (0) and f

(n′−1+k)
T |n′ (0) and the lower derivatives {f (j)θ (0), f

(j)
ε (0)}j<k.

Given Lemma 1, we can recursively calculate all derivatives of fε and fθ at 0, uniquely pinning

down fε and fθ in a neighborhood of 0. This means if two different sets of primitives (f̂ε, f̂θ) and

(f̃ε, f̃θ) could both explain the observed distributions fT |n and fT |n′ , they would need to be equal

on a neighborhood of 0; the Identity Theorem for real-analytic functions would then imply that

(f̂ε, f̂θ) = (f̃ε, f̃θ) everywhere, ensuring that the observables could only have been generated by a

single set of primitives.

The proof of Lemma 1 is in the appendix, but the following example should give clear intuition

for how it works.
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Intuition for Lemma 1

Preliminaries. Let ε(2) denote the second-highest of {εi}i=1,2,...,N . Let Fy|n(·) denote the distribu-

tion of ε(2) given N = n, and fy|n its density. Since T = θ + ε(2),

FT |n(t) =

∫ t

0
Fy|n(t− s)fθ(s)ds

Calculating successive derivatives and evaluating them at t = 0,

f ′T |n(0) = fy|n(0)fθ(0)

f ′′T |n(0) = fy|n(0)f ′θ(0) + f ′y|n(0)fθ(0)

f ′′′T |n(0) = fy|n(0)f ′′θ (0) + f ′y|n(0)f ′θ(0) + f ′′y|n(0)fθ(0)

f ′′′′T |n(0) = fy|n(0)f ′′′θ (0) + f ′y|n(0)f ′′θ (0) + f ′′y|n(0)f ′θ(0) + f ′′′y|n(0)fθ(0)

f ′′′′′T |n(0) = fy|n(0)f ′′′′θ (0) + f ′y|n(0)f ′′′θ (0) + f ′′y|n(0)f ′′θ (0) + f ′′′y|n(0)f ′θ(0) + f ′′′′y|n(0)fθ(0)

Next, note that by properties of order statistics,

Fy|3(t) = 3F 2
ε (t)− 2F 3

ε (t)

Taking successive derivatives and evaluating them at 0,

fy|3(0) = 0

f ′y|3(0) = 6f2ε (0)

f ′′y|3(0) = 18fε(0)f ′ε(0)− 12f3ε (0)

f ′′′y|3(0) = 24fε(0)f ′′ε (0) + 18(f ′ε(0))2 − 72f2ε (0)f ′ε(0)

Likewise,

Fy|4(t) = 4F 3
ε (t)− 3F 4

ε (t)

from which we can calculate

fy|4(0) = 0

f ′y|4(0) = 0

f ′′y|4(0) = 24f3ε (0)

f ′′′y|4(0) = 144f2ε (0)f ′ε(0)− 72f4ε (0)

f ′′′′y|4(0) = 240f2ε (0)f ′′ε (0) + 360fε(0)(f ′ε(0))2 − 720f3ε (0)f ′ε(0)

Step 1: recover fε(0) and fθ(0). If we plug the expressions for f ′y|3(0) and f ′′y|4(0) into the expressions

for f ′′T |3(0) and f ′′′T |4(0), we get

f ′′T |3(0) = 6f2ε (0)fθ(0)

f ′′′T |4(0) = 24f3ε (0)fθ(0)
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Dividing one by the other, we find
f ′′′
T |4(0)

f ′′
T |3(0)

= 4fε(0), giving us the value of fε(0). Once we know

that, we can recover fθ(0) from f ′′T |3(0) = 6f2ε (0)fθ(0).

Step 2: recover f ′ε(0) and f ′θ(0). Next, we plug the expressions for f ′′y|3(0) and f ′′′y|4(0) into f ′′′T |3(0)

and f ′′′′T |4(0), giving

f ′′′T |3(0) = 6f2ε (0)f ′θ(0) + 18fε(0)f ′ε(0)fθ(0)− 12f3ε (0)fθ(0)

f ′′′′T |4(0) = 24f3ε (0)f ′θ(0) + 144f2ε (0)f ′ε(0)fθ(0)− 72f4ε (0)fθ(0)

Since fε(0) and fθ(0) are already known, we can calculate

1

6f2ε (0)

(
f ′′′T |3(0) + 12f3ε (0)fθ(0)

)
= f ′θ(0) + 3

f ′ε(0)

fε(0)
fθ(0)

1

24f3ε (0)

(
f ′′′′T |4(0) + 72f4ε (0)fθ(0)

)
= f ′θ(0) + 6

f ′ε(0)

fε(0)
fθ(0)

Subtracting these, we can solve for f ′ε(0) in terms of f ′′′T |3(0), f ′′′′T |4(0), fε(0), and fθ(0); we can then

recover f ′θ(0) as the only remaining unknown in either equation.

Step 3: recover f ′′ε (0) and f ′′θ (0). Now we start with

f ′′′′T |3(0) = f ′y|3(0)f ′′θ (0) + f ′′y|3(0)f ′θ(0) + f ′′′y|3(0)fθ(0)

f ′′′′′T |4(0) = f ′′y|4(0)f ′′θ (0) + f ′′′y|4(0)f ′θ(0) + f ′′′′y|4(0)fθ(0)

Since we already know fε(0), f ′ε(0), fθ(0), and f ′θ(0), we can subtract off all the terms we know,

divide by f ′y|3(0) and f ′′y|4(0) respectively, and write

1

6f2ε (0)

(
f ′′′′T |3(0)− things we already know

)
= f ′′θ (0) +

24fε(0)f ′′ε (0)

6f2ε (0)
fθ(0)

1

24f3ε (0)

(
f ′′′′T |4(0)− other things we already know

)
= f ′′θ (0) +

240f2ε (0)f ′′ε (0)

24f3ε (0)
fθ(0)

Subtracting these gives 6f ′′ε (0)fθ(0)fε(0)
; since we know the values of fθ(0) and fε(0), we can recover

f ′′ε (0). f ′′θ (0) can then be recovered from either equation.

Step 4: iterate. Iterating in this way, we can recover each f
(k)
ε (0), and then f

(k)
θ (0), from the

additional pair of moments f
(2+k)
T |3 (0) and f

(3+k)
T |4 (0). The proof simply requires formalizing the fact

that for any (n, n′), this will actually work for each k.

