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Abstract

This paper presents a new non-cooperative approach to multilateral bargaining. We consider a demand
game with the following additional ingredients: (i) there is an exogenous deadline, by which bargaining has
to end; (ii) prior to the deadline, players may sequentially change their demands as often as they like; (iii)
changing one’s demand is costly, and this cost increases as the deadline gets closer. The game has a unique
subgame perfect equilibrium prediction in which agreement is reached immediately and switching costs are
avoided. Moreover, this equilibrium is invariant to the particular order and timing in which players make
demands. This is important, as multilateral bargaining models are sometimes too sensitive to these particular
details. In our context, players with higher concession costs obtain higher shares of the pie; their increased
bargaining power stems from their ability to credibly commit to a demand earlier. We discuss how the setup
and assumptions are a reasonable description for certain real bargaining situations.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Non-cooperative analyses of bargaining are sometimes criticized for being sensitive to the exact
description of the extensive form game. This concern is especially acute in the case of multilateral
bargaining. In general, one needs to precisely specify the rules and timing for offers, counter-offers,
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vetoes, exit options, and so on. All these details may have an impact on the outcome of the
bargaining process. But this is at odds with the perception that negotiations are by nature very
amorphous processes in which these details seem not to play such an important role. 1 The relevant
aspects have more to do with the ability to credibly commit to certain threats or promises. This
paper tries to construct a model that abstracts from the former technical aspects and focuses more
on the latter commitment opportunities. 2

Bargaining is normally studied using either the axiomatic approach introduced by Nash [21], 3

or the strategic approach, for which Rubinstein’s [23] alternating offer model is probably the
most influential. Rubinstein’s model is constructed for two players and has a unique equilibrium
which implements Nash’s axiomatic outcome in a non-cooperative way. The uniqueness of the
equilibrium prediction, however, is lost when more players are introduced. Herrero [10] and Haller
[9] show that any feasible agreement can be obtained in a subgame perfect equilibrium of the
most natural extension of Rubinstein’s bargaining protocol to three players. 4 This is due to the
veto power that each player possesses: he can void any agreement made by the other players.

Krishna and Serrano [11] illustrate that multilateral versions of Rubinstein’s model can get
around this problem and restore uniqueness by introducing an “exit option.” After a proposal has
been made, the exit option allows any player to accept his offered share, leave the bargaining table,
and let the remaining N − 1 players bargain over the rest of the pie. 5 Such an exit option is a
realistic description of some, but not all, bargaining situations. In legislative budget negotiations,
for example, no party can secure funding until the entire budget is approved. Another feature of
Krishna and Serrano’s model (and of many other models of multilateral bargaining) is that when
a player makes a proposal, he specifies the exact division of the pie among all parties. We will
refer to this as an offer. An alternative approach, and the one used in this paper, is that parties
can only express how much they demand for themselves, without stipulating the division among
the others. In many situations this seems more realistic, as for example in the financing of public
goods. 6 Selten [26] and Winter [28,29] use the demand approach for the study of multilateral
bargaining, but their outcomes depend on the exogenously pre-specified order of play. 7

The model we present builds on the framework proposed in Caruana and Einav [3]. Bargaining
must end before a fixed deadline, and players make demands sequentially in nearly continuous
time. They can revise their demands as often as they like, but this is costly, and this cost increases as
the deadline gets closer. The result of the bargaining process is successful only if the final demands
are compatible with each other. Earlier demands, however, serve as a commitment mechanism, as
reducing one’s demand becomes increasingly expensive. This assumption imposes some aspect
of irreversibility to past actions. This is similar to Admati and Perry’s [2] contribution game and to

1 See also the introduction of Perry and Reny [22] for more on this issue.
2 The idea that commitment plays an important role in bargaining goes back to Schelling [25]. More recently, Myerson

[20] and Abreu and Gul [1] provide a formal treatment using asymmetric information and reputation. As discussed further
in Section 4, the approach and results in this paper are very different.

