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COMMON VALUES AND LOW RESERVE PRICES∗

DANIEL QUINT†

I show that the benefit of a high reserve price in a common-values ascending
auction is lower than in the observationally equivalent private values setting.
Put another way, when bidders have common values, empirical estimation
based on a private-values model will overstate the value of a high reserve
price. Via numerical examples, I show this same ranking typically applies to
the level of the optimal reserve price as well, and often to the benefit of any
reserve price, not just high ones. With common values, the optimal reserve
can even be below the seller’s valuation, which is impossible with private
values.

I. INTRODUCTION

THE WORKHORSE MODEL IN AUCTION THEORY – for both theoretical and empirical work
– is the Symmetric Independent Private Values model. Among other things, this
model suggests that a seller can always benefit from employing a reserve price
strictly higher than her residual value for the unsold good, and often suggests
that the profit-maximizing reserve price is fairly high – often much higher than
reserve prices employed in practice. (Paarsch [1997] and Haile and Tamer [2003]
are two examples.)

Subsequent theoretical work has shown, however, that a number of differ-
ent deviations from the assumptions of the IPV model argue in favor of lower
reserve prices. Correlation among bidder valuations (Quint [2008], Aradillas-
López Gandhi and Quint [2013]), uncertainty about the exact value distribution
(Kim [2013]), endogenous participation (Levin and Smith [1994], Samuelson
[1985]), and competition between sellers (Peters and Severinov [1997]) have
all been shown to reduce the reserve price that should be chosen by a profit-
maximizing seller relative to the benchmark model – in some cases all the way
down to the seller’s residual value.

All of these, however, maintain the assumption of private values. In this paper,
I compare the effect of a reserve price in ascending (English) auctions when
bidders have private values, to its effect when bidder values are common, and
bidders therefore face a winner’s curse.
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364 DANIEL QUINT

Part of the challenge of this exercise is finding the right ceteris paribus compar-
ison. In a common values setting, bidders’ valuations are inherently correlated,
so comparing to a model with independent private values is potentially mislead-
ing. Instead, for a given common values environment, I define the private-values
setting that would lead to identical bidding behavior in the absence of a reserve
price.

I find that for an English auction in any interdependent or common values
setting and a sufficiently high reserve price, both the likelihood of a sale and the
expected revenue or profit are lower than under the analogous private values set-
ting. (The same holds for any positive reserve price in a sealed-bid second-price
auction.) I also explore a number of numerical examples, and find that the same
revenue and profit rankings very often hold even outside of the range of reserves
where the result is theoretically guaranteed, and that the optimal reserve price is
similarly lower than it would be under private values.

My choice of comparison is meant to mirror the choice facing an empirical
researcher. Given bid data from previous (reserve-free) auctions, the researcher
could choose to rationalize the data via either a private or a common-values
model. My results suggest that when the true environment has common values
but the researcher mistakenly assumes it has private values, her counterfactuals
will be biased in a particular direction: they will overstate the benefit of any high
reserve price (and likely any reserve price), and likely overstate the level of the
profit-maximizing reserve.1

One key feature of common value auctions, unlike private value auctions, is
that bidders learn from each others’ bidding. This overturns the usual private-
values result that reserve prices below the seller’s own valuation v0 are always
dominated. Under common values, this need not be true, as a reserve price of
v0 may truncate losing bids and thus reduce revenue from profitable sales. It’s
even possible that two bidders who would not bid at a reserve of v0, would both
bid at a lower reserve and then, seeing each other bidding, would both bid past
v0, creating a profitable sale that would have been prevented by a reserve of v0.
Thus, introducing a reserve price in an interdependent or common values set-
ting has greater costs than it would in a similar private values setting, and these
costs often seem to outweigh the benefits entirely. For many of the numerical
examples I show in the paper, a reserve price of 0 maximizes revenue; when the
seller’s valuation v0 is fixed and positive, the profit-maximizing reserve price
is sometimes below v0, sometimes even 0. When the seller’s value is positively
associated with the buyers’, this introduces an additional winner’s curse-type
effect – the seller is more likely to retain the object when it is less valuable to
her – which further decreases the value of a reserve price, and makes the opti-
mal reserve price 0 in many cases. On the whole, relative to intuitions we have

1 The private values environment corresponding to a given common values setting will have affili-
ated values, so Quint [2008] implies that if the researcher assumed a common values setting actually
had independent private values, the bias would be in the same direction, and even larger.
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COMMON VALUES AND LOW RESERVE PRICES 365

from private values settings, when bidder values are common or interdepen-
dent, this suggests that reserve prices should be used much more cautiously, if
at all.

II. CLOSELY RELATED LITERATURE

Laffont and Vuong [1996] observe that in sealed-bid auctions, common and pri-
vate values cannot be distinguished from one another purely from bid data, as
the two models are observationally equivalent. I use their logic in comparing a
common values setting to the corresponding private values setting that would
lead to identical bidding.

Perhaps as a result of Laffont and Vuong’s finding, most of the empirical lit-
erature on auctions does not attempt to differentiate one model from the other
empirically, and instead begins by assuming either one model or the other, but
there are a few exceptions. Paarsch [1992] shows that the two models are dis-
tinguishable from each other under parametric distributional assumptions. For
first-price auctions, Haile, Hong and Shum [2003] propose a test of common
versus private values when there is exogenous variation in the number of bidders
N, and Athey and Haile [2007], using ideas from Hendricks, Pinkse and Porter
[2003], propose a test when there is a binding reserve price. For English auc-
tions, Athey and Haile [2002] propose a test when there is variation in N, but
also note that when N is fixed and values are known to be common, the model
is not identified from observed bids.

Vincent [1995] shows that in a common values setting, if the seller’s valuation
is unknown but independent of the bidders’ valuation, the seller can sometimes
benefit ex ante from using a secret reserve price. (The seller would still be
tempted to deviate and announce the reserve price when it is low, however, and
therefore needs to be able to commit to keeping it secret.) Several papers noted
in the introduction show deviations from the standard IPV model (while main-
taining the assumption of private values) which favor lower reserve prices than
the IPV benchmark.

III. SECOND PRICE AUCTIONS

While the focus of this paper is English (or ascending) auctions, much useful
intuition can be gained from considering a simpler case: sealed-bid second price
auctions. In this section, I show how second-price auctions under two different
models of bidder valuations – one with interdependent values, and one with pri-
vate values – which would generate the same bidding behavior in the absence of
a reserve price, respond differently to the addition of a positive reserve price. In
the next section, I will do the same for English auctions.
© 2017 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd
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III(i). Two Models of Valuations

Model I – Interdependent Values. I use the standard interdependent values
model with affiliated signals of Milgrom and Weber [1982]. Fix N the number of
bidders. Let X = {X1, . . . , XN } be a set of signals drawn from a joint distribution
which is symmetric and affiliated. Each bidder i learns the realization xi of one
signal Xi, but his valuation

Vi = ui(X ) = u
(

Xi,
{
Xj

}
j �=i

)
depends (symmetrically) on the signals observed by the other bidders as well. As
in Milgrom and Weber, u : �N → � is assumed to be nonnegative, continuous,
nondecreasing, strictly increasing in its first argument, and symmetric in its last
N – 1 arguments, with Eui(X ) < ∞. Since the point of this paper is to contrast
the interdependent case with the private values case, I assume ui has nondegen-
erate dependence on

