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“Common Values and Low Reserve Prices”

D1 Proof of Theorem 1

Fix v0. As in the text, define πCV (r) and πPV (r) as the seller’s expected profit at reserve
price r under the two models, V (k) the kth-highest valuation under the private values model,
and

v(x, y) = E
{
u(x, y,X(3−N))|X(1) = x,X(2) = y

}
Under the private values model, expected profit is V (2) − v0 if V (2) ≥ r (so the winner pays
the second-highest bid, equal to the second-highest valuation), r − v0 if V (1) ≥ r > V (2) (so
the winner pays the reserve price), and 0 otherwise; so we can write it as

πPV (r) = EX
{
1V (1)≥r>V (2)(r − v0) + 1V (2)≥r(V

(2) − v0)
}

= EX
{
1V (1)≥r(r − v0)− 1V (2)≥r(r − v0) + 1V (2)≥r(V

(2) − v0)
}

= Pr(V (1) ≥ r)(r − v0) + EX
{
1V (2)≥r(V

(2) − r)
}

= Pr(V (1) ≥ r)(r − v0) + EX max{0, V (2) − r}

(The second line follows from the first because V (2) ≥ r implies V (1) ≥ r, so 1V (1)≥r>V (2) =
1V (1)≥r − 1V (2)≥r.)

As for the common values case, the reserve price binds if X(1) ≥ x∗ > X(2), and does not
bind if X(2) ≥ r (in which case the winner pays the second-highest bid v(X(2), X(2)) = V (2)),
so

πCV (r) = EX
{
1X(1)≥x∗>X(2)(r − v0) + 1X(2)≥x∗

(
v(X(2), X(2))− v0

)}
= EX

{
1X(1)≥x∗(r − v0) + 1X(2)≥x∗

(
v(X(2), X(2))− r

)}
= Pr(X(1) ≥ x∗)(r − v0) + EX

{
1X(2)≥x∗

(
V (2) − r

)}
≤ Pr(X(1) ≥ x∗)(r − v0) + EX max{0, V (2) − r}

Thus,
πCV (r)− πPV (r) ≤ Pr(X(1) ≥ x∗)(r − v0) + EX max{0, V (2) − r}

−Pr(V (1) ≥ r)(r − v0)− EX max{0, V (2) − r}

=
(
Pr(X(1) ≥ x∗)− Pr(V (1) ≥ r)

)
(r − v0)

Finally, I show that X(1) ≥ x∗ −→ V (1) ≥ r, and therefore Pr(X(1) ≥ x∗) ≤ Pr(V (1) ≥ r).
Recall from the text that x∗ solves

r = EX(2)|X(1)=x∗v(x∗, X(2))
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Due to affiliation, E{v(x,X(2))|X(1) = x} is increasing in x; so

X(1) ≥ x∗

↓
EX(2)|X(1)

{
v
(
X(1), X(2)

)}
≥ r
↓

EX(2)|X(1)

{
v
(
X(1), X(1)

)}
≥ r
↓

v
(
X(1), X(1)

)
≥ r
↓

V (1) ≥ r

Thus, Pr(X(1) ≥ x∗) ≤ Pr(V (1) ≥ r). This means that in the common values setting, any
reserve price r is more likely to prevent a sale than in the private-values setting (part (i) of
the theorem). If r ≥ v0, then

πCV (r)− πPV (r) ≤
(
Pr(X(1) ≥ x∗)− Pr(V (1) ≥ r)

)
(r − v0) ≤ 0

proving part (iii); repeating the argument with v0 = 0 gives part (ii). 2

D2 Proof of Theorem 2

As in the second-price auction, profits in the private values case are

πPV (r) = Pr(V (1) ≥ r)(r − v0) + EX max{0, V (2) − r}

As for the common values case, x∗ is the same as in the second-price auction,

r = E
{
u (x∗, {Xj}j 6=i)

∣∣∣∣Xi = x∗,max
j 6=i

Xj < x∗
}

with a sale occurring if and only if X(1) ≥ x∗. If X(1) ≥ x∗ > X(2), the sale occurs at price
r. If X(2) ≥ x∗, then the sale occurs at the price where bidder i(2) drops out; but that price
depends on the realizations of the lower signals, and also depends on x∗, since bidder 2 will
have learned (from equilibrium bidding) the signals of those bidders above x∗, but not those
below x∗.