3 See Lensberg [13] for a modern treatment of the multilateral case.
4 See Sutton [27] for a more general review.
5 A similar result is obtained by Chae and Yang [4], who achieve uniqueness by modeling multilateral bargaining as a

sequence of bilateral agreements.
6 This distinction has no bite in bilateral situations, where a demand uniquely determines the offer to the other party.
7 Morelli [18] extends their framework to allow for an endogenously determined order, but still within a particularly

defined protocol.
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other papers that consider irreversible actions. 8 All these papers, however, impose a very drastic
switching cost structure: from the very beginning players are fully committed not to increase
their demands from previously demanded levels (they face infinite costs of doing so), but are
always free to decrease their demands. In contrast, our paper deals with finite concession costs
that increase in a smooth way. In this manner we can focus on the process by which players
achieve commitment. Moreover, as we show later on, all that is needed in the model is that the
costs of conceding (reducing one’s demand) increase over time; no structure is imposed on the
costs of increasing one’s demand. Thus, one can use our setting to analyze both the case in which
players cannot back out of previous promises, as in the case of irreversible actions; and the case
in which one is always free to withdraw from earlier promises. At first this latter case may seem
striking: it is not obvious how commitment is achieved when players are not bound by previous
offers. Note, however, that while demanding more appears to be costless, dynamically it is not. If
one party fancifully makes an extremely high demand, he will later have to concede, incurring a
cost.

The game has a unique equilibrium in which agreement is reached immediately and switching
costs are avoided. Theorem 2 presents our main result: if players can revise their demands as
often as they want, or more precisely, as the time between consecutive moves goes to zero, this
equilibrium converges to a split of the pie which is invariant to the specific order and timing of
moves. It is in this sense that we claim that the model abstracts from the details of the protocol.
In the case of symmetric players the model predicts equal shares for all players. If players are
asymmetric, those with higher concession costs obtain higher shares of the pie, as they are able to
commit faster to particular demands. 9 Thus, in our setting higher concession costs imply higher
bargaining power. While the capability of an organization to be flexible is generally considered a
positive feature, in this setting it results in a loss of bargaining power. This suggests a rationale for
rigid structures as bargaining devices. The difficulty of organizing a board of directors meeting,
complex bureaucratic structures, posted prices, or having a clerk with no discretion at the shop
counter are only some examples.

To gain intuition for the equilibrium outcome, consider two identical players bargaining over a
dollar. We argue that it is perfectly credible for a player to hold firm to a demand of 50 cents. Just
after the point in time at which concession costs increase above 50 cents, this player is committed
to never reduce his demand below 50 cents. Thereby, just before this critical point in time, if the
other player had started by asking “too much,” he is better off conceding and scaling down his
demand to 50 cents as well. In this manner, he will obtain positive payoffs, compared to payoffs
of zero if no adjustment is made (resulting in no agreement). This argument can be made for both
players, and thus, in equilibrium, each starts by demanding 50 cents and never changes thereafter,
avoiding any switching costs. The same logic extends to situations with more than two players,
and when players are not identical.

We are aware, of course, that our dynamic structure does not adequately describe all bargaining
situations. If the reader imagines a series of rounds at a bargaining table, it is difficult to justify
the presence of increasing switching costs. Nevertheless, in our view, there are many relevant

8 See, for example, Saloner [24], Gale [8], Lockwood and Thomas [15], and Compte and Jehiel [5]. In the latter two, as
well as in the contribution game of Admati and Perry [2], gradualism is an important feature of equilibrium. In our setup
agreement is achieved immediately because actions are reversible, and do not directly affect commitment opportunities
of opponents. This is somewhat similar to Admati and Perry’s [2] subscription game.

9 Muthoo [19] presents a different two-player two-period bargaining model with commitment in which he obtains a
similar qualitative result.
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situations which are characterized by both an exogenous deadline and an increasing switching
cost structure. Consider, for example, New York’s (failed) bid to host the 2012 Olympic Games.
The deadline was provided by the International Olympic Committee, which selected the host
in July 2005. The bid involved negotiations among multiple interested parties—New York City,
New York State, the U.S. Federal Government, and various representatives of the private sector—
over their relative contributions to improve New York’s chances. Such contributions required
specific investments which could not be fully recouped should the bid fail. To the extent that
adding or subtracting from such investments would become more costly as the July 2005 deadline
approached, our framework may fit this situation. More generally, switching costs could represent
actual costs of revising contracts, financial or legal costs, inconvenience, or reputational concerns.
These are discussed in more detail in Section 5.