{
Xj

}
j �=i, and will often refer to this model as the common

values case, although pure common values (ui(X ) = uj(X )) is not assumed.
For a given bidder i, define v(x, y) as the expectation of his valueVi, conditional

on the realization of his own signal and the highest signal of his opponents,

v(x, y) = E

{
u

(
x,

{
Xj

}
j �=i

) ∣∣∣Xi = x, maxj �=iXj = y
}

(Note that the expectation over
{
Xj

}
j �=i is taken conditional on Xi = x, since the

signals may be correlated.) In the absence of a reserve price, Milgrom and Weber
establish that bidding in the symmetric equilibrium of the second price auction
is

bi(Xi) = v(Xi, Xi)

It’s straightforward to show that if one’s opponents play this strategy, a bidder
could do no better even if he knew the highest bid submitted by his opponents.2

Model II – Private Values. Laffont and Vuong [1996] observe that in second-
price auctions without a reserve price, bid data cannot be used to distinguish
common values from private values, because however bidders chose to bid under
common (or interdependent) values, they could alternatively have been bidding
their valuations in a private-values setting. Using this logic, we define the private-
values setting that is ‘observationally equivalent’ to the interdependent-values
setting above: the signals {Xi} have the same distribution as above, each bidder
observes a single signal Xi, but his valuation is now

Vi = v(Xi, Xi)

2 The second price auction also has asymmetric equilibria, including some ‘collusive-looking’
equilibria with low revenue; like the literature, I focus on the symmetric equilibrium, which is
unique.
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regardless of the realization of the other signals. Without a reserve price, bid-
ders have a weakly dominant strategy of bidding their values, and therefore
bi(Xi) = v(Xi, Xi), so the two models produce identical bidding behavior.

III(ii). The Effect of a Reserve Price

The effect of introducing a reserve price r > 0 in a private-values setting
is straightforward. Bidders continue to bid their valuations, as long as those
valuations are above r; if not, they do not bid. Thus, if no bidder has a valu-
ation exceeding r, the reserve price prevents a sale, and the seller retains the
object; if one bidder has a valuation exceeding r, then he pays r rather than the
second-highest valuation.

In a common (or interdependent) values setting, the effect of a reserve price
is more complicated. In particular, the highest reserve price a bidder is willing
to meet is lower than the bid he would make in the absence of a reserve. This
is because of the winner’s curse: a bidder willing to meet a reserve price r must
be willing to win the object even if no other bidder is willing to bid r. On the
other hand, when contemplating raising ones bid, a bidder conditions on his bid’s
being pivotal, i.e., on another competitor having an equally high signal, partly
mitigating this curse.

Thus, in a second-price auction with reserve price r and common values, bid-
der i still bids v(Xi, Xi) if he bids, but only bids if Xi ≥ x∗, where x∗ is defined
implicitly by

r = E

{
u

(
x∗,

{
Xj

}
j �=i

) ∣∣∣Xi = x∗, maxj �=iXj < x∗}

(A bidder with signal Xi = x∗ therefore loses whenever another bidder bids,
and pays r for a prize whose expected value is r when no other bidder bids.) By
iterated expectations, if we let X (k) denote the kth order statistic of {X1, . . . , XN },
the definition of x∗ is equivalent to

r = E

{
v(x∗, X (2))|X (1) = x∗}

Since by definition X (2) ≤ X (1), the right-hand side is strictly less than v(x∗, x∗)
except in degenerate cases. Thus, a bidder willing to bid more than r in the
absence of a reserve price, may still not be willing to bid at all with a reserve
price of r.3 On the other hand, in a private values setting, a bidder’s willingness
to bid (in the absence of a reserve price) is exactly the reserve price he would be
willing to meet. This leads to the following results:

3 This is the logic behind Vincent’s [1995] result that a secret reserve price can sometimes be
beneficial: when the seller’s valuation is high and she therefore wants to set a high reserve price,
two bidders might be deterred from bidding who might otherwise have bid above that price.
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Theorem 1. Fix any common values setting and any reserve price r > 0. In a
second price auction with reserve price r...

1. the likelihood of a sale is lower than in the corresponding private values
setting

2. expected revenue is lower than in the corresponding private values setting
3. if r is greater than the seller’s residual valuation v0, expected profit is lower

than in the corresponding private values setting

All theorems are proved in the supplemental materials available on the Jour-
nal’s editorial website. Theorem 1 says that if you had bid data from second-price
auctions in a setting with common values, but chose to estimate a structural model
under the assumption of private values and used it to evaluate a reserve price
counterfactual, you would underestimate the reduction in sales that would fol-
low from introducing a reserve price, and therefore overestimate the benefit of
introducing a reserve.

IV. ENGLISH AUCTIONS

Next, I turn to English auctions. It’s well know that with private values, Eng-
lish and second-price auctions are strategically equivalent. With common values,
however, this is not the case, since bidders update their beliefs about their own
valuations based on how their opponents bid.

I’ll employ the same strategy for English auctions as I did for second price
auctions: begin with a general interdependent values setting, imagine I observed
bids in English auctions without reserve prices, use those bids to define an
observationally-equivalent private values setting, and then compare the impact
of introducing a reserve price across the two settings. Three things make this
exercise more complicated for English auctions:

1. Since an English auction ends before the winner reveals his willingness to
pay, I’ll need to make a decision about what his valuation should be in the
private-values setting.

2. In a common values setting, bidders condition on each others’ behavior, so
bids (and therefore imputed private valuations) are ‘more correlated’ than
information based on a single signal. This ends up implying that while high
reserve prices are more likely to be met under the private values model, low
but positive reserve prices may be more likely to be met under the common
values model. (It will become clear why shortly.)

3. In a common values setting, a reserve price that does not set the price
(because two or more bidders bid) still effects the price paid. If any los-
ing bidders choose not to bid, their exact signals cannot be inferred by the
bidder who eventually sets the price; via a ‘linkage principle’ effect, this

© 2017 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd
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decreases expected price in the common values model, while it has no effect
in a private values setting.

To address the first point, I imagine that after each auction, I was able to inter-
view the winner and find out how high he had been planning to bid if his last
opponent had not dropped out when he did, and use this as the winner’s valuation
in the corresponding private values setting. (This is data one might conceivably
have in settings where bidders use automated proxy bids, such as on eBay.) To
address the second, I will define a threshold reserve r̃ above which I can unam-
biguously sign the revenue and profit rankings between the two models. I will
also use numerical examples to show that even when r̃ is high (and therefore the
theoretical result is weak), the same revenue and profit rankings very often hold
for reserves below r̃. The third point simply adds steps to the proof of the result.

IV(i). Two Models of Valuations

As in Milgrom and Weber [1982], I model English auctions as full information
button auctions: the price starts low and rises continuously, bidders remain active
until they choose to irreversibly drop out of the bidding, and bidders know who
is currently active and at what price inactive bidders dropped out.

Model I – Interdependent Values. The model is the same as above. N bidders
receive affiliated signals {Xi} and have valuations Vi = u(Xi,

{
Xj

}
j �=i). Symmet-

ric equilibrium bidding is described by Milgrom and Weber [1982, sections 5
and 7].4 In the absence of a reserve price, equilibrium bidding can be briefly
summarized as follows. At each point in the auction, the signals of the bidders
who have already dropped out are correctly inferred by the remaining bidders.
Given those signals, each bidder bids up to the price at which he would be exactly
indifferent about buying the object if all his remaining opponents turned out to
have signals matching his own.