Of course, Lemma 1 also reveals just how strong an assumption analytic distributions are, since
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the model is identified solely off the distribution of transaction prices in a neighborhood of 0. Of

course, this bears no relation to how one would actually choose to estimate such a model, it simply

establishes the theoretical certainty of identification. It also underscores the importance that the

transaction price data not be truncated by binding reserve prices, as the distribution of T must

be observed at the bottom of its support. (That said, if θ and εi both had bounded support, the

analogous procedure could alternatively be run from the top of the support of T instead.)

A more palatable assumption might be to assume fθ and fε are piecewise analytic. For the sake

of illustration, suppose that both distributions were known to be analytic on each interval [z, z+1),

z ∈ Z+. In that case, we could use the successive derivatives of fT |n and fT |n′ at 0 to recover the

two distributions on [0, 1), as in Lemma 1. Knowing their values (and their derivatives) on [0, 1),

we could then use the right-derivatives of fT |n and fT |n′ at 1 to recover the right-derivatives of fθ

and fε at 1, and therefore recover the distributions on [1, 2); and so on.

However, if analytic distributions is an uncomfortably strong assumption, we can instead estab-

lish identification in a completely different way: by considering distributions with discrete support.

3.2 Discrete Valuations

Consider the case where both θ and {εi} are discrete-valued, each with known support that is

bounded below. Thus, assume both θ and {εi} take values in {0, 1, 2, 3, . . .}. I assume zero is in

the support of both, but do not require full support above that.3

The result is the same as before: with discrete valuations and observable N , the model is

identified if there is any exogenous variation in N .

Theorem 2. If N varies exogenously and takes at least two values, then observation of T and N

identifies the model.

Let tk = Pr(θ = k) and ek = Pr(εi = k) denote the distributions of θ and εi. Let Pr(T = · |N)

denote the distribution of transaction prices given N . I prove the following lemma in the appendix,

from which Theorem 2 will follow immediately.

Lemma 2. Fix n and n′, with n′ > n ≥ 2.

1. The parameters t0 and e0 can be recovered from the moments Pr(T = 0|n) and Pr(T = 0|n′).

2. For any k > 0, the parameters tk and ek can be recovered from the moments Pr(T = k|n) and

Pr(T = k|n′) and the parameters {tj , ej}j<k.

Given Lemma 2, Theorem 2 follows by induction: t0 and e0 can be recovered directly from the

data; once these are known, they can be used (along with the data) to recover t1 and e1; once these

are known, t2 and e2 can be recovered; and so on.

3The assumption of common discrete support is therefore not an additional restriction, as we can think of both θ
and εi as having possible support supp(θ) ∪ supp(εi), but with some zeroes in the distribution of each.
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4 Unobservable N

In some empirical settings, the number of bidders in each auction is not observable, so the approach

above will not work.

However, when N is not observable, the model is still identified if the distribution of N is

known, and a “participation shifter” – a variable that changes the distribution of N but not the

distribution of θ and εi – is available.

For the continuous and analytic case, I prove this in full generality. For the discrete case, I

prove it under the additional assumption that N follows a Poisson distribution. This is the limiting

distribution it would take if a large number of potential bidders made independent decisions about

whether or not to enter – perhaps a reasonable way to think about many settings, such as eBay

auctions, where N is not observed. Under this assumption, knowing the distribution is equivalent to

knowing the average number of bidders, which we assume varies in a known way given observables.

(“Auctions on Saturdays have 7 bidders on average, while auctions on Wednesdays have 5 bidders

on average.”)

Formally, let X be a discrete-valued randon variable. Let p(x) = (p2(x), p3(x), p4(x), . . .) denote

the distribution of N , conditional on X = x. (I assume p0(x) = p1(x) = 0, since auctions with

zero or one bidder would not generate positive transaction prices, and would thus be expected to

be missing from the data.) The following theorems are proved in the appendix:

Theorem 3. Suppose fθ and fε have continuous support in <+, and are both analytic on that

support. If p(X) is known and takes at least two different values, then observation of X and T

nonparametrically identifies the model.

Theorem 4. Suppose θ and ε have known support in Z+. Suppose p(x) is the Poisson distribution

with parameter λ(x), truncated at N = 2. If λ(·) is a known function of X and takes at least two

values, then observation of X and T identifies the model.

Note that, like with N , we need only the minimal amount of variation in p – auctions with two

different known distributions of N – to identify the model from the distributions of transaction

prices.

5 Discussion

Theorems 1, 2, 3, and 4 say that if N or p take just two values, the model is identified. As a result,

if N (or p) takes three or more values, the model is overidentified, and therefore testable.

Perhaps more surprisingly, in the discrete case, even with N (or p) taking just two values, if

FT |N has bounded support, the model is overidentified as well. For intuition, focus on the case of

observable N , and suppose that the distributions of both θ and εi have support {0, 1, 2, . . . ,M}, so

that FT |N has support {0, 1, . . . , 2M}. Lemma 2 says that the distributions of θ and εi are identified

from the moments {Pr(T = k|N)} for k = 0, 1, 2, . . . ,M , that is, the distribution of T only up to
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M . So the additional moments {Pr(T = k|N)} for k = M + 1,M + 2, . . . , 2M are all additional

restrictions that could potentially falsify the model.

Of course, failure of a data set to satisfy these restrictions could be due either to N being

correlated with θ or εi, or to the unobserved heterogeneity not being additively separable. It’s not

obvious how one would distinguish between these two.
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Appendix – Omitted Proofs

A.1 Proof of Lemma 1 (continuous valuations, observed N)

Preliminaries (part 1)

As noted in the text, T = θ + ε(2) implies

FT |n(t) =

∫ t

0
Fy|n(t− s)fθ(s)ds

and therefore

fT |n(t) = Fy|n(0)fθ(t) +

∫ t

0
fy|n(t− s)fθ(s)ds =

∫ t

0
fy|n(t− s)fθ(s)ds

It is easily shown by induction that

f
(k)
T |n(t) =

k−1∑
i=0

f
(i)
y|n(0)f

(k−1−i)
θ (t) +

∫ t

0
f
(k)
y|n(t− s)fθ(s)ds

and therefore

f
(k)
T |n(0) =

k−1∑
i=0

f
(i)
y|n(0)f

(k−1−i)
θ (0)

Preliminaries (part 2)

Next, I establish several facts about the derivatives of fy|n at zero. Specifically:

1. For m < n− 2, f
(m)
y|n (0) = 0.

2. f
(n−2)
y|n (0) = n! · (fε(0))n−1.

3. For m > n − 2, f
(m)
y|n (0) contains no derivatives of fε higher than f

(m−n+2)
ε (0), and the only

term containing f
(m−n+2)
ε (0) is

n!
n−1∑
i=1

i

(
m− i

m− n+ 1

)
(fε(0))n−2f (m−n+2)

ε (0)

4. Fix k > 0 and define An =
∑n−1

i=1 i
(
n−2+k−i
k−1

)
; An is strictly increasing in n.