In Section 4 we argue that the scope of the main result of the paper applies more broadly.
First, we extend our basic bargaining model to cover a public good game. Second, we show (for
the case of two players) that the main equilibrium prediction does not rely on the knowledge
of the particular order and timing of moves. Even if players do not know exactly when they or
their opponents will play, common knowledge that players can play very often suffices. Third,
we present a similar bargaining model, but with flow payoffs and constant (but small) switching
costs. 10 Such a situation better describes an ongoing bargaining relationship. For example, one
can think of the daily division of labor among members of a household, or of the decision on how
to share the flow of profits among members of a patent pool. While this model is of a distinct nature
from the main model of the paper, it shares an analogous equilibrium structure and comparative
statics.

2. The model

The model is an application of the framework proposed by Caruana and Einav [3]. Consider N
players who bargain over a pie of size 1. Time is discrete. The game starts at t = 0 and ends at a
predetermined deadline t = T . Each player i acts at a large but finite time grid gi = {t i1, t i2, . . . , t iLi

}
where t ik ∈ [0, T ] for all k and t il < tim if l < m. Players play sequentially, so gi ∩ gj = ∅ for any
i �= j . When player i acts at t ∈ gi , he states some demand ai(t) ∈ Ai = [0, 1]. At every point
in time all previous actions are common knowledge. For any point in time t ∈ [0, T ], denote the
time of player i’s next move by nexti (t) = min{t ′ ∈ gi | t ′ � t}, and the time of player i’s last
move by previ (t) = max{t ′ ∈ gi | t ′ < t}. Let also next(t) = min{t ′ ∈ ⋃

i gi | t ′ > t} be the time
of the next move after t.

The first move by player i, taken at t i1 = nexti (0), is costless. However, if he later (at t >

ti1) changes his action, he has to pay a switching cost. If he concedes by changing his demand
downwards, he pays a concession cost ci(t). If he demands more by changing his demand upwards,
he pays demand costs di(t). We place no restriction on demand costs, except that di(t) > 0 for
any t. 11 We impose the following assumptions on the concession cost function: ci(t) is strictly
increasing in t with ci(0) = 0 and ci(T ) > 1. These assumptions capture the idea that conceding
is very cheap early in the process, but prohibitively expensive just before the deadline.

10 This is based on the game structure proposed by Lipman and Wang [14]. See also Marx and Matthews [17], who
analyze a finite-horizon public good game situation with flow payoffs.

11 The assumption that demand costs, di (t), are strictly positive is only made for convenience. Assuming weak inequality,
i.e. di (t)�0, does not change the equilibrium outcome and payoffs, but slightly complicates the analysis.
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Finally, we specify payoffs. Denote player i’s actions by ai = (ai(t))t∈gi
, all actions of all

players by a = (ai)i∈N , and the final actions by all players by a∗ = (ai(t
i
Li

))i∈N . Player i’s
payoffs are

ui(a) = �i (a
∗) −

∑
{t∈gi−{t i1}:ai (t)<ai(previ (t))}

ci(t) −
∑

{t∈gi−{t i1}:ai (t)>ai(previ (t))}
di(t), (1)

where �i (a
∗) is the usual demand game payoff

�i (a
∗) =

{
a∗
i if

∑
a∗
j �1,

0 if
∑

a∗
j > 1

(2)

evaluated at the players’ final demands.
The solution concept that we use is subgame perfect equilibrium (spe). While much of the

analysis is carried out for arbitrary grids, our main interest lies in fine, nearly continuous grids.
Thus, we define the fineness of a player’s grid as �(gi) = max{t i1, t i2 − t i1, t

i
3 − t i2, . . . , T − t iLi

},
and denote the game grid by g = {gi}Ni=1 and its fineness by �(g) = maxi {�(gi)}. Our main
result (Theorem 2) is a limiting result, when �(g) goes to zero.

3. Results and discussion

3.1. Subgame perfect equilibrium

In this section we first solve for the equilibrium path of the game given a specific grid g. 12 We
show that on the equilibrium path an agreement is reached immediately and therefore switching
never occurs. Each player’s share of the surplus is uniquely determined by the game grid and
the switching cost structure. Later we will focus on the limit of the equilibrium outcomes as the
fineness of the grid tends to zero. In this manner we will be able to abstract from the grid and
show that the equilibrium does not depend on the particular order in which players get to play.

Given a game with cost structure {ci(·), di(·)}Ni=1 and grid g, define

t∗ ≡ max

⎧⎨
⎩t ∈

⋃
i
gi

∣∣∣∣∣∣
∑
j

cj (nextj (t))�1

⎫⎬
⎭ (3)

and

�i ≡
{

ci(nexti (t∗)) if t∗ /∈ gi,

1 − ∑
j �=i cj (nextj (t∗)) if t∗ ∈ gi.