Model II – Private Values. To create the observationally equivalent private val-
ues environment, I imagine we observe equilibrium English-auction bidding
(with no reserve price) under the first model – including the price at which
the winner planned to drop out – but interpret each bidder’s bid as his pri-
vate value.5 Formally, let i(k) denote the label of the kth highest signal, so that

4 Bikhchandani, Haile and Riley [2002] show that a continuum of symmetric, separating equilib-
ria exist, but they all lead to the same outcome. They also lead to the same values of vi(1) and vi(2) in
the private values model described below, and therefore the same outcome in that model. Thus, the
multiplicity is not important for our purposes, and I focus on the equilibrium described by Milgrom
and Weber.

5 An alternative assumption about the winner’s private value would be to imagine we had an
independent measure of the winner’s ex post surplus and use that, i.e., set vi(1) below equal to
ui(1)(X ). Under that assumption, Theorem 2 below would still hold under one change: modifying
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Xi(k) = X (k). Let X (1) ≥ X (2) ≥ · · · ≥ X (N ) denote the order statistics of {Xi},
and x(1) ≥ · · · ≥ x(N ) their realization. Then for a given realization x of X, I
define bidder valuations as

vi(N ) = u
(

x(N ), x(N ), x(N ), x(N ), . . . , x(N ), x(N ), x(N )
)

vi(N−1) = u
(

x(N−1), x(N−1), x(N−1), x(N−1), . . . , x(N−1), x(N−1), x(N )
)

vi(N−2) = u
(

x(N−2), x(N−2), x(N−2), x(N−2), . . . , x(N−2), x(N−1), x(N )
)

...

vi(2) = u
(

x(2), x(2), x(3), x(4), . . . , x(N−2), x(N−1), x(N )
)

vi(1) = u
(

x(1), x(1), x(3), x(4), . . . , x(N−2), x(N−1), x(N )
)

Each bidder learns the realization vi of his own valuation Vi.

Observational Equivalence of the Two Models when r = 0. By construction, a
bidder’s private value vi in the second model is exactly the price at which he
would drop out on the equilibrium path under the first model in the absence of a
reserve price. In addition, the winning bidder’s private value in the second model
is the price at which he would have planned to drop out in the first model, had
the second-highest bidder continued bidding.6 Thus, the two models generate
the same equilibrium bids – and would still appear identical if we knew at what
price the winner had planned to drop out.

IV(ii). The Effect of a Reserve Price

In the private values case, bidding in an auction with reserve price r is again
straightforward: each bidder i bids if vi ≥ r, and drops out at price vi.

In the common values case, the threshold signal x∗ above which bidders are
willing to bid in an English auction with reserve price r is the same as in a second
price auction, and is defined (as above) by

r = E

{
u

(
x∗,

{
Xj

}
j �=i

) ∣∣∣ Xi = x∗, maxj �=iXj < x∗}

the definition of r̃ to be the highest crossing point of the CDFs FU (1) and FR(1) , rather than FV (1)

and FR(1) .
6 As noted above, we could alternatively let the winner’s private value match his ex post surplus

from winning in the first; with a change in the definition of r̃, the results would go through.
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(Once again, a bidder with the threshold signal expects to be outbid if anyone
else bids, and therefore must be indifferent when he is the only bidder willing to
meet the reserve price.) Since bidders with signals below x∗ do not reveal their
signals through bids, bidders who do bid condition only on Xj < x∗ for bid-
ders who don’t bid; otherwise, equilibrium bidding among those who bid is the
same, with each bidder dropping out when the price reaches the level at which he
would in expectation be indifferent to winning, conditional on the information
revealed by the bidders who have already dropped out, if all his remaining active
opponents had received the same signal as he.

Define RevCV (r) and RevPV (r) as the expected revenue under the two mod-
els, as a function of the reserve price r; and fixing the seller’s residual valuation
v0, define πCV (r) and πPV (r) as expected profits under the two models. My
main theoretical result will be that RevCV (r) < RevPV (r) and πCV (r) < πPV (r)
when r is sufficiently high. Since the observational equivalence described above
implies RevCV (0) = RevPV (0) and πCV (0) = πPV (0), this means the benefit of
a high reserve price is less under common values than under private values – or
when the ‘truth’ is common values, a private-values analysis will overstate the
benefit of a high reserve price. After, I will explore several numerical examples,
under which these rankings often hold at all reserve price levels, and optimal
reserve prices are lower under common values as well.

First, I need to formalize what it means for r to be ‘sufficiently high’ for the
results to hold. Consider three random variables,

V (1) = u
(

X (1), X (1), X (3), . . . , X (N )
)

U (1) = u
(

X (1), X (2), X (3), . . . , X (N )
)

R(1) = EX (2),...,X (N )|X (1)

{
u(X (1), X (2), X (3), . . . , X (N ))

}

and let FV (1) , FU (1) , and FR(1) denote their probability distributions.
Under the common values model, for a given realization x(1) of X (1), the

expectation E
{
u(x(1), X (2), X (3), . . . , X (N ))|X (1) = x(1)

}
is the highest reserve

price at which a bidder with signal x(1) would be willing to bid under the common
values model. Thus, FR(1) (r) is the probability that no bidder would be willing
to bid given a reserve price of r, and therefore the probability that a reserve of r
would fail to be met under common values.

Under the private values model, u(x(1), x(1), x(3), . . . , x(N )) is the imputed val-
uation of the winning bidder, and thus the highest reserve price at which he
would bid under the private values model. FV (1) (r) is therefore the probability
that a reserve of r fails to be met under the private values model.

What will be crucial for us is that FV (1) (r) ≤ FR(1) (r) for r sufficiently high.
To see why, first note that U (1) is a mean-preserving spread around R(1), and
thus, we would expect FU (1) to typically be above FR(1) at low values and below
© 2017 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd
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Figure 1
Determination of r̃ in Numerical Examples [Colour figure can be viewed at wileyonlinelibrary.com] |

it at high values.7 On the other hand, since V (1) ≥ U (1) for each realization
of X, FV (1) ≤ FU (1) everywhere. Thus, we would expect FV (1) (r) ≤ FR(1) (r)
for high values of r, while the rankings for low r are ambiguous. I define r̃ as
the highest crossing point of these two CDF’s; that is, r̃ is defined such that
FV (1) (r) ≤ FR(1) (r) for every r > r̃.

Definition 1. r̃ ≡ sup
{
r : FV (1) (r) > FR(1) (r)

}
.

Figure 1 illustrates the CDF’s of V (1), U (1), and R(1), and therefore how r̃ is
defined, for the two numerical examples from the next section: the ‘discrete θ ’
example presented in Section V(i), and the ‘continuous θ ’ example presented in
Section V(iv), each with N = 3 and N = 6. In each case, it’s easy to see that FU (1)

(the dashed line) crosses FR(1) (the lighter solid line) just once, near the middle
of the support, and that FV (1) < FU (1) (the darker solid line) is below the dashed
line everywhere. In the two examples with N = 3, the difference between FV (1)

and FU (1) (the impact of changing one bidder’s signal) is large, making FV (1)

below FR(1) on most of the range of valuations. (In the bottom-left pane, FV (1)

and FR(1) never cross, so r̃ = 0.) In the two examples with N = 6, one bidder’s
signal has less effect, so FV (1) and FU (1) are closer together, making r̃ larger.

7 While FR(1)
SOSD FU (1) does not guarantee that the two CDF’s cross only once, they do in all
the numerical examples I’ve examined.
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For reserve prices above r̃, revenue and profit rankings across the two models
are clear:8

Theorem 2. Fix any common values setting and any reserve price r ≥ r̃. In an
English auction with reserve price r...