To capture all this in notation, for k > 2, let Z(k) denote a garbling of X(k) which is
equal to X(k) if X(k) ≥ x∗, and equal to 0 otherwise. That is, Z(k) tells you exactly X(k) if
X(k) ≥ x∗; but if X(k) < x∗, Z(k) only tells you that X(k) < x∗, not its exact value. Thus,
the realization of Z(k) is exactly the information the other bidders learn about bidder i(k)’s
signal from equilibrium bidding in the common-values case. Let X(3−N) = (X(3), . . . , X(N))
and Z(3−N) = (Z(3), . . . , Z(N)).

Finally, define

R(x, z(3−N)) = E
{
u(x, x,X(3−N))|X(1) = X(2) = x, Z(3−N) = z(3−N)

}

D2



For a given realization x ≥ x∗ of X(2) and z(3−N) of the “garbled” losing bids Z(3−N), this
is the price at which the second-highest bidder will drop out, and therefore the price that is
paid. Then we can write

πCV (r) = EX
{
1X(1)≥x∗>X(2)(r − v0) + 1X(2)≥x∗

(
R(X(2), Z(3−N))− v0

)}
= EX

{
1X(1)≥x∗(r − v0)− 1X(2)≥x∗(r − v0) + 1X(2)≥x∗

(
R(X(2), Z(3−N))− v0

)}
= Pr(X(1) ≥ x∗)(r − v0) + EX

{
1X(2)≥x∗

(
R(X(2), Z(3−N))− r

)}
= Pr(X(1) ≥ x∗)(r − v0) +

∫ ∞
x∗

(
EZ(3−N)|X(2)=x

{
R(x, Z(3−N))

}
− r
)
dF (2)(x)

where F (2)(·) is the distribution of X(2).
Next, I make a standard “linkage principle” argument that for any x, the “garbling” of

losing bids due to the reserve price reduces the expected price paid conditional on X(2). To
prove this, note that

EZ(3−N)|X(2)=xR(x, Z(3−N)) = EZ(3−N)|X(2)=x

{
EX(3−N)|X(1)=x,X(2)=x,Z(3−N)u(x, x,X(3−N))

}
≤ EZ(3−N)|X(2)=x

{
EX(3−N)|X(2)=x,Z(3−N)u(x, x,X(3−N))

}
= EX(3−N)|X(2)=xu(x, x,X(3−N))

The inequality is because in the second line, the expectation over X(3−N) is conditional on
all the different values X(1) could take conditional on X(2) = x – all of which are above x
– while in the first line, the expectation is taken conditional on X(1) = x; the third line is
simply iterated expectations. This means that

πCV (r) = Pr(X(1) ≥ x∗)(r − v0) +

∫ ∞
x∗

(
EZ(3−N)|X(2)=x

{
R(x, Z(3−N))

}
− r
)
dF (2)(x)

≤ Pr(X(1) ≥ x∗)(r − v0) +

∫ ∞
x∗

(
EX(3−N)|X(2)=x

{
u(x, x,X(3−N))

}
− r
)
dF (2)(x)

= Pr(X(1) ≥ x∗)(r − v0) + EX(2)1X(2)≥x∗
(
EX(3−N)|X(2)

{
u(X(2), X(2), X(3−N))

}
− r
)

= Pr(X(1) ≥ x∗)(r − v0) + EX1X(2)≥x∗
(
u(X(2), X(2), X(3−N))− r

)
= Pr(X(1) ≥ x∗)(r − v0) + EX1X(2)≥x∗

(
V (2) − r

)
≤ Pr(X(1) ≥ x∗)(r − v0) + EX max

{
0, V (2) − r

}
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and so subtracting,

πCV (r)− πPV (r) ≤ Pr(X(1) ≥ x∗)(r − v0) + EX max{0, V (2) − r}

−Pr(V (1) ≥ r)(r − v0)− EX max{0, V (2) − r}

=
(
Pr(X(1) ≥ x∗)− Pr(V (1) ≥ r)