(4)

Note that by construction
∑

j �j = 1 and that ci(t
∗)��i < ci(nexti (next(t∗))) for player i who

moves at t∗ ∈ gi .
Our main result is that the equilibrium path of the bargaining game involves each player i

demanding �i the first time he plays and never switching thereafter. Since the path of play does
not depend on the costs of increasing one’s demand, di(t), we largely ignore these cost functions.

12 Strictly speaking, the equilibrium need not be unique, due to the fact that players are sometimes indifferent between
two actions. Still, as we show below, the important elements of the equilibrium, namely, actions on the equilibrium path
and payoffs, are indeed unique.
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Much of our result is proved in the appendix. However, a few definitions and results which aid
in the proof are instructive. Throughout, we abuse notation by describing each subgame by (a, t),
where t ∈ ⋃

i gi is the point in time and a ∈ [0, 1]N are the most recent demands made by each
player. Strictly speaking, when a player is indifferent, his strategy may also depend on the history
of play. We ignore this as all our statements about a subgame (a, t) will hold for any history.

Definition 1. Player i is flexible at (a, t) if ci(nexti (t)) < 1 − ∑
j �=i min(aj , cj (nextj

(t))).

In essence, a player is flexible if he could potentially earn a positive continuation payoff by
revising his demand downwards. 13 Note that whether player i is flexible depends on t and a−i ,
but not on ai . At t < t∗ all players are flexible (this follows from the definition of t∗). Further,
late in the game (after time t ≡ maxj (c

−1
j (1))), no player is flexible.

Definition 2. A demand profile a is compatible if and only if
∑

j aj �1.

Clearly, an agreement is reached when final demands are compatible. We now give the following
result, which will lead us to the equilibrium play.

Proposition 1. Consider a subgame (a, t), in which there exists a player i with ai �ci(nexti
(t)). If a is compatible or some player is flexible at (a, t), then if player i never switches and the
other players play their equilibrium strategies, an agreement will be reached.

The proof is in the appendix. Proposition 1 implies that under the conditions stated above
player i is guaranteed a continuation value of at least ai . This leads to the following result, and
its subsequent implication.

Proposition 2. In any spe, every player i must get a payoff of at least �i .

Proof. For any given player i, let t̃ = next(t∗) if t∗ ∈ gi , and t̃ = t∗ otherwise. Note that in either
case, �i + ∑

j �=i cj (nextj (t̃))�1. Thus, if player i demands any ai < �i at time t̃ then all players
j �= i will be flexible. Since ai < �i �ci(nexti (t̃ )), Proposition 1 holds, so player i is guaranteed
agreement without switching. Thus, for any � > 0, the strategy “Demand �i − � at the beginning
and never switch” earns a payoff of �i − �. Now, if in equilibrium player i earned less than �i ,
then for � sufficiently small, this strategy would represent a profitable deviation. �

Theorem 1. In any spe of this game, every player i demands �i in the first round and never
switches on the equilibrium path.

Proof. Since
∑

j �j = 1, any other equilibrium play would result in a payoff of less than �i for
some player i, violating Proposition 2. �

The main qualitative features of the equilibrium are the following. First, equilibrium is efficient;
in order to avoid switching costs, an agreement is achieved immediately. Second, the higher the

13 Once a switch is done, its costs are sunk; throughout the paper, we frequently consider players’ payoffs net of previous
switching costs, since at any point in the game, each player in equilibrium acts to maximize his continuation payoffs.
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concession costs of one player, the higher the share of the pie he obtains. Having higher costs
allows a player to commit not to lower his demand any longer while other players are still flexible
to do so. Thus, the source of bargaining power in this model stems from the ability to commit to
certain demands. Third, note from Eq. (4) that around t∗ there is a local first mover advantage:
each player is guaranteed at least cj (nextj (t∗)), but if these sum to less than 1, the player who
moves at t∗ captures the remainder. This advantage is more likely to benefit players who move
less frequently; it is an important advantage when the grid is coarse, 14 but it vanishes as the grid
gets finer. Finally, given t∗ (which is determined endogenously), the equilibrium is invariant to
changes to the concession cost functions ci(·) at any t �= nexti (t∗), as well as to changes in the
players’ costs of increasing their demands. Thus, the relative flexibility of different players only
matters in the neighborhood of t∗.