(i) the likelihood of a sale is lower than in the corresponding private values
setting

(ii) expected revenue is lower than in the corresponding private values setting
(iii) if r ≥ v0, expected profit is lower than in the corresponding private values

setting

Of course, the applicability of Theorem 2 depends on how restrictive the
assumption r ≥ r̃ is. In the next section, I examine a range of numerical exam-
ples, solved via simulation, to illustrate the level of r̃ as well as the profit curves
πCV (r) and πPV (r). As Figure 1 suggests, when N is small, r̃ tends to be close to
0, and so Theorem 2 is quite informative. (When N = 2, for example, r̃ is always
0.) When N is large, r̃ tends to be high; in those instances, Theorem 2 only
applies to very high reserve prices, which may be unrealistic unless the seller’s
own valuation v0 is quite high.

However, the numerical examples also show that the revenue and profit rank-
ings of Theorem 2 very often hold even for r below r̃ – in most examples, for all r.
We will also see that the profit-maximizing reserve price is typically lower under
a common values model than under the corresponding private values model. In
fact, with common values, the profit-maximizing reserve price is sometimes
below the seller’s own valuation – which is impossible with private values.

V. NUMERICAL EXAMPLES

In this section, I offer two numerical examples in which I explicitly calculate the
level of r̃, compare πCV (r) to πPV (r), and compare the optimal reserve prices
under the two models. In both examples, bidders have pure common values. (In
Section VI(iii), I’ll consider another example where valuations are a mix of com-
mon and private.) There is an underlying ‘state of the world’ θ which is every
bidder’s ex post valuation, and bidder signals are i.i.d. conditional on the value
of θ .9

8 Note that here, as in Theorem 1, I compare auctions across the two models of valuations at the
same reserve price, rather than each at its own optimal reserve. This is because I imagine a seller
who is unsure which is the correct model. Note also that if r∗

CV ≡ arg maxrπCV (r) ≥ r̃ (or in a
second-price auction), optimality implies maxrπPV (r) ≥ πPV (r∗

CV ) ≥ πCV (r∗
CV ) = maxrπCV (r).

9 In both examples in this section, the conditional distribution of bidder signals is increasing in
θ via the strict MLRP, so bidder signals are affiliated, and E(θ |X ) is increasing in X. Thus, if we
think of valuations as Vi = E(θ |X ) instead of Vi = θ , both examples fit within the Milgrom-Weber
framework.
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V(i). Setup

For the first example, θ takes the values 0 and 1, with equal probability, and
conditional on θ , bidder signals {Xi} are i.i.d. draws from a distribution F( · |θ)

on [0, 1], where

f (s|θ) =
{

αsα−1 if θ = 1
α(1 − s)α−1 if θ = 0

and

F(s|θ) =
{

sα if θ = 1
1 − (1 − s)α if θ = 0

Note that for α > 1, f ( · |1) is increasing and f ( · |0) is decreasing, so lower
signals are more likely when θ = 0 and higher signals when θ = 1. A higher value
of α means f ( · |1) is more skewed toward high signals and f ( · |0) more skewed
toward low signals, so the signals are more informative about θ (and also more
highly correlated with each other).

For the common values model, the bidders all have valuation θ . The
corresponding private values model is defined as in the previous section.

V(ii). Effect of Reserve Price on Bidding Behavior

For an illustration of how a reserve price effects bidding under the two mod-
els, we first consider bidding given a fixed realization of signals. Suppose that
N = 5 and α = 2, and that the realized signals are X1 = 0.82, X2 = 0.65, X3 =
0.50, X4 = 0.35, and X5 = 0.18. (These are approximately the unconditional
medians of each order statistic.10) In an English auction with no reserve price,
the first three bidders would drop out at prices

u(0.18, 0.18, 0.18, 0.18, 0.18) ≈ 0.0005

u(0.35, 0.35, 0.35, 0.35, 0.18) ≈ 0.0181

u(0.50, 0.50, 0.50, 0.35, 0.18) ≈ 0.1057

with the remaining bidders correctly inferring the values of X 5, X 4,
and X 3 as these bidders dropped out; bidder 2 would then drop out at
u(0.65, 0.65, 0.50, 0.35, 0.18) ≈ 0.2896, and bidder 1 would be pleased, having
been prepared to bid up to u(0.82, 0.82, 0.50, 0.35, 0.18) ≈ 0.7104 had bidder 2
kept going that long. Thus, for the analogous private values setting, I consider
V1 = 0.71 and V2 = 0.29.

10 Of course, this particular realization of signals is relatively unlikely – more typically, either
all five signals will be higher (because θ = 1), or all five will be lower (because θ = 0). Still, this
realization makes for a nice illustration of the effect of r.
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Figure 2
Revenue at ‘Median’ Signal Realizations as a Function of r (N = 5, α = 2) [Colour figure can be viewed
at wileyonlinelibrary.com] |

Figure 2 contrasts the effect of adding a reserve price under the two models,
given this particular set of realized signals. The dashed curve shows revenue
under the private values model. When r < 0.29, bidders 1 and 2 both bid, so the
reserve price does not bind; revenue equals bidder 2’s bid, which is his valua-
tion, 0.29. For r between 0.29 and 0.71, bidder 1 bids, and pays the reserve price.
When r > 0.71, nobody bids, and revenue is 0.

The solid curve shows revenue under the common values model, where the
reserve price has more complicated effects. The highest reserve at which each
bidder is willing to bid are E

{
u(X )|X (1) = xi

} ≈ 0.00002, 0.001, 0.01, 0.09, and
0.52. So for r ∈ [0, 0.00002), all five bidders bid, and the outcome is the same as
with no reserve. For r ∈ [0.00002, 0.001), however, bidder 5 does not bid, and
rather than learning X 5, the others only learn that X5 < x∗. For r ∈ [0.001, 0.01),
bidders 4 and 5 do not bid; for r ∈ [0.01, 0.09), bidders 3, 4 and 5 do not bid.
(Within each of these intervals, revenue is increasing in r, since x∗ increases
with r, and so the inference made about the ‘truncated’ signals becomes less
negative.) For r ∈ [0.09, 0.52), only bidder 1 bids, so he pays the reserve price;
for r ≥ 0.52, nobody bids and revenue is zero.

For this particular realization of signals, every reserve price r gives weakly
less benefit under the common values model than under the analogous private
values setting. This need not always be the case – for some signal realizations,
certain reserve prices are more beneficial under common values – but Theorem
2 says that at least for reserve prices above r̃, those signal realizations which are
less favorable under common values will dominate in expectation.

This example also demonstrates the magnitude of the winner’s curse. Bidder
2 received a signal X2 = 0.65, which is nearly twice as likely when θ = 1 as
when θ = 0. Nevertheless, when considering whether to bid at a given reserve
price, he worries about winning when all other bidders had signals low enough to
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not bid. Although E(θ |X2 = 0.65) = 0.65, E(θ |X2 = 0.65, {X1, X3, X4, X5} <

0.65) ≈ 0.09; so while bidder 2’s best guess on his own is that the prize is worth
0.65, he refuses to bid even at a reserve price of 0.1.

V(iii). Effect of Reserve Price on Expected Revenue and Profit

Of course, our main interest is not the outcome for a particular realization of
signals, but ex ante expected outcomes. Figures 3, 5, 6, and 7 compare expected
auction outcomes at different reserve prices across the two valuation models for
various parameterizations of this example. Outcomes were calculated via numer-
ical simulation; details are given in Appendix A(i). For each chart, the x-axis is
reserve price, ranging from 0 to 1 (the support of valuations), and the y axis is
expected profits (or expected revenue in the case of Figure 3). Outcomes under
the common values model, πCV (r) (or RevCV (r)), and its maximizer r∗

CV , are
shown as the lighter curve; results for the corresponding private values model
(πPV (r) or RevPV (r) and its maximizer r∗

PV ) are shown as the darker curve. A
dashed vertical line indicates the value of r̃, above which Theorem 2 applies; a
shorter vertical line indicates the seller’s valuation, v0.