To prove all this, we begin with the fact that, since Fy|n(t) = nFn−1ε (t)− (n− 1)Fnε (t),

fy|n(t) = n(n− 1)Fn−2ε (t)fε(t)− n(n− 1)Fn−1ε (t)fε(t)

If we differentiate this, we get

f ′y|n(t) = n(n− 1)(n− 2)Fn−3ε (t)f2ε (t) + n(n− 1)Fn−2ε (t)f ′ε(t)

−n(n− 1)2Fn−2ε (t)f2ε (t)− n(n− 1)Fn−1ε (t)f ′ε(t)
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Specifically, we get two terms from differentiating n(n − 1)Fn−2ε (t)fε(t) – one from taking the
derivative of the Fn−2ε “part,” and one from taking the derivative of the fε(t) “part” – and likewise
two terms from differentiating n(n− 1)Fn−1ε (t)fε(t). As we take subsequent derivatives of fy|n, we
keep getting additional terms, each corresponding to differenating one “piece” of a term from the
previous derivative.

Now, the first fact above – f
(m)
y|n (0) = 0 for m < n− 2 – stems from the fact that until we have

taken at least n − 2 derivatives, every term in f
(m)
y|n still contains a nonzero power of Fε(t), which

vanishes at 0. Likewise, when we take exactly n− 2 derivatives, the only term that does not vanish
is the one that “used” all n − 2 derivatives to differentiate the F jε (t) piece of the first term; each
time this happens, the term gets multiplied by j (j running from n − 2 down to 1) and picks up
another fε(t), so

f
(n−2)
y|n (0) = n · (n− 1) · (n− 2)! · (fε(0))n−1 + terms that vanish

Next, suppose we take m > n− 2 derivatives of fy|n. Any term that has a derivative f
(m′)
ε with

m′ > m − n + 2 must have “used” more than m − (n − 2) derivatives differentiating fε(t) and its
subsequent derivatives; this would have left strictly fewer than n − 2 derivatives to differentiate
either Fn−2ε or Fn−1ε , leaving a positive power of Fε that would therefore vanish at 0. Finally, the

only way to have a nonvanishing term containing f
(m−n+2)
ε would be to start with the first term

of fy|n, n(n − 1)Fn−2ε (t)fε(t), and use exactly n − 2 derivatives differenating the Fn−2ε term and
the remaining m− (n− 2) derivatives differentiating fε(t) and its subsequent derivatives. Each of
the n − 2 derivatives we take of Fn−2ε generates an additional fε term, and we only differentiate

one of these, so we’re left with fn−2ε (0)f
(m−(n−2))
ε (0). The coefficient on this term is the sum of

the coefficients of all the different “ways” we can generate these terms – basically, all the different
orders in which we can take n− 2 derivatives of Fn−2ε and m− (n− 2) derivatives of fε.

Now, regardless of the order in which we take the derivatives, at some point, we need to
differentiate Fn−2ε , generating an (n − 2) coefficient; then at some point we differentiate Fn−3ε ,
generating an (n − 3); and so on. Combined with the n(n − 1) we started with, this gives us a
coefficient of n! attached to every nonvanishing term. In addition, at some point, we differentiated
f iε(t), which would have generated an i coefficient. The rest of our derivatives were applied to the

f
(j)
ε (t) term, which never gave any additional multiplicative coefficients.

Now, if we take the derivative of fε first – when the coefficient on f iε(t) is i = 1 – then the
coefficient on our eventual non-vanishing term will be 1 · n!. How many terms like this are there?
Well, we still have m− 1 derivatives left to take, of which n− 2 need to apply to Fn−2ε and the rest

to f
(j)
ε , so there are

(
m−1
n−2
)

different terms corresponding to the choice of differentiating fε first.

More generally, suppose we differentiate fε after we have already differentiated F jε i− 1 times,

and therefore when the term we’re differentiating is F
n−2−(i−1)
ε (t)f iε(t). This again provides a new

i coefficient. And in addition, we have m − 1 − (i − 1) = m − i derivatives left to take, of which
n − 2 − (i − 1) = n − 1 − i need to be applied to F jε ; so there are

(
m−i
n−1−i

)
different terms that

correspond to this case.
Finally, if we wait to differentiate f iε until after we’ve already taken n− 2 derivatives of Fn−2ε ,

then we’re differentiating fn−1ε , and we get an i = n−1 coefficient; but then all remaining derivatives

have to be applied to f
(j)
ε , and there’s only one way to do that.
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All told, then, the coefficient on fn−2ε (0)f
(m−n+2)
ε (0) in f

(m)
y|n will be

n! ·
n−1∑
i=1

i ·
(

m− i
n− 1− i

)
= n! ·

n−1∑
i=1

i ·
(

m− i
m− n+ 1

)

Finally, to show that An (which is 1
n! times this coefficient) is increasing in n, fix k and calculate

An+1 −An =

(n+1)−1∑
i=1

i

(
(n+ 1)− 2 + k − i

k − 1

)
−
n−1∑
i=1

i

(
n− 2 + k − i

k − 1

)

=

n∑
i=1

i

(
n− 2 + k − (i− 1)

k − 1

)
−
n−1∑
i=1

i

(
n− 2 + k − i

k − 1

)

=

n−1∑
i′=0

(i′ + 1)

(
n− 2 + k − i′

k − 1

)
−
n−1∑
i=1

i

(
n− 2 + k − i

k − 1

)

=

n−1∑
i=0

(
n− 2 + k − i

k − 1

)
> 0

This concludes the preliminaries.

Proof of Lemma 1

With these preliminaries established, I prove Lemma 1 by induction on k. For the base case, facts

1 and 2 above, combined with the expansion of f
(n−1)
T |n (0), give

f
(n−1)
T |n (0) =

n−2∑
i=0

f
(i)
y|n(0)f

(n−2−i)
θ (0) = n! · (fε(0))n−1 · fθ(0)

and likewise f
(n′−1)
T |n′ (0) = n′! · (fε(0))n

′−1 · fθ(0). For n′ > n, then, we can recover fε(0) as

fε(0) =

 1
n′!f

(n′−1)
T |n′ (0)

1
n!f

(n−1)
T |n (0)

1/(n′−n)

and from there, recover fθ(0) as f
(n−1)
T |n (0)/(n!(fε(0))n−1).