)
(r − v0)

Now, recall that x∗ is the value of x solving

r = E
{Xj}j 6=i|Xi=x

{
u (x, {Xj}j 6=i)

∣∣∣∣max
j 6=i

Xj < x

}
and that due to affiliation, the right-hand side is strictly increasing in x. Thus, X(1) ≥ x∗ is
equivalent to

r ≤ E
{Xj}j 6=i|X(1)

{
u
(
X(1), {Xj}j 6=i

) ∣∣∣∣max
j 6=i

Xj < X(1)

}
= R(1)

as defined in the text; so

πCV (r)− πPV (r) ≤
(
Pr(R(1) ≥ r)− Pr(V (1) ≥ r)

)
(r − v0)

= ((1− FR(1)(r))− (1− FV (1)(r))) (r − v0)

= (FV (1)(r)− FR(1)(r)) (r − v0)

Recall that r̃ was defined in the text such that r ≥ r̃ implies FV (1)(r) ≤ FR(1)(r), proving
part (i). If r ≥ r̃ and r ≥ v0, then πCV (r)−πPV (r) ≤ (FV (1)(r)− FR(1)(r)) (r− v0) ≤ 0 (part
(iii)). Repeating the argument with v0 = 0 establishes RevCV (r) ≤ RevPV (r) (part (ii)). 2

D3 Proof of Result 1

Let Revλ(r) and πλ(r) denote expected revenue and profit, respectively, at reserve price r
given a value of λ. First, note that Revλ(0) does not depend on λ. This is because given
realizations (x(1), . . . , x(N)) of the signals, the second-highest bidder drops out at the price

E
(
Vi|X(1) = X(2) = Xi = x(2), X(3−N) = x(3−N)

)
= (1− λ)

N + 2

2N
x(2) + λ

1

N

(
x(2) + x(2) + x(3) + . . .+ x(N)

)
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Since, conditional on the realization x(2) of X(2), the types of the bidders who dropped out
before him are independently uniform on [0, x(2)], this has expected value, given x(2), of

(1− λ)
N + 2

2N
x(2) + λ

1

N

(
2x(2) + E

{
X(3) + . . .+X(N)|X(2) = x(2)

})
= (1− λ)

N + 2

2N
x(2) + λ

1

N

(
2x(2) + (N − 2)

1

2
x(2)
)

= (1− λ)
N + 2

2N
x(2) + λ

N + 2

2N
x(2) =

N + 2

2N
x(2)

which does not depend on λ.
Second, as noted in the text, x∗ = 2N

N+2−λr is increasing in λ, so the probability of a sale,

which is Pr(X(1) > x∗), is decreasing in λ, giving part (i).
Third, note that conditional on a realization x(2) > x∗ of X(2), the expected price at

which the second-highest bidder drops out is independent of x∗. To see this, consider the
case of N = 3. Given a realization of X, renumber the bidders such that X1 > X2 > X3.
When bidder 2 drops out, bidder 3 is already out. If he bid and then dropped out, the
realization x(3) of X(3) would be inferred, and bidder 2 would drop out at price

B(x(2), x(3)) = (1− λ)
5

6
x(2) + λ

1

3
(x(2) + x(2) + x(3)) =

(
5

6
− 1

6
λ

)
x(2) +

λ

3
x(3)

If bidder 3 did not bid because of a reserve price r, then bidder 2 takes the expectation
of B(x(2), x(3)) over the values of X(3) at which bidder 3 would not have bid. Importantly,
conditional on X(2) = x(2), the distribution of X(3) is uniform over [0, x(2)]; so overall, the
expected price at which bidder 2 drops out, given X(2) = x(2) > x∗, is

B(x(2)) ≡ x∗

x(2)
EX(3)<x∗B(x(2), X(3)) +

x(2) − x∗

x(2)

∫ x(2)

x∗
B(x(2), x)

dx

x(2) − x∗

=
x∗

x(2)

((
5

6
− 1

6
λ

)
x(2) +

λ

3

x∗

2

)
+

1

x(2)