For Figures 3, 5 and 6, the level of signal precision α is fixed at 2. Figure 3
shows expected revenue, as a function of reserve price, under the two different
models, for various values of N. Some things to note:

• r̃ (the dashed black line) is 0 at N = 2, and then increasing in N. Thus, Theorem
2 covers the widest range of reserve prices when N is small – exactly when
reserve prices are most significant. Also note that the revenue-maximizing
reserve price under the private values model, r∗

PV , is above r̃ for N ≤ 5.
• While Theorem 2 only applies for r ≥ r̃, the revenue ranking RevCV (r) ≤

RevPV (r) holds everywhere – at all r both above and below r̃, for each N
considered in Figure 3.

• For N ≥ 3, the revenue-maximizing reserve price under the common values
model is r = 0, while the revenue-maximizing reserve price under the private
values model is substantial.

• As N grows, the effect of reserve price vanishes under private values, but not
under common values. When N = 20, revenue under private values is almost
perfectly flat over the entire range of possible reserve prices; but a reserve
price of 0.16 (optimal under private values) would cause a 6% loss in revenue
under common values.

Note that fixing r, as N grows, expected revenue in the common values case
is increasing toward 0.5, but gets there much more slowly than in the private
values case. Figure 4 helps illustrate why, for the reserve price r = 0.20. In the
common values case, as N increases, x∗ increases as well, since the winner’s
curse a bidder must account for gets more severe. The left pane shows that as N
increases, the likelihood of nobody’s bidding increases, driven by an increase in
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Figure 3
Expected Revenue as a Function of r for Various N (α = 2) [Colour figure can be viewed at
wileyonlinelibrary.com] |

the likelihood of no bids when θ = 0. (The likelihood of no bids when θ = 1 is
decreasing, but is already so low that the decrease has less effect.)

The right pane of Figure 4 shows expected revenue when r = 0.20 in the private
values (top curve) and common values (bottom curve) cases, as N changes.11

The dashed line shows expected revenue (under either model) when no reserve
price is used. The lighter line shows expected revenue under the common values

11 In the private values case, the top two valuations V (1) and V (2) are, approximately, the expected
value of θ conditional on all the realized signals; as N grows, these approach 1 with high probability
when θ = 1, and 0 when θ = 0, so expected revenue quickly converges to 0.5 for any interior r.
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Figure 4
Effect of N on Outcomes with Fixed Reserve Price r = 0.20 [Colour figure can be viewed at
wileyonlinelibrary.com] |

model if bidders only bid when their signals exceed x∗, but those who do bid
somehow learn the signals of the bidders who don’t – that is, expected revenue if
we shut down the effect the reserve price has on revenue through the truncation
of losing bids. Thus, the difference between the lowest and next-lowest curves
is the magnitude of this ‘bid truncation effect,’ while the difference between
the lighter solid line and the dashed line is the revenue loss (or gain when N is
small enough) due to the more obvious effects of a reserve price – the tradeoff
between the possibility of no sale and the higher price when exactly one bidder
bids.

Figure 5 compares expected profit across the two models, assuming the seller’s
valuation v0 is 0.20. (Recalling that E(Vi) = E(θ) = 1

2 under the common values
model, this means the seller’s valuation is 40% of the expected buyer valuation.)
Things to note in Figure 5:

• As in Figure 3 with revenue, the profit ranking – πCV (r) ≤ πPV (r) – holds
nearly everywhere. The only exception is for N = 2 at some reserve prices
below v0, at which πCV (r) > πPV (r). (This is because a sale is more likely
under the private values model, but sales at prices below v0 are unprofitable.)

• With v0 = 0.20, a strictly positive reserve is optimal under common values as
well as under private values, but r∗

CV < r∗
PV . Under both common and private

values, the optimal reserve price is decreasing in N ;12 and as N grows, the
increase in profits from setting r optimally (relative to setting r = 0) gets small
quickly under both models.

• With v0 = 0.20, when N is large (N = 10 and N = 20), the optimal reserve price
under common values is strictly below v0– the seller benefits from setting r
low enough to risk selling at a loss. (Under private values, the optimal reserve
is always above v0.)

12 Under an independent private values model, r∗
PV would be the same across N ; but this need not

hold when values are correlated, as they are here.
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Figure 5
Expected Profit as a Function of r for Various N (v0 = 0.20, α = 2) [Colour figure can be viewed at
wileyonlinelibrary.com] |

Figure 6 considers the case N = 5 and α = 2, and examines profit under different
values of v0. Some things to note in Figure 6:

• r̃ ≈ 0.41, so Theorem 2 applies to reserve prices above 0.41, a range which
includes r∗

PV for all values of v0, but only includes r∗
CV when v0 is quite high.

• For each value of v0, r∗
CV < r∗

PV ; and for each value of v0 and every value of
r (both above and below r̃), πCV (r) ≤ πPV (r).

• When v0 is small but positive, the profit-maximizing reserve price under the
common values model is strictly less than v0.
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Figure 6
Expected Profit as a Function of r for Various v0 (N = 5, α = 2) [Colour figure can be viewed at
wileyonlinelibrary.com] |

Also note that when v0 = 0.05, the finding that r∗
CV = 0 is not an artifact of

a coarse grid: even a reserve price of 0.00001 would reduce expected profit.13

• Except when v0 is quite high, the gain from setting the reserve price optimally
under the common values model, relative to not using a reserve at all, is fairly
small.

13 When N = 5, a reserve of 0.00001 would still require a bidder to have a signal of at least 0.16
to bid, and would therefore cause nearly 30% of bidders not to bid when θ = 0.
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Figure 7
Expected Profit as a Function of r for Various α and N (v0 = 0.20) [Colour figure can be viewed at
wileyonlinelibrary.com] |

Figure 7 shows how expected profit varies with α, the precision of the bidders’
signals. Things to note:

• As individual signals get more precise, the effects of a reserve price get smaller.
• Across both values of N and all values of α tested, πCV (r) ≤ πPV (r) for all r,

and r∗
CV < r∗

PV .
• r∗

CV is below v0 when signals are very precise (high α).
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Figure 8
Expected Profit, N = 5, α = 2, v0 = 0, Common Value Vi = 1 + θ [Colour figure can be viewed at
wileyonlinelibrary.com] |

Finally, Table I in Appendix A(ii) summarizes a few key measurements from
each graph in Figures 3, 5, 6 and 7. The table shows the value of the optimal
reserve price (in terms of the increase in expected profit relative to r = 0) for
both the private and common value models, as well as the gain or loss under
the common values model if the reserve price optimal under private values were
used (again relative to no reserve). The patterns that emerge are these:

• First, the optimal reserve price nearly always gives less than half as much
benefit under common values as under private values.

• And second, when v0 is low, mistakenly using r∗
PV when there are actually

common values is worse than using no reserve price; although when v0 is
high, mistakenly using r∗

PV is not so bad.

Aside from these, two patterns are consistent across Figures 3, 5, 6, and 7: the
profit-maximizing reserve price is lower under common values in every case;
and in every case, πCV (r) ≤ πPV (r) for every r ≥ v0, not just those above r̃.
(The only case so far with πCV (r) > πPV (r) anywhere is for some values of
r < v0 in the N = 2 case in Figure 5.)