For the inductive step, we assume we already know {f (j)ε (0), f
(j)
θ (0)}j<k. As noted above,

f
(n−1+k)
T |n (0) =

n−2+k∑
i=0

f
(i)
y|n(0)f

(n−2+k−i)
θ (0) =

n−2+k∑
i=n−2

f
(i)
y|n(0)f

(n−2+k−i)
θ (0)

since the first n − 3 derivatives of fy|n are 0 at 0. Fact 3 implies that for i < n − 2 + k, f
(i)
y|n(0)

contains derivatives no higher than f
(k−1)
ε , so the only “unknowns” on the right-hand side are
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f
(k)
θ (0) and the f

(k)
ε (0) term contained in f

(n−2+k)
y|n . Let

B(n, k) =

n−3+k∑
i=n−1

f
(i)
y|n(0)f

(n−2+k−i)
θ (0)

be all but the first and last terms of the sum, and let C(n, k) denote all the terms of f
(n−2+k)
y|n (0) other

than the one containing f
(k)
ε (0), both of which depend only on the derivatives {f (j)ε (0), f

(j)
θ (0)}j<k

and are therefore known. We can then calculate the value of

f
(n−1+k)
T |n (0)−B(n, k)− C(n, k)fθ(0) = f

(n−2)
y|n (0)f

(k)
θ (0) +

(
n! ·An(fε(0))n−2f (k)ε (0)

)
fθ(0)

where

An =

n−1∑
i=1

i

(
(n− 2 + k)− i

(n− 2 + k)− n+ 1

)
=

n−1∑
i=1

i

(
n− 2 + k − i

k − 1

)
Dividing by f

(n−2)
y|n (0) = n!(fε(0))n−1 and then by fθ(0)/fε(0), we get

f
(n−1+k)
T |n (0)−B(n, k)− C(n, k)fθ(0)

n!(fε(0))n−1
· fε(0)

fθ(0)
=

fε(0)

fθ(0)
f
(k)
θ (0) +Anf

(k)
ε (0) (A1)

So, given our inductive assumption that f
(n−1+k)
T |n , f

(n′−1+k)
T |n′ , and {f (j)ε (0), f

(j)
θ (0)}j<k are known,

we can calculate the value of the left-hand side of (A1) for both n and n′ and subtract, giving us

the value of (An′ −An)f
(k)
ε (0). Fact 4 above says that An is strictly increasing in n; since An and

An′ are known and An′ − An 6= 0, knowing the value of (An′ − An)f
(k)
ε (0) allows us to recover

f
(k)
ε (0). Once we have that, (A1) lets us calculate f

(k)
θ (0) as well, completing the proof. 2

A.2 Proof of Lemma 2 (discrete valuations, observed N)

As in the text, let ε(2) denote the second-highest of the εi terms in a particular auction; and let
Pr(ε(2) = · |n) denote its distribution conditional on N = n.

Part 1: recovering t0 and e0. For the first part, since θ and εi both have non-negative support,

Pr(T = 0|N) = Pr(θ = 0) Pr(ε(2) = 0|N) = t0

(
NeN−10 − (N − 1)eN0

)
(A2)

Since we observe both Pr(T = 0|n) and Pr(T = 0|n′), we can calculate

Pr(T = 0|n′)
Pr(T = 0|n)

=
t0

(
n′en

′−1
0 − (n′ − 1)en

′
0

)
t0
(
nen−10 − (n− 1)en0

) =
n′en

′−1
0 − (n′ − 1)en

′
0

nen−10 − (n− 1)en0

(A3)

This allows us to “eliminate” t0 – that is, to find a statistic we can calculate from the data that
depends only on e0. Given n and n′, define a function ψ : [0, 1]→ <+ by

ψ(x) ≡ n′xn
′−1 − (n′ − 1)xn

′

nxn−1 − (n− 1)xn
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I’ll show that for n′ > n, ψ is strictly increasing in x. Taking the derivative of its natural log,

d

dx
lnψ(x) =

d

dx
ln
(
n′xn

′−1 − (n′ − 1)xn
′
)
− d

dx
ln
(
nxn−1 − (n− 1)xn

)
=

n′(n′ − 1)xn
′−2 − (n′ − 1)n′xn

′−1

n′xn′−1 − (n′ − 1)xn′
− n(n− 1)xn−2 − (n− 1)nxn−1

nxn−1 − (n− 1)xn

=
n′(n′ − 1)xn

′−2(1− x)

xn′ + n′xn′−1(1− x)
− n(n− 1)xn−2(1− x)

xn + nxn−1(1− x)

=
(n′ − 1)(1− x)
1
n′x

2 + x(1− x)
− (n− 1)(1− x)

1
nx

2 + x(1− x)

For x ∈ (0, 1), this is strictly positive, since n′−1 > n−1 (so the first term has the larger numerator)
and 1

n′ <
1
n (so the first term has the smaller denominator). Thus, (lnψ)′ > 0 on (0, 1), so lnψ is

strictly increasing on [0, 1], so ψ is strictly increasing on [0, 1]. Writing (A3) as Pr(T=0|n′)
Pr(T=0|n) = ψ(e0),

this means e0 can be calculated as

e0 = ψ−1
(

Pr(T = 0|n′)
Pr(T = 0|n)

)
Once e0 has been recovered, (A2) implies

t0 =
Pr(T = 0|n)

nen−10 − (n− 1)en0

and we’re done.

Part 2: recovering ek and tk. To prove the second part of the lemma (k > 0), note first that

Pr(T = k|N) =

k∑
j=0

Pr(θ = k − j) Pr(ε(2) = j|N) (A4)

As noted above, Pr(ε(2) = 0|N) = NeN−10 − (N − 1)eN0 . For j > 0, define e<j = Pr(εi < j) =∑
j′<j ej′ . Then

Pr(ε(2) = j|N) = (ej + e<j)
N − eN<j −Neje

N−1
<j

+N(1− ej − e<j)
(

(ej + e<j)
N−1 − eN−1<j

)
(The first line is the probability that the highest and second-highest of the εi are both equal to j;
the second line is the probability that exactly one εi is above j, and at least one of the remaining εi
is exactly j.) Note that Pr(ε(2) = j|N) depends only on {e0, e1, . . . , ej}. Thus, if we rewrite (A4)
as

Pr(T = k|N)−
k−1∑
j=1

tk−j Pr(ε(2) = j|N) = tk Pr(ε(2) = 0|N) + t0 Pr(ε(2) = k|N)

then the left-hand side can be expressed in terms of Pr(T = k|N) and {tj , ej}j<k, which we assume
are already known. Recalling also that Pr(ε(2) = 0|N) depends only on e0, to prove the lemma, we
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can assume that we know the values of