3.2. The main result

We can now abstract from the specific grid chosen and think generally on situations in which
players can revise their demands as often as they want. We study this case by taking limits on
the fineness of the grid. In other words, we consider the distance between any two consecutive
decisions by the same player going to zero. As one can notice, we only need to add the requirement
that the concession cost functions are continuous for the result to hold.

Theorem 2. If ci(t) is continuous for all i, then taking �(g) → 0, the limit of the equilibrium
path exists and converges to each player i demanding �i = ci(t

∗) throughout the game, where t∗
solves

∑
j cj (t

∗) = 1.

Note that this outcome is independent of the order in which the players get to play. It is in this
sense that we argue that this multilateral bargaining model is robust to changes in the protocol.
For the rest of this section, we ignore the grid and focus on the limit case, when �(g) → 0.

Next we consider a few special cases which lead to simple comparative statics and provide
intuition for the forces at play. First, we consider the family of cost functions ci(t) = �ic(t). That
is, all players share the same concession cost technology, up to a multiplicative constant. In this
case �i = �i∑

j �j
. Thus, the vector of �i’s is a sufficient statistic for the equilibrium allocation,

and the players receive shares of the pie proportional to their �i’s. That is, the higher the (relative)
concession costs, the bigger the share of the pie obtained. Moreover, in this case the allocation is
independent of the choice of the cost function c(t) and of the actual size of the pie. Interestingly,
this invariance with respect to the size of the pie does not hold if one considers more general cost
functions. Recall that the solution depends only on the relative value of the cost functions at a
particular point, t∗. If the size of the pie is k, then t∗ would be defined by

∑
j cj (t

∗) = k. Thus
changes in the size of the pie result in a different t∗, which in principle could result in different
relative costs.

Consider next the case in which all players share the same concession cost technology but
differ in their marginal valuation for the pie. That is, if there is an agreement and the shares are a,

player i values it �i (a) = �iai . In other words, what we are considering now are (linear) changes
in the utility bargaining sets. It is easy to see that this is equivalent to the case in which all players
value the pie equally but have cost functions ci(t) = c(t)/�i . Thus, the outcome of the bargaining

14 For example, if one of the players only moves at t = 0, then t∗ = 0 and Theorem 1 implies that in equilibrium he
would capture the entire pie. This game essentially collapses to a standard ultimatum game.
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process would deliver a higher share of the pie to those who value the object less, as these are
the ones who will get committed more quickly. Graphically, the solution of the game would be
the point on the Pareto frontier that intersects with the ray with direction �. If players have the
same cost technology, the solution would be the egalitarian one, 15 independent of the values of
the �i’s.

Finally, we consider the impact of introducing a discount factor into the model. Suppose that
each player discounts the future at a discount rate of �i ; that is, costs incurred at time t are
discounted by �t

i , and the agreement by �T
i . By dividing each player’s utility function ui by �T

i , it
is clear that this model is equivalent to one without discounting where each player’s concession
costs are c̃i (t) = �t−T

i ci(t). Thus, introducing discounting is equivalent to a change in the cost
function. Since �t−T

i is decreasing in �i , more patient players have less bargaining power. Since
players at any point in time compare their switching costs (incurred now) to their eventual payoff
gains (received later), a lower valuation of the latter makes switching costs effectively higher,
giving less patient players more commitment power. Since bargaining shares depend on the
relative sizes of �t∗−T

i ci(t
∗), this effect is more pronounced for earlier t∗, corresponding to a

smaller surplus being divided. Of course, since less-patient players discount their consumption
more steeply, their bargaining advantage does not lead them to a higher utility level.

4. Extensions

4.1. The public good game

In the introduction we used the leading example of different parties trying to jointly fund New
York’s bid to host the 2012 Olympic Games. Below we show how our previous result is useful in
analyzing this sort of public good problem as well.