However, it is worth noting that at least this last result does not hold univer-
sally – that is, it is not true that for every possible common values model and
its corresponding private values model, πCV (r) ≤ πPV (r) for every r ≥ v0. For
a counterexample to this possible conjecture, fix N = 5 and α = 2, and modify
the baseline example by letting the common value be Vi = 1 + θ rather than θ

(and modify the private value analogue accordingly). For v0 = 0 and r below
about 1.2, the common values model predicts higher profit than the private values
model. Figure 8 illustrates this example.

What’s happening here is this. Any reserve price above v0 trades off a cost
(giving up some profitable sales) versus a benefit (improving the price when a
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sale occurs). For r < r̃, the private values model predicts a greater decrease in
the likelihood of the sale; while for any r, it predicts a more favorable impact on
price. By inflating valuations to 1 + θ instead of θ , this example increases bids
by 1 as well, while leaving the seller’s valuation unchanged. Thus, the value of
the sales given up by setting a reserve is magnified, relative to the changes in
price when a sale occurs. Thus, for r just above 1, the reserve price hurts more
under private values than under common values.

Of course, Figure 8 also shows that this reversal is not so practically relevant,
since both models suggest that a nonbinding reserve r ≤ 1 is optimal. I have
not been able to find an example yet where πCV is above πPV (or RevCV is
above RevPV ) at reserve prices that are ‘better than’ r = 0, nor an example where
the profit-maximizing reserve price is higher under common values than under
private values. Still, I have not been able to show that such cases are impossible.

V(iv). An Alternative Model with Continuous θ

To make sure that the effects found so far do not hinge on the discreteness of θ

and the resulting extremeness of valuations, I consider a second example with
continuous-valued θ . This time, θ is distributed uniformly on [0, 1]. Once again,
bidder signals take values in [0, 1], and are i.i.d. conditional on the value of θ ,
this time with density

f (s|θ) = 1 + 4
(
θ − 1

2

) (
s − 1

2

)
Thus, when θ < 1

2 , f ( · |θ) is decreasing, so lower signals are more likely;
and when θ > 1

2 , f ( · |θ) is increasing, and higher signals are more likely.
One difference between this example and the previous one is that signals are

not ‘unboundedly strong.’ Even a signal of Xi = 0 or Xi = 1 leaves a chance of
a wide range of possible θ , and as a result, E(θ |X ) does not have full support.
This means that for reserves below a certain level, no bidders will be deterred
from bidding; and for reserves above a certain level, nobody will bid.14 Another
feature of this model is that for N < 5, the CDF’s of R(1) and V (1) never cross,
so r̃ = 0, and Theorem 2 therefore applies to all reserve prices.

Figures 12 and 13 and Table II in Appendix A(iii) show expected revenue
and profit for this example, for various values of N and v0, and summarize key
measurements. The main takeaways from this example are similar to those from
the discrete-θ example:

• πCV (r) ≤ πPV (r) nearly everywhere15

14 The maximum reserve at which everybody bids with probability 1 depends on N : it is r ≈ 0.20
for N = 3, r ≈ 0.145 when N = 5, r ≈ 0.115 when N = 7, and r ≈ 0.085 when N = 10. The minimum
reserve at which nobody bids is r = 2

3 regardless of N.
15 For small N and v0 sufficiently high (not shown), πCV > πPV for some r < v0; and for N = 10,

RevCV > RevPV for some positive reserve prices below r̃ (shown in figure 12, pane 7), but at reserves
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• r∗
CV < r∗

PV , except when both are 0
• r∗

CV is sometimes below v0, and sometimes 0 even when v0 > 0

Thus, as with discrete θ , I find that most of the time, the optimal reserve price, and
the expected profit at any given positive reserve price, is lower under common
values than under the corresponding private values model. Table II shows that
under this example, when v0 is 0, 0.10, or even 0.20, even the optimal reserve
price gives basically no benefit under common values, and when v0 = 0.35, the
benefit is about half what it would be under private values, once again similar to
the findings above for discrete θ .

VI. EXTENSIONS

VI(i). When v0 Depends on θ (the ‘Seller’s Curse’)

Up to now, I’ve assumed v0 is constant – the seller has a fixed valuation for the
unsold object. In many settings – for example, if the seller’s valuation is based
on the same use as the buyers’ valuations, or on resale prospects – it is natural
to think the seller’s valuation would vary along with the buyers’. With a posi-
tive reserve price, this introduces an adverse selection problem analogous to the
winner’s curse: the seller is most likely to retain the object exactly when it is
least valuable to her. This curse further reduces the benefit of a reserve price.

Figure 9 illustrates this problem, comparing πCV (r) when v0 = βθ to the case
where v0 is fixed at βE(θ) = 1

2β, using the discrete-θ example (with α = 2)
from the previous section. (Figure 14 in Appendix A(iii) does the same for the
continuous-θ example.) At r = 0, of course, the two give the same outcome, since
the object is always sold; but for any r > 0, expected profits (and therefore the
benefit of a reserve price) are substantially lower when the seller’s valuation
depends on θ . In most of these cases, r = 0 was not optimal when v0 was fixed,
but becomes optimal when v0 depends on θ .

It is worth noting one case – the third pane, corresponding to the discrete-θ
example with N = 3 and a high seller valuation. While the value of a reserve
price goes down significantly when v0 is a function of θ rather than fixed, the
optimal reserve price actually goes up. This is because when v0 = 0.7θ and the
reserve price is already being set reasonably high, the seller effectively ‘gives
up’ on selling when θ = 0, and optimizes primarily for the case where θ = 1
and her residual valuation is 0.7; the optimal reserve price turns out to be right
around 0.7, although the expected profit is only slightly higher than from setting
r = 0. (This optimal reserve is still below the seller’s optimal reserve under the
analogous private values model with v0 = 0.35, which is about 0.78.)

giving lower revenue than r = 0. Aside from these exceptions, πCV ≤ πPV and RevCV ≤ RevPV

everywhere in every parameterization I’ve tried.
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Figure 9
Expected Profit, Common Values, Discrete θ , Fixed v0 versus v0 = βθ [Colour figure can be viewed
at wileyonlinelibrary.com] |

VI(ii). Seller’s Incentives to Disclose Information

If the seller’s valuation depends on θ , it might also be natural to suppose that the
seller, like the buyers, may have some private information about θ . If the seller’s
information is verifiable, the result from Milgrom and Weber [1982, Theorem
18] extends to our setting, and the seller can always gain ex ante by committing
to reveal her information (and adjusting the reserve price accordingly).16

Numerical examples suggest that the seller is likely to gain from revealing her
information even if she does not alter the reserve price based on that information.
Consider the discrete example from earlier, with α = 2 and v0 = βθ . Suppose
now that the seller also receives a signal S about θ ; for simplicity, suppose the
seller’s signal is binary, and matches θ with probability 3

4 .17

16 The result from Milgrom and Weber says that for any reserve price r̂ with threshold signal x∗(r̂),
the seller can do weakly better by always revealing the value s of her own information S and then
setting the reserve price r(s) that, conditional on s, gives the same threshold signal x∗(r(s)|s) = x∗(r̂)
as before. While the result in Milgrom and Weber is for v0 fixed, this new policy does not alter the
set of signal realizations (S, X ) under which the object is sold, so the dependence of v0 on X has no
effect on expected profit and the result therefore carries over to this setting.