Pr(T = k|n)−
∑k−1

j=1 tk−j Pr(ε(2) = j|n)

Pr(ε(2) = 0|n)
= tk + t0

Pr(ε(2) = k|n)

Pr(ε(2) = 0|n)

and
Pr(T = k|n′)−

∑k−1
j=1 tk−j Pr(ε(2) = j|n′)

Pr(ε(2) = 0|n′)
= tk + t0

Pr(ε(2) = k|n′)
Pr(ε(2) = 0|n′)

Since we know both, we know their difference (which tk drops out of); and since we also know t0,
we therefore know the value of

1

t0

[
Pr(T = k|n′)−

∑k−1
j=1 tk−j Pr(ε(2) = j|n′)

Pr(ε(2) = 0|n′)
−

Pr(T = k|n)−
∑k−1

j=1 tk−j Pr(ε(2) = j|n)

Pr(ε(2) = 0|n)

]

=
Pr(ε(2) = k|n′)
Pr(ε(2) = 0|n′)

− Pr(ε(2) = k|n)

Pr(ε(2) = 0|n)

=
(ek + e<k)

n′ − en′<k − n′eke
n′−1
<k + n′(1− ek − e<k)

(
(ek + e<k)

n′−1 − en′−1<k

)
en
′−1

0 + n′(1− e0)en
′−1

0

−
(ek + e<k)

n − en<k − neke
n−1
<k + n(1− ek − e<k)

(
(ek + e<k)

n−1 − en−1<k

)
en−10 + n(1− e0)en−10

Now, fixing e<k, e0, n, and n′, define another function φ : [0, 1]→ <+ by

φ(x) =
(x+ e<k)

n′ − en′<k − n′xe
n′−1
<k + n′(1− x− e<k)

(
(x+ e<k)

n′−1 − en′−1<k

)
en
′−1

0 + n′(1− e0)en
′−1

0

−
(x+ e<k)

n − en<k − nxe
n−1
<k + n(1− x− e<k)

(
(x+ e<k)

n−1 − en−1<k

)
en−10 + n(1− e0)en−10

so that

1

t0

[
Pr(T = k|n′)−

∑k−1
j=1 tk−j Pr(ε(2) = j|n′)

Pr(ε(2) = 0|n′)
−

Pr(T = k|n)−
∑k−1

j=1 tk−j Pr(ε(2) = j|n)

Pr(ε(2) = 0|n)

]
= φ(ek)

Next, I show that φ is invertible. Since we’ll be inverting φ(ek) = (something), and since ek
and e<k are probabilities of mutually exclusive events, the argument of φ will be in [0, 1− e<k]; so
we want to show φ′(x) > 0 for x ∈ (0, 1 − e<k). Noting that the denominators of both terms of φ
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do not depend on ek, we can differentiate and get

φ′(x)

=
n′(x+ e<k)

n′−1 − n′en′−1<k − n
′
(

(x+ e<k)
n′−1 − en′−1<k

)
+ n′(1− x− e<k)

(
(n′ − 1)(x+ e<k)

n′−2
)

en
′−1

0 + n′(1− e0)en
′−1

0

−
n(x+ e<k)

n−1 − nen−1<k − n
(
(x+ e<k)

n−1 − en−1<k

)
+ n(1− x− e<k)

(
(n− 1)(x+ e<k)

n−2)
en−10 + n(1− e0)en−10

=
n′(1− x− e<k)

(
(n′ − 1)(x+ e<k)

n′−2
)

en
′−1

0 + n′(1− e0)en
′−1

0

−
n(1− x− e<k)

(
(n− 1)(x+ e<k)

n−2)
en−10 + n(1− e0)en−10

= (1− x− e<k)

[
(n′ − 1)(x+e<ke0

)n
′−2

1
n′ e0 + (1− e0)e0

−
(n− 1)(x+e<ke0

)n−2

1
ne0 + (1− e0)e0

]

As noted above, 1− x− e<k > 0 in the relevant range of x. Since e<k =
∑

j<k ej ≥ e0,
x+e<k
e0
≥ 1;

combined with n′ > n, this means the first term in the square brackets has a strictly higher
numerator than the second. And since 1

n′ <
1
n , the first term also has a strictly lower denominator.

So φ′ > 0 on (0, 1− e<k), and so φ is strictly increasing on [0, 1− e<k], and is therefore invertible.
Thus, we can recover ek as

ek =

φ−1

(
1

t0

[
Pr(T = k|n′)−

∑k−1
j=1 tk−j Pr(ε(2) = j|n′)

Pr(ε(2) = 0|n′)
−

Pr(T = k|n)−
∑k−1

j=1 tk−j Pr(ε(2) = j|n)

Pr(ε(2) = 0|n)

])

Once ek is known, Pr(ε(2) = k|N) is known, and so tk can be recovered from (A4) as

tk =
1

Pr(ε(2) = 0|n)

Pr(T = k|n)−
k∑
j=1

tk−j Pr(ε(2) = j|n)


concluding the proof. 2

A.3 Proof of Theorem 3 (continuous valuations, unobserved N)

Let x and x′ be two values of X, with p(x′) 6= p(x). Let FT |X and fT |X denote the distribution
and density of transaction prices given X. I’ll show that knowledge of fT |x and fT |x′ allows us to

recover {f (k)ε (0), f
(k)
θ (0)}k=0,1,2,..., and that the model is therefore identified by the same logic as

Theorem 1.
I begin with a simple case, and then show that we can reduce any case to the simple case.

Lemma 3. Suppose that p2(x) > 0 = p2(x
′) and p3(x

′) > 0. Then knowing p(x) and p(x′)...