Public good games are strategically very similar to bargaining games. Consider the following
payoff structure. N players have to simultaneously decide how much to contribute towards a
public good. The public good is provided only if a minimal amount, which we normalize to 1, is
collected. If each player contributes bi ∈ [0, 1], payoffs are

�i (b) =
{

vi − bi if
∑

bj �1,

0 if
∑

bj < 1,
(5)

where vi is player i’s valuation of the public good.
We can reinterpret this model as a bargaining one in which demands are ai = vi − bi and

the size of the pie is
∑

vj − 1. The only difference is that now demands are constrained to
lie in the interval ai ∈ [vi − 1, vi] because contributions cannot be negative. As before, higher
concession costs result in a higher share of the pie, which corresponds to lower contributions.
Since equilibrium demands a∗

i = vi − b∗
i are derived directly from the cost structure, a player’s

contribution is increasing in his own valuation of the public good.
One new feature is that when asymmetries among players become sufficiently acute the equi-

librium results in a corner solution. This happens when the solution to the analogous bargaining
game involves a demand a∗

i which is greater than vi . Since we restrict contributions to be non-
negative, player i would demand in equilibrium vi, which corresponds to a contribution of bi = 0.
If a player’s relative interest in the public good is sufficiently low, or his concession costs suf-
ficiently high, he can commit not to contribute at all, forcing others to do all the funding. The

15 That is, all the players receiving the same utility, not the same share of the pie.
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actual division among the active contributors could be computed by analyzing the reduced game
in which the free riders are ignored.

4.2. Uncertainty about the protocol

One of the key results in this paper is that the equilibrium is robust to changes in the proto-
col as long as players play often enough. We derived this result assuming players had perfect
information about the protocol. Here we argue that this is not necessary; we show that models
with symmetric or asymmetric uncertainty about the exact timing of players’ moves still exhibit
the same feature. In particular, we only require that there is common knowledge that players
play sufficiently often. While it is well known that information imperfections in this context may
lead to inefficiencies through delays (and the occurrence of switching costs in our context) and
possibly disagreements, 16 such inefficiencies can be made arbitrarily small by having players
play sufficiently often. The theorem below illustrates this point for the case of two players. 17

For i = 1, 2, let concession costs ci(t) be continuous and strictly increasing in t, let t∗ (uniquely)
solve c1(t

∗) + c2(t
∗) = 1, and let �i = ci(t

∗). Assume also for simplicity that di(t) = ci(t)

(switching costs are equal in either direction), and that each player moves at least once before t∗
and initial demands are costless. For this section, the equilibrium concept is a Perfect Bayesian
Equilibrium. Under these conditions, the following theorem provides a lower bound for expected
equilibrium payoffs.

Theorem 3. Let �1, �2 > 0 and p1, p2 �1. If it is common knowledge 18 that the probability that
player j moves at least once while cj (t) ∈ (

�j , �j + �j
)

is at least pj , then in any equilibrium
player i’s expected payoff is at least pj

(
�i − �j

)
.

The proof is in the appendix. Its intuition is similar to the one provided for the main model. By
demanding �i − �j initially and never switching thereafter, player i can guarantee an agreement
with probability pj , since his demand will be made compatible if player j has an opportunity

to move in the interval
(
t∗, c−1

j (�j + �j )
)

. Thus, this strategy guarantees player i a payoff of

pj

(
�i − �j

)
and therefore any equilibrium must give player i at least this much.

It is easy to see that as the grid gets finer, namely as �1, �2 tend to zero and p1, p2 tend to one,
the lower bound for player i’s payoff approaches �i , which is his equilibrium share in the perfect
information game with fine grids. Given that the total surplus approaches one, this implies that
inefficiencies vanish. Therefore, in the limit there are no disagreements or delays in reaching an
agreement, which exhibits the same division of the pie as with perfect information.

Let us emphasize the scope of the previous theorem: any protocol satisfying the conditions
above (simply that players play very often) would result in the same split of the pie, namely the
one provided in Theorem 2. Here we mention several interesting cases. First, consider the case
in which the grid g is known to both players, they both play at every point on the grid, but do

16 Crawford [6] models bargaining with stochastic switching costs, and shows that this uncertainty sometimes leads to
disagreements. Ma and Manove [16] obtain a similar result when the uncertainty is about the arrival of offers. Myerson
[20] and Abreu and Gul [1] obtain inefficient delays in the presence of obstinate types due to reputation effects.

17 We believe that a similar result holds for more players. However, when N > 2, it is difficult to prove Lemma 10
(the analog to Proposition 1) without common knowledge about the “final” round of moves before agreement becomes
impossible.