17 That is, Pr(S = 0|θ = 0) = Pr(S = 1|θ = 1) = 3
4 , and Pr(S = 1|θ = 0) = Pr(S =

0|θ = 1) = 1
4 .
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Figure 10
Seller’s Incentive to Reveal Verifiable Information (Discrete θ , α = 2) [Colour figure can be viewed at
wileyonlinelibrary.com] |

Figure 10 compares the seller’s expected profit at each reserve price when she
reveals S (the top curve) to when she does not reveal S (the bottom curve). In all
four examples – N = 3 and 6, v0 = 0.4θ and 0.7θ – the seller’s expected profit is
strictly higher at every reserve price when she reveals S. The increase in profits
from revealing S and setting reserve optimally ranges from 2% (when N = 6 and
v0 = 0.4θ ) to 22% (when N = 3 and v0 = 0.7θ ).

In three cases, the optimal reserve price is r = 0 whether or not S is revealed
(and regardless of its realization if it is), so no adjustment is necessary. In the
remaining case (N = 3 and v0 = 0.7θ ), nearly all of the seller’s benefit comes
from the disclosure of the information, not from the subsequent re-optimization
of the reserve price. That is, relative to a policy of not disclosing S and setting
the reserve price optimally at 0.705, the seller can increase expected profit by
21.4% by committing to disclose S and still setting r = 0.705, and only an addi-
tional 0.8% by switching to the new optimal reserve price for each realized value
of S.18 The extension of Milgrom and Weber’s result guarantees the seller can
gain by revealing her information and adjusting the reserve price accordingly;
this example suggests the gain can be substantial, and that nearly all of it comes

18 When S is not disclosed, the optimal reserve of r = 0.705 gives expected profit of 0.0646. If the
seller discloses S and still sets r = 0.705, expected profit rises to 0.0784. If she discloses S and sets
r optimally – at 0.753 when S = 1 and 0.648 when S = 0 – expected profit is 0.0790.
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simply from revealing the information, not from the subsequent reserve price
adjustment.19

VI(iii). One Final Example – A Simple Linear Model

Finally, I consider one other example, where bidder signals are independent and
valuations have additive private and common value components. Let {Xi} be
distributed independently and uniformly on [0, 1], and let

Vi = (1 − λ)
N + 2

2N
Xi + λ

∑N
j=1 Xj

N

That is, a bidder’s valuation is 1−λ times his own signal, plus λ times the average
signal, so λ = 0 corresponds to pure private values and λ = 1 to pure common
values. (The N+2

2N term is a normalization to ensure that in the absence of a
reserve price, expected revenue is constant as λ changes, so that in some sense
we’re comparing apples to apples. However, this example is not an instance of
the general model presented in Section IV: the joint distribution of equilibrium
bids changes with λ, so the λ = 0 case is not the ‘observationally-equivalent
private values case’ of other values of λ. This is a completely separate model
being offered to show that the results seem to hold more broadly.)

Figure 11 illustrates this example, giving the expected revenue and profit
curves for five values of λ (0, 0.25, 0.5, 0.75, and 1) for several combinations of
N and v0.

In this example, the relevant rankings across models can all be established
analytically. For a given reserve price r, it’s straightforward to calculate that the
bidding threshold x∗, when it is interior, satisfies r = E(Vi|Xi = X (1) = x∗) =
N+2−λ

2N x∗, and therefore that

x∗ = 2N

N + 2 − λ
r

which is strictly increasing in λ. From this, I show the following:

Result 1. In the linear-independent example, expected revenue at r = 0 is constant
in λ. For any r > 0 giving a nonzero probability of sale,

19 If the seller had access to unverifiable information, she would always have an incentive to
report the best possible news, so ‘cheap talk’ disclosure would not be credible, but reserve price
could be used as a costly signal. Jullien and Mariotti [2006] and Cai, Riley and Ye [2007] study the
problem of seller signaling via reserve price in a slightly different setting (see also Lamy [2010]). In
the supplemental materials, I illustrate the equilibria (both separating and pooling) of the example
in this section (with N = 3 and v0 = 0.7θ ); I find that all separating equilibria give the seller less
than half the profit she would get from the optimal pooling equilibrium, and therefore that sellers
appear to have little incentive to acquire unverifiable information.
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Figure 11
Expected Revenue and Profit for Linear-Independent Example [Colour figure can be viewed at
wileyonlinelibrary.com] |
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(i) the probability of a sale is strictly decreasing in λ

(ii) expected revenue is strictly decreasing in λ

(iii) if r ≥ v0, expected profit is strictly decreasing in λ

Further, the revenue and profit-maximizing reserve prices are both strictly
decreasing in λ.

The calculation is shown in the supplemental materials. Note that if signals
were i.i.d. draws from any arbitrary distribution F rather than the uniform, the
three numbered parts of this result would still hold, provided the private-value
part of bidder valuations was normalized appropriately.20

VII. CONCLUSION

When bidders have private values, a reserve price offers a seller a way to avoid
unprofitable sales, but also a way to further increase profits, by trading off a
lower likelihood of sale against a higher average price. In this paper, I show this
tradeoff is generally less favorable when bidders have interdependent or common
values. I offer theoretical results that a high reserve price is less likely to be met,
and less profitable, when bidders have common rather than private values; and
I offer simulation results showing that the same profit ranking very often holds
for any positive reserve price, not just high ones, and that the profit-maximizing
reserve is typically lower under common values as well. Put another way, when
bidders have interdependent values, analysis based on the assumption of private
values is likely to overestimate both the optimal reserve price and the benefit of
setting it. Thus, common values can be added to the list of departures from the
standard workhorse model which would favor lower reserve prices – and which
might help to explain the low reserve prices often observed empirically.

One reason for these findings is that beyond the usual tradeoff between like-
lihood of sale and minimum price, a reserve price also has an added cost under
common values: it can reduce the expected price paid even when it does not bind,
by concealing the bids of losing bidders. As a result, under common values, the
profit-maximizing reserve price is sometimes below the seller’s own valuation,
and sometimes 0 even when the seller’s valuation is positive. These effects are
further magnified when the seller’s valuation is interdependent with that of the
buyers. Thus, while a reserve price is often an effective tool to increase seller
profits in environments where buyers are confident of their own willingness to
pay (private values), this paper shows they should be used much more cautiously
– if at all – when bidder values have a significant common component.

20 Like the N+2
2N term in the uniform case, the normalization would be to make expected

revenue when r = 0 independent of λ for each realization of the second-highest signal. Specifi-
cally, this would mean defining valuations as Vi = (1 − λ)h(Xi) + λ 1

N

∑N
j=1Xj , where h(x) =

1
N

(
2x + (N − 2)E(Xj |Xj < x)

)
.
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APPENDIX

A(i). Details of Simulations

For the first example (discrete θ ), note that by Bayes’ Law,

E {θ |X = x} =
1
2

∏N
i=1 αxα−1

i
1
2

∏N
i=1 αxα−1

i + 1
2

∏N
i=1 α(1 − xi)

α−1

= 1

1 + ∏N
i=1

(1−xi)
α−1

xα−1
i

(1)

and

E
{
θ |X (1) = x1

} =
1
2 αxα−1

1 (xα
1 )N−1

1
2 αxα−1

1 (xα
1 )N−1 + 1

2 α(1 − x1)
α−1(1 − (1 − x1)

α)
N−1

= 1

1 + (1−x1)α−1

xα−1
1

(
1−(1−x1)α

xα
1

)N−1(2)

and

E
{
θ |(X1, . . . , Xk) = (x1, . . . , xk), {Xk+1, . . . , XN } < x∗}

=
1
2

∏k
i=1 αxα−1

i

∏N
i=k+1 (x∗)α

1
2

∏k
i=1 αxα−1

i

∏N
i=k+1 (x∗)α + 1

2

∏k
i=1 α(1 − xi)

α−1 ∏N
i=k+1 (1 − (1 − x∗)α)

= 1

1 +
(

1−(1−x∗)α

(x∗)α

)N−k ∏k
i=1

(1−xi)
α−1

xα−1
i

(3)

For the simulations, the following was done in Matlab:

1. 500,000 sets of simulated signal realizations were randomly generated, by picking
θ ∈ {0, 1} at random for each simulation, generating N independent uniform random
variables {εi}, and letting Xi = F−1(εi|θ).