1. fθ(0) and fε(0) can be recovered from the derivatives f ′T |x(0) and f ′′T |x′(0)
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2. For any k > 0, the derivatives f
(k)
θ (0) and f

(k)
ε (0) can be recovered from the derivatives

f
(1+k)
T |x (0) and f

(2+k)
T |x′ (0) and the lower derivatives {f (j)θ (0), f

(j)
ε (0)}j<k

Part 1. Let pn = pn(x) and p′n = pn(x′). When X = x, the observed distribution of transaction
prices will be

fT |x(t) =

∞∑
n=2

pnfT |n(t)

Using the properties established in the proof of Lemma 1 above, differentiating yields

f
(k)
T |x(0) =

∞∑
n=2

pn

(
k−1∑
i=0

f
(i)
y|n(0)f

(k−1−i)
θ (0)

)
(A5)

We know from above that f
(m)
y|n (0) = 0 for m < n − 2, or n > m + 2; and that f

(n−2)
y|n (0) =

n!(fε(0))n−1. So

f ′T |x(0) =
∞∑
n=2

pnfy|n(0)fθ(0) = p2 · 2fε(0)fθ(0)

since fy|2(0) = 2fε(0) and for n > 2, fy|n(0) = 0. By the same logic,

f ′′T |x′(0) =

∞∑
n=3

p′n

(
f ′y|n(0)fθ(0) + fy|n(0)f ′θ(0)

)
= p′3 · 6(fε(0))2fθ(0)

since fy|n(0) = 0 for n ≥ 3, f ′y|3(0) = 6(fε(0))2, and f ′y|n(0) = 0 for n > 3. Dividing,

f ′′T |x′(0)

f ′T |x(0)
= 3

p′3
p2
fε(0)

and since we observe the left-hand side (and are assumed to know p′3 and p2), we can recover fε(0);
once that is known, we can get fθ(0) from f ′T |x(0) = 2p2fε(0)fθ(0).

Part 2. From (A5),

f
(1+k)
T |x (0) =

∞∑
n=2

pnf
(1+k)
T |n (0) =

∞∑
n=2

pn

(
k∑
i=0

f
(i)
y|n(0)f

(k−i)
θ (0)

)

Recall (from the preliminaries in the proof of Lemma 1) that f
(m)
y|n has no derivatives of fε higher

than f
(m−n+2)
ε (0), and that f

(m)
y|n (0) = 0 for m < n− 2. This means that, knowing {pn} and {p′n},

we can write this as

f
(1+k)
T |x (0) = p2 · 2f (k)ε (0)fθ(0) + p2 · 2fε(0)f

(k)
θ (0) + things we already know

where “things we already know” includes the pieces of f
(k)
y|n(0) other than 2f

(k)
ε (0) (multiplied by

p2 and fθ(0)); the terms of p2f
(1+k)
T |2 (0) other than the “first” and “last” terms p2f

(k)
y|2 (0)fθ(0) and

p2fy|2(0)f
(k)
θ (0); and all the terms in pnf

(1+k)
y|n (0) for n > 2, which all contain derivatives no higher

than f
(k−1)
ε (0) and f

(k−1)
θ (0).
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Similarly,

f
(2+k)
T |x′ (0) =

∞∑
n=3

p′n

(
k+1∑
i=0

f
(i)
y|n(0)f

(k+1−i)
θ (0)

)

= p′3 · 6(k + 2)fε(0)f (k)ε (0)fθ(0) + p′3 · 6(fε(0))2f
(k)
θ (0) + other things we know

Letting A and B denote the two massive collections of terms we already know the value of, then,
we can write

f
(1+k)
T |x (0)−A

2p2fθ(0)
= f (k)ε (0) +

fε(0)

fθ(0)
f
(k)
θ (0)

f
(2+k)
T |x′ (0)−B

6p′3fε(0)fθ(0)
= (k + 2)f (k)ε (0) +

fε(0)

fθ(0)
f
(k)
θ (0)

and, subtracting,

1

k + 1

f (2+k)T |x′ (0)−B
6p′3fε(0)fθ(0)

−
f
(1+k)
T |x (0)−A

2p2fθ(0)

 = f (k)ε (0)

Once f
(k)
ε (0) is known, f

(k)
θ (0) is the only remaining unknown in the expression for f

(1+k)
T |x (0), and

can be recovered from that, concluding the proof of the lemma. 2

This establishes identification if p2 > 0 = p′2 and p3 > 0. The point is that all the “new”
(unknown) terms at each level iteration come only from the “leading” term – n = 2 in the case of
p(x), and n = 3 in the case of p(x′). Obviously, if p2 > 0 and p′2 = p′3 = 0 < p′4, the same would
work, taking one higher derivative of fT |x′ ; and if p2 = 0 = p′2 but the two had different leading
terms, the same would work, but taking higher derivatives of both.

The remaining challenge, then, is if the “leading” term of both fT |x and fT |x′ – i.e., the lowest
values of n for which pn(x) > 0 and pn′(x) > 0, respectively – are the same, for example if p2 > 0
and p′2 > 0. In that case, we synthesize a new distribution with no p2 term. Specifically, define

g(t) = p′2fT |x(t)− p2fT |x′(t)

Letting qj = p′2pj − p2p′j ,

g(t) =
∞∑
n=3

qnfT |n(t)

If p′2p3 6= p2p
′
3, then q3 6= 0, and we can proceed as in the lemma above, with g replacing fT |x′ . If

p′2p3 = p2p
′
3, then q3 = 0, and the “leading term” of g is higher. If p′2pj = p′jp2 for every j, then

p(x) = p(x′), which we already assumed was not true; so g must have some leading term qn 6= 0,
giving us our starting point. Thus, for any two distributions of N , p(x) and p(x′), we can recover

{f (k)θ (0), f
(k)
ε (0)}k=0,1,2,... from the derivatives of fT |x and g; following the logic behind Theorem 1,

this means fθ and fε are uniquely determined if they are assumed to be analytic. 2
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A.4 Proof of Theorem 4 (discrete valuations, unobserved N)

The outline of the proof is identical to the case of observable N . Again, the theorem follows easily
by induction once I first prove the following lemma:

Lemma 4. Fix λ and λ′, with λ′ > λ > 0.

1. The parameters t0 and e0 can be recovered from the moments Pr(T = 0|λ) and Pr(T = 0|λ′).

2. For any k > 0, the parameters tk and ek can be recovered from the moments Pr(T = k|λ) and
Pr(T = k|λ′) and the parameters {tj , ej}j<k.

The proof follows the same outline as that of Lemma 2, just with adjustments to account for
N having a known probability distribution rather than being constant.

Part 1: recovering e0 and t0. To prove the first part, note that

Pr(T = 0|λ) = t0 Pr(ε(2) = 0|λ) = t0

∞∑
n=2

Pr(N = n|λ) Pr(ε(2) = 0|N = n)

Given λ, the distribution of N , conditional on being at least 2, is

Pr(N = n|λ) =
1

1− e−λ − λe−λ
e−λλn

n!

and so

Pr(T = 0|λ) = t0
1

1− e−λ − λe−λ
∞∑
n=2

e−λλn

n!

(
en0 + n(1− e0)en−10

)
(A6)

As before, if we take the ratio Pr(T=0|λ′)
Pr(T=0|λ) , the t0 term drops out, so given λ′ and λ (assumed to be

known), Pr(T=0|λ′)
Pr(T=0|λ) depends only on e0. Next, I show that it is strictly increasing in e0, allowing us

to recover e0. Once e0 is known, t0 can be calculated from (A6).