18 In fact, common knowledge is not important. All one needs is that this information is known by player i.
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so sequentially and the order at each point is randomly determined. This fits the conditions of
Theorem 3, with �1 = �2 = �(g) and p1 = p2 = 1. Similarly, if at each point of the grid only one
player gets to move, but the identity of that player is determined randomly, Theorem 3 applies
with p1, p2 < 1. This is also similar to a model where the timing of players’ moves is randomly
determined by a Poisson process (as in Lagunoff and Matsui [12]). The previous examples were
cases of symmetric uncertainty. The result extends also to protocols with asymmetric information.
Consider for instance the case where the timing of each player’s moves is private information,
learned at the start of the game. Theorem 3 still applies. In all these cases, as the arrival rate
of opportunities to move increases, the equilibria of these stochastic games approach that of the
complete information case analyzed in the previous section. This should not come as a surprise:
after all, if the details of the fully known protocol do not matter (as established by Theorem 2),
then uncertainty or private information about these “irrelevant” details should not matter either.

As discussed earlier, even with perfect information, if the grid is not fine, the particular details
of the grid effect the commitment power and equilibrium outcomes in important ways. In the case
of symmetric or asymmetric uncertainty about a (coarse) grid these would matter even more. For
instance, protocols with private information about the grid will likely give rise to reputation issues
similar to those in Myerson [20] and Abreu and Gul [1]. As an example, a player with private
information that he will only move once would be similar to an obstinate type who always makes
the same demand, which is how a “tough” reputation is often modeled in bargaining situations.
The analogy is not perfect, however, since in our model this player would still have a choice over
his initial demand. 19

4.3. Flow payoffs with constant switching costs

In this section, we extend our analysis to a different bargaining model. While its underlying
economic structure is very different from the one studied before, its analysis is quite similar. The
model builds on the framework studied by Lipman and Wang [14]. There are two key differences
from the previous model. First, rather than a one-shot payoff in the end of the game, players
collect a flow of payoffs from their bargaining interaction. Second, switching costs are small and
constant over time.

Patent pools may provide a good application for this setup. Suppose that two firms held comple-
mentary patents which could only be used together. Should they agree on a way to share revenues,
they can collect a flow of revenues as the technology is used; as long as they disagree, nobody can
use the patents, so potential revenues are lost. In this context, switching costs can be arbitrarily
small, so the additional lawyers’ fees of re-drafting an agreement would suffice.

As before, players make demands on a finite grid g in the interval [0, T ], and our focus lies on
fine grids. When player i plays he decides on his demand ai ∈ [0, 1]. If he changes his demand
from his previous level, he pays a small switching cost �i > 0. 20 In between two decision periods
demands are fixed. Thus, flow payoffs are the standard payoffs of the demand game with respect to
the most recent announcements made. With some abuse of notation, we denote ai(t) = a(previ (t))

19 Since the grid only matters through the level of concession costs at each point on the grid, private information about
grids that are not fine is analogous to private information about the cost structure.

20 To simplify notation, we assume throughout this section that switching demand upwards and downwards has the same
cost. This is not important. As before, only concession costs will matter, so we could assume any arbitrary non-negative
structure on the cost of switching the demand upwards.
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for t /∈ gi and obtain the final payoffs as

ui(ai, aj ) =
∫ T

0
�i (ai(	), aj (	)) d	 −

∑
{t∈gi−{t i1}:ai (t)�=ai (previ (t))}

�i , (6)

where �i (a) is given by Eq. (2). 21

This setup is closely related to our main model. Loosely speaking, here one compares the
constant switching costs, �i , to the remaining future payoffs, (T − t)�i . Meanwhile, in the main
model the relevant comparison is made between the final payoffs of �i and the increasing switching
costs of ci(t) = �i

T −t
. This explains why the analysis is similar. There is an important difference,

however, between the two models. In the main model each player only cares about his own actions
and his opponents’ final actions. Here, each player’s payoffs depend on the whole sequence of
his opponents’ interim actions, as these determine the flow-payoffs. This makes the analysis of
the flow-payoff case more complicated. For this reason, we restrict our attention to the case of
two players.

As the proof is quite similar to the one of Theorem 2, we state below only the main result and
relegate all the intermediate results to the appendix.

Theorem 4. Given switching costs �i , �j , the limit of the equilibrium path of the flow-payoff game,
taking �(g) → 0, exists and converges to players constantly demanding ai = �i

�i+�j
throughout

the game.