∫ x(2)

x∗

((
5

6
− 1

6
λ

)
x(2) +

λ

3
x

)
dx

=

(
5

6
− 1

6
λ

)
x∗ +

λ

6

(x∗)2

x(2)
+
x(2) − x∗

x(2)

(
5

6
− 1

6
λ

)
x(2) +

1

x(2)
λ

6

(
(x(2))2 − (x∗)2

)
=

(
5

6
− 1

6
λ

)
x(2) +

1

x(2)
λ

6

(
(x(2))2

)
=

5

6
x(2)

which does not depend on x∗ (or λ) at all.22 The same holds for general N : conditional on

22This is in contrast to the affiliated case, such as in the proof of Theorem 2, where truncation of losing
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X(2) = x(2) > x∗, the expected price at which the second-highest bidder drops out is N+2
2N

x(2),
and does not depend on x∗. Thus, if we let F2 denote the CDF of X(2) and B(X|x∗) denote
the price at which the second-highest bidder will drops out on the equilibrium path, we can
write expected profit as

πλ(r) = EX
{
1X(1)≥x∗>X(2)(r − v0) + 1X(2)≥x∗(B(X|x∗)− v0)

}
= EX

{
1X(1)≥x∗(r − v0) + 1X(2)≥x∗(B(X|x∗)− r)

}
= Pr(X(1) ≥ x∗)(r − v0) +

∫ 1

x∗

(
EX|X(2)=xB(X|x∗)− r

)
dF (2)(x)

= Pr(X(1) ≥ x∗)(r − v0) +

∫ 1

x∗

(
B(x)− r

)
dF (2)(x)

where B(x) = N+2
2N

x.

Now, if r ≥ v0, the first term is decreasing in x∗. B(x∗) = N+2
2N

2N
N+2−λr = N+2

N+2−λr > r, so
the second term is strictly decreasing in x∗ (since the integrand is strictly positive at x = x∗).
Since B is independent of λ, λ effects πλ only through x∗, which is strictly increasing in λ; so
πλ(r) is decreasing in λ for r ≥ v0. That gives part (iii) of the result; repeating with v0 = 0
gives part (ii).

To prove the last part of the result, let F (1) denote the CDF of X(1), and differentiate πλ
to get

πλ(r) = (1− F (1)(x∗))(r − v0) +

∫ 1

x∗
(B(x)− r)dF (2)(x)

↓
π′λ(r) = 1− F (1)(x∗)− (x∗)′f (1)(x∗)(r − v0)− (1− F (2)(x∗))− (x∗)′

(
B(x∗)− r

)
f (2)(x∗)

= F (2)(x∗)− F (1)(x∗)− (x∗)′f (1)(x∗)(r − v0)− (x∗)′
(
B(x∗)− r

)
f (2)(x∗)

where (x∗)′ is the derivative of x∗ with respect to r. If we are in the range of r where x∗ < 1,
then x∗ = γr, where γ = 2N

N+2−λ , and (x∗)′ is therefore equal to γ. B(x∗)− r = N+2
2N

x∗ − r =
N+2

N+2−λr − r = λ
N+2−λr; so we can write this as

π′λ(r) = F (2)(γr)− F (1)(γr)− γf (1)(γr)(r − v0)− γ
(

λ
N+2−λr

)
f (2)(γr)

Since {Xi} are independently uniform, F (2)(x) = NxN−1 − (N − 1)xN and F (1)(x) = xN

bids reduces expected revenue. When a losing bid is not observed, its expectation is taken by the second-
highest bidder, conditional on X(1) = X(2) = x(2). With affiliated signals, this is pessimistic relative to
the truth that X(1) > X(2) = x(2); but with independent signals, once we’re already conditioning on the
value of X(2), the distribution of the lower signals does not depend on the value of X(1), and therefore this
effect vanishes. Similarly, with independent signals, second-price sealed-bid auctions are revenue-equivalent
to English auctions, while with affiliated signals, the latter are strictly revenue-superior.
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(properties of order statistics), so

π′λ(r) = N(γr)N−1(1− γr)− γN(γr)N−1(r − v0)− γr
(

λ
N+2−λ

)
N(N − 1)(γr)N−2(1− γr)

= N(γr)N−1(1− γr)
[
1− γ(r−v0)