To see that (for λ′ > λ) Pr(T=0|λ′)
Pr(T=0|λ) is strictly increasing in e0, note that

∂

∂e0
ln

(
Pr(T = 0|λ′)
Pr(T = 0|λ)

)
=

∂

∂e0
ln Pr(T = 0|λ′)− ∂

∂e0
ln Pr(T = 0|λ)

so it suffices to show that ∂
∂e0

(ln Pr(T = 0|λ)) is strictly increasing in λ. To show this, first note
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that

Pr(T = 0|λ) = t0

∞∑
n=2

Pr(N = n|λ) Pr(ε(2) = 0|N = n)

= t0

∞∑
n=2

1

1− e−λ − λe−λ
e−λλn

n!

(
en0 + n(1− e0)en−10

)

=
t0

1− e−λ − λe−λ
e−λ

e−λe0

[ ∞∑
n=2

e−λe0(λe0)
n

n!
+ λ(1− e0)

∞∑
n=2

e−λe0(λe0)
n−1

(n− 1)!

]

=
t0

1− e−λ − λe−λ
e−λ

e−λe0

[
(1− e−λe0 − λe0e−λe0) + λ(1− e0)(1− e−λe0)

]

=
t0e
−λ

1− e−λ − λe−λ
[
eλe0 − 1− λe0 + λ(1− e0)(eλe0 − 1)

]

=
t0e
−λ

1− e−λ − λe−λ
[
eλe0 − 1 + λeλe0 − λ− λe0eλe0

]
This means that

∂

∂e0
ln Pr(T = 0|λ) =

λeλe0 + λ2eλe0 − λeλe0 − λ2e0eλe0
eλe0 − 1 + λeλe0 − λ− λe0eλe0

=
λ2eλe0(1− e0)

eλe0 − 1 + λeλe0 − λ− λe0eλe0

=
λ2(1− e0)

1− e−λe0 + λ− λe−λe0 − λe0

To show that’s increasing in λ, we calculate (via the quotient rule)

∂

∂λ

(
∂

∂e0
ln Pr(T = 0|λ)

)
∝

(
1− e−λe0 + λ− λe−λe0 − λe0

)
2λ(1− e0)

−λ2(1− e0)
(
e0e
−λe0 + 1− e−λe0 + λe0e

−λe0 − e0
)

∝ 2− 2e−λe0 + 2λ− 2λe−λe0 − 2λe0
−λe0e−λe0 − λ+ λe−λe0 − λ2e0e−λe0 + λe0

= 2− 2e−λe0 + λ− λe−λe0 − λe0 − λe0e−λe0 − λ2e0e−λe0

∝ 2eλe0 − 2 + λeλe0 − λ− λe0eλe0 − λe0 − λ2e0
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For x ≥ 0, we know from the Taylor expansion that ex =
∑∞

i=0
xi

i! ≥ 1 + x+ x2

2 ; plugging this in,

(2 + λ− λe0) eλe0 − 2− λ− λe0 − λ2e0 ≥ (2 + λ− λe0)
(
1 + λe0 + 1

2λ
2e20
)
− 2− λ− λe0 − λ2e0

= 2 + 2λe0 + λ2e20 + λ+ λ2e0 + 1
2λ

3e20

−λe0 − λ2e20 − 1
2λ

3e30 − 2− λ− λe0 − λ2e0

= 1
2λ

3e20(1− e0)

> 0

Thus, ∂
∂e0

ln Pr(T = 0|λ) is increasing in λ, so as argued above, Pr(T=0|λ′)
Pr(T=0|λ) is strictly increasing in

e0 for λ′ > λ. This means we can recover e0 from the observed value of Pr(T=0|λ′)
Pr(T=0|λ) , then recover t0

from (A6).

Part 2: recovering ek and tk. For the second part, we are assumed to already know Pr(T = k|λ),
Pr(T = k|λ′), and the parameters {tj , ej}j<k. Now,

Pr(T = k|λ) =
k∑
j=0

tk−j Pr(ε(2) = j|λ) (A7)

where now

Pr(ε(2) = j|λ) =
∑

n≥2 Pr(N = n|λ) Pr(ε(2) = j|N = n) =

1

1− e−λ − λe−λ
∞∑
n=2

e−λλn

n!

(
(ej + e<j)

n − en<j − nejen−1<j + n(1− ej − e<j)
(

(ej + e<j)
n−1 − en−1<j

))
which depends only on {e0, . . . , ej}. We can rearrange (A7) to

1

Pr(ε(2) = 0|λ)

Pr(T = k|λ)−
k−1∑
j=1

tk−j Pr(ε(2) = j|λ)

 = tk + t0
Pr(ε(2) = k|λ)

Pr(ε(2) = 0|λ)
(A8)

where everything on the left-hand side is already known. If we define Gk(λ) as the left-hand side
of (A8), then

1

t0

[
Gk(λ

′)−Gk(λ)
]

=
Pr(ε(2) = k|λ′)
Pr(ε(2) = 0|λ′)

− Pr(ε(2) = k|λ)

Pr(ε(2) = 0|λ)
(A9)

with the right-hand side depending only on ek and parameters we already know. Next, I show that
the right-hand side of (A9) is strictly increasing in ek, and therefore invertible, so that ek is pinned
down by (A9). Once ek is known, tk can be recovered from (A8), finishing the proof.

To see that (for λ′ > λ) the right-hand side of (A9) is strictly increasing in ek, note that this is
equivalent to showing that given {ej}j<k,

∂

∂ek

Pr(ε(2) = k|λ′)
Pr(ε(2) = 0|λ′)

>
∂

∂ek

Pr(ε(2) = k|λ)

Pr(ε(2) = 0|λ)
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or that ∂
∂ek

Pr(ε(2)=k|λ)
Pr(ε(2)=0|λ) is strictly increasing in λ.

Now,

Pr(ε(2) = k|λ)

=

∞∑
n=2

1

1− e−λ − λe−λ
e−λλn

n!
Pr(ε(2) = k|N = n)

=
1

1− e−λ − λe−λ
∞∑
n=2

e−λλn

n!

(
(ek + e<k)

n − en<k − neken−1<k + n(1− ek − e<k)
(
(ek + e<k)

n−1 − en−1<k

))

=
1

1− e−λ − λe−λ
∞∑
n=2

e−λλn

n!