2. For each set of realized signals, the highest two private valuations V (1) = E(θ |X =
(x(1), x(1), x(3−N ))) and V (2) = E(θ |X = (x(2), x(2), x(3−N ))) were calculated via (1).

3. For each r ∈ {0, 0.005, 0.010, 0, 015, . . . , 0.995, 1.000} , x∗ was calculated via Matlab’s
numerical solver as the solution to E(θ |X (1) = x∗) − r = 0 via (2).

4. For each simulation and each r, the outcome was calculated under each model by deter-
mining which bidders have signals above x∗ (common values) or a valuation above r
(private values) and calculating what price would be paid, if any (using (3) for the com-
mon values case), and subtracting the seller’s valuation v0 in case of a sale. Revenue and
profit curves were then produced by averaging across simulations, and optimal reserve
prices were determined as the grid point giving the highest revenue/profit.

5. The same simulated valuations were used to calculate R(1) and V (1) as defined in the
text, and r̃ was calculated as the highest crossing point of their empirical CDF’s.
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For the second example (continuous θ ), the simulations were done the same way, but
calculation of E(θ |X ) and E(θ |X (1)) were a bit more laborious. Letting P denote the prior
on θ and p(X |t) the conditional density of X given θ = t, Bayes’ Law gives us

E(θ |X ) =
∫ 1

0
θ

P(θ)p(X |θ)∫ 1
0 P(t)p(X |t)dt

dθ =
∫ 1

0 tp(X |t)dt∫ 1
0 p(X |t)dt

since P is uniform. So

E(θ |(X1, . . . , Xk) = (x1, . . . , xk), {Xk+1, . . . , XN } < x∗)

=
∫ 1

0 t
∏k

i=1 f (xi|t) ∏N
i=k+1 F(x∗|t)dt∫ 1

0

∏k
i=1 f (xi|t) ∏N

i=k+1 F(x∗|t)dt

Plugging in f (xi|t) = 1 + 4(t − 1
2 )(xi − 1

2 ) and F(x∗|t) = x∗ (
1 + 4(t − 1

2 )( 1
2 x∗ − 1

2 )
)

(cal-
culated via integration), some algebra and a change of variables allow this to be rewritten
as

1

2
+ 1

4

∫ 2
−2 T

∏N
i=1(1 + Tai)dT∫ 2

−2

∏N
i=1(1 + Tai)dT

where ai = xi − 1
2 for i = 1, 2, . . . , k and ai = 1

2 x∗ − 1
2 for i > k.

Setting a1 = x − 1
2 and ai = 1

2 x − 1
2 , then, we integrated both numerator and denomina-

tor (separately for each N – Matlab yielded closed-form integrals) to get an expression for
E(θ |X (1) = x), and found x∗ by solving E(θ |X (1) = x)− r = 0 numerically within Matlab.
To calculate simulated bids, we simplified the last expression for E(θ |X ) to

E(θ |X ) = 1

2
+ 1

4
·

24

3 A1 + 26

5 A3 + 28

7 A5 + 210

9 A7 + . . .

4 + 24

3 A2 + 26

5 A4 + 28

7 A6 + 210

9 A8 + . . .

where

A1 =
∑

i

ai

A2 =
∑ ∑

i<j

aiaj

A3 =
∑ ∑ ∑

i<j<k

aiajak

A4 =
∑ ∑ ∑ ∑

i<j<k<l

aiajak al

and so on, with An therefore equal to
∏

i ai and An+1 = An+2 = · · · = 0, and wrote code to
calculate this within Matlab for each simulation. The simulations were then done just as in
the discrete-θ case.
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A(ii). Some Vital Statistics

TABLE I
SUMMARIZING FIGURES 3, 5, 6 AND 7

Figure 3 – discrete θ , α = 2, v0 = 0 (expected revenue)
N 2 3 4 6 10 20

πPV (r∗
PV )/πPV (0) − 1 33.1% 8.8% 3.6% 0.9% 0.1% 0.0%

πCV (r∗
CV )/πCV (0) − 1 2.2% 0.0% 0.0% 0.0% 0.0% 0.0%

πCV (r∗
PV )/πCV (0) − 1 −13.0% −14.9% −14.8% −12.3% −10.9% −8.3%

Figure 5 – discrete θ , α = 2, v0 = 0.20
N 2 3 4 6 10 20

πPV (r∗
PV )/πPV (0) − 1 146% 63% 47% 38% 34% 33%

πCV (r∗
CV )/πCV (0) − 1 65% 25% 17% 12% 12% 18%

πCV (r∗
PV )/πCV (0) − 1 44% 14% 6% 4% 7% 13%

Figure 6 – discrete θ , N = 5, α = 2
v0 0.00 0.05 0.10 0.20 0.30 0.50

πPV (r∗
PV )/πPV (0) − 1 2% 8% 15% 41% 99% *

πCV (r∗
CV )/πCV (0) − 1 0% 0% 1% 14% 49% *

πCV (r∗
PV )/πCV (0) − 1 −14% −12% −9% 5% 39% *

Figure 7 – discrete θ , v0 = 0.20
N 3 3 3 6 6 6
α 1.5 2.0 3.0 1.5 2.0 3.0

πPV (r∗
PV )/πPV (0) − 1 38% 63% 49% 27% 38% 34%

πCV (r∗
CV )/πCV (0) − 1 14% 25% 24% 6% 12% 25%

πCV (r∗
PV )/πCV (0) − 1 3% 14% 20% 1% 4% 19%

|
Notes:* When N = 5, α = 2, and v0 = 0.50 in the discrete-θ example, πPV (0) = πCV (0) < 0, so the ratios are excluded
because they are meaningless.
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A(iii). Continuous-θ Simulation Results

Figure 12
Expected Revenue and Profit, Continuous-θ Example [Colour figure can be viewed at wileyonlineli-
brary.com] |
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Figure 13
Expected Revenue and Profit, Continuous-θ Example (cont’d) [Colour figure can be viewed at
wileyonlinelibrary.com] |
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TABLE II
VITAL STATISTICS FROM FIGURES 12 AND 13

Figure 12 – continuous θ , low v0
N 3 5 7 10 3 5 7 10
v0 0 0 0 0 0.10 0.10 0.10 0.10

πPV (r∗
PV )/πPV (0) − 1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

πCV (r∗
CV )/πCV (0) − 1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

πCV (r∗
PV )/πCV (0) − 1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% −0.4%

Figure 13 – continuous θ , high v0
N 3 5 7 10 3 5 7 10
v0 0.20 0.20 0.20 0.20 0.35 0.35 0.35 0.35

πPV (r∗
PV )/πPV (0) − 1 6.0% 3.3% 3.2% 3.5% 66% 43% 38% 37%

πCV (r∗
CV )/πCV (0) − 1 0.3% 0.1% 0.0% 0.0% 35% 23% 19% 18%

πCV (r∗
PV )/πCV (0) − 1 −0.5% −1.7% −1.2% −0.7% 26% 22% 19% 18%

Figure 14
Expected Profit, Common Values, Continuous θ , Fixed v0 versus v0 = βθ [Colour figure can be
viewed at wileyonlinelibrary.com] |
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