1−γr −
λ

N+2−λ(N − 1)
]

Dividing by N(γr)N−1(1− γr) preserves sign, so

π′λ(r)
sign
= 1− γ(r − v0)

1− γr
− λ(N − 1)

N + 2− λ

This is strictly decreasing in r, so π is strictly quasiconcave. As long as γv0 < 1 (or x∗ < 1
at r = v0), this is strictly positive at r = v0 (since the second term vanishes and the third
term is strictly smaller than 1), and strictly negative as r → 1

γ
(since the denominator of

the second term goes to 0 while the numerator remains positive), so πλ(r) has a unique
maximizer characterized by π′λ(r) = 0. And finally, recalling that γ = 2N

N+2−λ is increasing in
λ, this last expression is strictly decreasing in λ; so where π′λ(r) = 0, π′λ′(r) < 0 for λ′ > λ,
meaning that arg maxπλ′(r) < arg max πλ(r), proving the final claim.

Also note that evaluating the integral in the expression for πλ, plugging in the expressions
for B, F2, and F1, and simplifying gives πλ(r) =

N(x∗)N−1(1− x∗)r +
(N + 2)(N − 1)

2N(N + 1)

(
1− (N + 1)(x∗)N +N(x∗)N+1

)
− (1− (x∗)N)v0

which was used for the charts in Figure 11. 2
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D4 Unverifiable Seller Information

Recall that we’re in the discrete θ example, with N = 3, α = 2, and v0 = 0.7θ; we’re
supposing that the seller gets a signal S with Pr(S = 0|θ = 0) = Pr(S = 1|θ = 1) = 0.75
and Pr(S = 1|θ = 0) = Pr(S = 0|θ = 1) = 0.25, and can choose to condition the reserve
price on the value of S, using reserve as a costly signal. I consider equilibria where the seller
plays a pure strategy; there are two types of equilibria.

Separating Equilibria

Here, a seller reveals his signal through his choice of reserve price, so bidders correctly infer
the value of S on the equilibrium path. Let r̂0 denote the equilibrium reserve price set when
S = 0, and r̂1 the reserve set when S = 1. To deter other reserve prices, I set off-equilibrium-
path beliefs to Pr(S = 0|r /∈ {r̂0, r̂1}) = 1. For (r̂0, r̂1) to be an equilibrium, a seller with
S = 1 must prefer setting r = r̂1 (and the subsequent belief that S = 1) to setting any other
reserve price and being met with the belief that S = 0. A seller with S = 0 must prefer
setting r = r̂0 and revealing that S = 0 to any other reserve price with the belief S = 0, and
also to the reserve price r̂1 with the belief that S = 1. If we let π(r, p, q) denote the seller’s
expected profit at reserve price r when S = p and the buyers believe that S = q, separating
equilibrium requires

π(r̂0, 0, 0) = maxr π(r, 0, 0)

π(r̂0, 0, 0) ≥ π(r̂1, 0, 1)

π(r̂1, 1, 1) ≥ maxr π(r, 1, 0)

Figure 15 illustrates these constraints for our numerical example. On the left pane, the blue
curve is π(r, 0, 0), which is maximized at r = 0.648, which the low-type seller must set in
equilibrium. This gives expected profit of 0.0184. The red curve is π(r, 0, 1) – the low-type
seller’s expected profit if he could convince the buyers that S = 1. The magenta (dashed)
line shows that if r̂1 < 0.985, the low-type seller would choose to imitate the high type; so
equilibrium requires r̂1 ≥ 0.985.

Figure 15: IC constraints for separating equilibria
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On the right pane, the blue curve is π(r, 1, 1) – the high-type seller’s payoff on the

D8



equilibrium path. The red curve is π(r, 1, 0) – the payoff a high-type seller could get by
deviating to a reserve r 6= r̂1. If he chose to deviate, the red dot shows his optimal deviation
would be to r = 0.826, giving expected profit of 0.0321. So r̂1 (combined with beliefs that
S = 1) must give him a payoff higher than that. The magenta (dashed) line shows that this
requires r̂1 ≤ 0.991, and the solid black line shows r = 0.985.