(
(ek + e<k)

n − en<k + n(1− ek − e<k)(ek + e<k)
n−1 − n(1− e<k)en−1<k

)

=
e−λ

1− e−λ − λe−λ

[ ∞∑
n=2

λn

n!
(ek + e<k)

n −
∞∑
n=2

λn

n!
en<k

+(1− ek − e<k)
∞∑
n=2

λn

n!
n(ek + e<k)

n−1 − (1− e<k)
∞∑
n=2

λn

n!
nen−1<k

]

=
e−λ

1− e−λ − λe−λ

[
1

e−λ(ek+e<k)

∞∑
n=2

e−λ(ek+e<k)(λ(ek + e<k))
n

n!
− 1

e−λe<k

∞∑
n=2

e−λe<k(λe<k)
n

n!

+
λ(1− ek − e<k)
e−λ(ek+e<k)

∞∑
n=2

e−λ(ek+e<k)(λ(ek + e<k))
n−1

(n− 1)!
−λ(1− e<k)

e−λe<k

∞∑
n=2

e−λe<k(λe<k)
n−1

(n− 1)!

]

Continuing to simplify,

Pr(ε(2) = k|λ)

=
e−λ

1− e−λ − λe−λ

[
1

e−λ(ek+e<k)

(
1− e−λ(ek+e<k) − λ(ek + e<k)e

−λ(ek+e<k)
)

− 1

e−λe<k

(
1− e−λe<k − λe<ke−λe<k

)
+
λ(1− ek − e<k)
e−λ(ek+e<k)

(
1− e−λ(ek+e<k)

)
−λ(1− e<k)

e−λe<k

(
1− e−λe<k

)]

=
e−λ

1− e−λ − λe−λ
[(
eλ(ek+e<k) − 1− λ(ek + e<k)

)
−
(
eλe<k − 1− λe<k

)
+λ(1− ek − e<k)

(
eλ(ek+e<k) − 1

)
− λ(1− e<k)

(
eλe<k − 1

)]
=

e−λ

1− e−λ − λe−λ
[
eλ(ek+e<k) − eλe<k

+λ(1− ek − e<k)eλ(ek+e<k) − λ(1− e<k)eλe<k
]

=
e−λ

1− e−λ − λe−λ
[
(1 + λ(1− ek − e<k)) eλ(ek+e<k) − (1 + λ(1− e<k)) eλe<k

]
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Plugging our expression for Pr(ε(2) = 0|λ) from earlier in for the denominator, this means

Pr(ε(2) = k|λ)

Pr(ε(2) = 0|λ)
=

e−λ

1−e−λ−λe−λ
[
(1 + λ(1− ek − e<k)) eλ(ek+e<k) − (1 + λ(1− e<k)) eλe<k

]
e−λ

1−e−λ−λe−λ [(1 + λ(1− e0))eλe0 − (1 + λ)]

=
(1 + λ(1− ek − e<k)) eλ(ek+e<k) − (1 + λ(1− e<k)) eλe<k

(1 + λ(1− e0))eλe0 − (1 + λ)

Since the denominator does not depend on ek,

∂

∂ek

Pr(ε(2) = k|λ)

Pr(ε(2) = 0|λ)
=
−λeλ(ek+e<k) + (1 + λ(1− ek − e<k))λeλ(ek+e<k)

(1 + λ(1− e0))eλe0 − (1 + λ)

=
λ2(1− ek − e<k)eλ(ek+e<k)

(1 + λ(1− e0))eλe0 − (1 + λ)

To show this is increasing in λ, we calculate via the quotient rule

∂

∂λ

(
∂

∂ek

Pr(ε(2) = k|λ)

Pr(ε(2) = 0|λ)

)

∝
(
(1 + λ(1− e0))eλe0 − (1 + λ)

) (
2λ(1− ek − e<k)eλ(ek+e<k) + λ2(ek + e<k)(1− ek − e<k)eλ(ek+e<k)

)
−
(
(1− e0)eλe0 + e0(1 + λ(1− e0))eλe0 − 1

) (
λ2(1− ek − e<k)eλ(ek+e<k)

)
∝

(
(1 + λ(1− e0))eλe0 − (1 + λ)

)
(2 + λ(ek + e<k))

−
(
(1− e0)eλe0 + e0(1 + λ(1− e0))eλe0 − 1

)
(λ)

= (2 + 2λ(1− e0))eλe0 − 2(1 + λ) + λ(ek + e<k)(1 + λ(1− e0))eλe0 − λ(ek + e<k)(1 + λ)
−λ(1− e0)eλe0 − λe0(1 + λ(1− e0))eλe0 + λ

= (2 + λ(1− e0))eλe0 + λ(ek + e<k − e0)(1 + λ(1− e0))eλe0
−2− λ− λ(ek + e<k)(1 + λ)
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Again using the fact that eλe0 ≥ 1 + λe0 + 1
2(λe0)

2 from the Taylor expansion of ex, this is

≥ (2 + λ(1− e0))
(
1 + λe0 + 1

2λ
2e20
)

+ λ(ek + e<k − e0)(1 + λ(1− e0))
(
1 + λe0 + 1

2λ
2e20
)

−2− λ− λ(ek + e<k)(1 + λ)

= 2 + λ(1− e0) + 2λe0 + λ2e0(1− e0) + λ2e20 + 1
2λ

3e20(1− e0)
+λ(ek + e<k − e0)(1 + λ(1− e0))
+λ(ek + e<k − e0)(1 + λ(1− e0))λe0
+λ(ek + e<k − e0)(1 + λ(1− e0))12λ

2e20
−2− λ− λ(ek + e<k)(1 + λ)

= 1
2λ

3e20(1− e0) + λ(ek + e<k − e0)(1 + λ(1− e0))12λ
2e20

+λ(ek + e<k − e0)(1 + λ(1− e0) + λe0 + λ2e0(1− e0))
−λ(ek + e<k − e0)(1 + λ)

= 1
2λ

3e20(1− e0) + λ(ek + e<k − e0)(λ2e0(1− e0)) + λ(ek + e<k − e0)(1 + λ(1− e0))12λ
2e20

> 0

and so ∂
∂ek

Pr(ε(2)=k|λ)
Pr(ε(2)=0|λ) is strictly increasing in λ. This means that for λ′ > λ, Pr(ε(2)=k|λ′)

Pr(ε(2)=0|λ′)−
Pr(ε(2)=k|λ)
Pr(ε(2)=0|λ)

is strictly increasing in ek, exactly what we needed to be able to recover ek from (A9) in the text;
tk is then recovered from (A8), concluding the proof. 2
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