So there is a continuum of separating equilibria, all with r̂0 = 0.648, and with r̂1 ∈
[0.985, 0.991]. The best of these (r̂1 = 0.985) gives the high type an expected payoff of 0.045.
Thus, the best separating equilibrium gives expected profit of 1

2
0.0184 + 1

2
0.045 = 0.0317,

about half the expected payoff the seller would get if he had not learned S and set r optimally.
What’s happending here is that buyer beliefs about S have a strong effect on seller profit
regardless of the true realization of S, and as a result, the high type seller must dissipate a
large part of all his rents by setting a reserve high enough that the low type won’t imitate
it.

Pooling Equilibria

Second, I consider pooling equilibria. To support a pooling equilibrium with reserve price r̂,
I again assign beliefs Pr(S = 0) = 1 if the seller sets any other (off-equilibrium-path) reserve
price. For r̂ to be a pooling equilibrium, two conditions must hold:

π(r̂, 1,−) ≥ maxr π(r, 1, 0)

π(r̂, 0,−) ≥ maxr π(r, 0, 0)

where π(r, p,−) denotes expected profit to a seller with signal S = p when buyers do not
infer anything about S. Thus, the two conditions say that both buyer types prefer to pool
at r = r̂ (with buyers inferring nothing) to deviating to any other reserve price and having
buyers infer that S = 0.

Figure 16 illustrates the two types’ incentive constraints for a pooling equilibrium. In the

Figure 16: IC constraints for pooling equilibria
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left pane, the blue (top) curve is π(r, 0,−), and indicates the low type of seller’s equilibrium-
path payoff at each potential value of r̂; the red (bottom) curve is π(r, 0, 0), and shows the
profit he could get from deviating from r = r̂. If he were to deviate, his optimal deviation
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would be to r = 0.648, giving expected profit 0.0184 when buyers believe S = 0; thus,
equilibrium requires π(r̂, 0,−) ≥ 0.0184. The magenta (dahsed) line shows that this holds
for any r̂ ≤ 0.949.

The right pane shows the same exercise for the high type. Again, the blue (top) curve
is the equilibrium payoff at various potential r̂; the red is the payoff from deviating. In this
case, the incentive constraint is satisfied for any r̂ ∈ [0.445, 0.968]. Intersecting the two,
any reserve r̂ ∈ [0.445, 0.949] is a pooling equilibrium. This includes the “optimal” pooling
equilibrium, r̂ = 0.705, which gives expected profit of 0.0646.

However, Figure 17 shows that this optimal pooling equilibrium fails the “intuitive cri-
terion” of Cho and Kreps (1987).23 In the left pane, the blue dot shows the high type’s

Figure 17: Failure of the Cho Kreps condition by the optimal pooling equilibrium
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equilibrium payoff in the optimal pooling equilibrium, which is 0.0657. The red curve is his
expected payoff if buyers believed S = 1. The magenta dashed line shows that he would
happily set any reserve price up to 0.974 if it would convince buyers that S = 1.

The right pane shows the same exercise for the low type. The low type’s equilibrium
payoff at r̂ = 0.705 is 0.0635. The red curve, and magenta line, show that even with buyer
beliefs S = 1, the low type’s expected payoff for r > 0.93 would be below 0.0635.

Thus, in a pooling equilibrium with r̂ = 0.705, a high type could set a reserve of, say,
0.95, and try to convince bidders that S must be 1, because if S = 0, he wouldn’t have been
willing to set such a high reserve even if he thought it would convince bidders that S = 1;
hence, the pooling equilibrium fails the Cho-Kreps criterion.

While I haven’t done the same exercise for every possible pooling equilibrium, it appears
they will all fail Cho-Kreps, because the right side of the red curve is so much steeper for
the high type than for the low, making him “more willing” to set an extremely high reserve,
thus making it likely that some such deviation would exist for every pooling equilibrium. (It
is clear that any pooling equilibrium with r̂ < 0.705 would fail the condition, since the high
type does worse and is therefore willing to go even higher with his deviation, while the low
type does better on the equilibrium path.)

23Cho, In-Koo, and David Kreps (1987), “Signaling Games and Stable Equilibria,” Quarterly Journal of
Economics 52(2).
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