The first step of the proof is similar to the two-player version of our main model. The critical
point in time, t∗, is now equal (in the limit) to T − �i − �j . After this point, the remaining
continuation payoffs of the game are less than �i + �j , so in equilibrium we cannot expect both
players to switch after t∗. This allows each player to obtain his share of the pie, ai = �i

�i+�j
, from

then on. Unlike our original model, however, this is not enough to finish the proof. Because of
the flow payoffs, we need to argue that these shares are obtained throughout the game, and not
only in the end. To do so, we use induction on the game tree, and show that by demanding �i

�i+�j
at any point, player i can guarantee an agreement almost immediately.

As before, higher switching costs imply higher commitment and higher bargaining power.
Therefore, it allows a player to obtain a higher share of the pie. One should note that these results
hold even when switching costs are arbitrarily small. As long as the players can change their
demands sufficiently often, the absolute level of switching costs does not matter; only the relative
costs do.

Finally, let us point out why the result of Theorem 4 does not extend to N > 2 players. The
key point at which the proof fails is when one argues that a flexible player finds it profitable to
switch down and lock himself into a compatible demand profile. 22 With flow payoffs this may
not be profitable anymore. In principle, such a switch can induce other opponents to change their
own demands as well. This may temporarily result in a period of disagreement. This amount of
time, even though short, may be enough to make the original switch not profitable.

21 For completeness, one may assume that �i = �j = 0 before both players make their very first announcements (i.e.

for all t < max(t i1, t i2)).
22 This happens, for example, in the last paragraph of the proof of Proposition 1.
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5. Concluding remarks

We have presented a new bargaining model in which an arbitrary number of players negotiate
in nearly continuous time, subject to an exogenous deadline and increasing concession costs.
We find that as the time between “rounds” decreases toward zero, our model gives a unique
equilibrium prediction which is invariant to the order and exact timing of the players’ moves.
Delay or disagreement never occur on the equilibrium path, and higher shares go to players
with higher concession costs, as they are able to credibly commit to higher demands. As already
emphasized, only concession costs matter. Whether concessions are fully reversible or completely
irreversible has no impact on the results.

As we highlighted before, there are three key features that describe our model: (i) players
must reach an agreement by some external deadline or forfeit the entire prize; (ii) players, in a
sequential manner, have many opportunities to change their minds; (iii) the costs of conceding
and switching to a lower demand, even a nearby one, are significant, and increase over time.

The second feature is of a more technical nature. We are simply imposing a particular set of
rules on how players are allowed to express their demands. As was our goal, we show that these
assumptions on the timing and order of moves have no real implications. The important aspect is
to ensure the ability of players to react quickly to other players’ moves. The other two assumptions
are more economic in nature, and deserve a more careful discussion of their applicability.

Examples of bargaining with a fixed deadline are common. 23 During bankruptcy proceedings,
management may face a court-assigned deadline by which they must reach new wage agreements
with multiple unions or face liquidation. In the Olympic bid example discussed above, multiple
parties must agree to provide costly services in order to submit a potentially winning bid. This
process is clearly subject to an external deadline. Another example in which these deadlines are
ubiquitous is in major sports. Multi-team trades are frequent and there are rules imposing specific
deadlines to player trades.

Real-world examples of bargaining with literal switching costs may not seem as natural. But,
without any commitment, demands or offers can be seen as simple cheap talk, or be subject to
future renegotiation. Thus, an offer only becomes credible once it becomes costly to change it.
In the Olympic bid example, parties may begin spending money (hiring architects or planners,
scheduling contractors, even beginning construction) to show the seriousness of their offers.
Once these steps are taken, changing plans would likely incur additional costs. In the presence
of a deadline, such costs are likely to be higher as the deadline approaches. In addition, in many
complex situations, there are various frictional costs (lawyers’ fees, court fees, costs of preparing
a new proposal) associated with each new offer submitted.

One can also interpret switching costs in a more metaphoric way, or in the context of an
(unmodeled) larger game. In a wage negotiation setting, each side may be aware that by retreating
from their demands, they sacrifice their reputation for being a tough negotiator, hurting them
in future negotiations and thus imposing a cost to conceding. This interpretation is especially
appealing in negotiations in which parties choose to make public statements in the media as a way

23 See also Fershtman and Seidmann [7] and Ma and Manove [16] for analyses of bargaining situations with fixed
deadlines. In these papers much of the equilibrium play is directly driven by what happens just before the deadline. In
this sense, the deadline is less important in our analysis, as equilibrium is primarily dictated by what happens around t∗,
which in principle may occur much before the deadline. The existence of a deadline is still meaningful in our setting,
since in our view it is the deadline that helps us motivate our assumption of increasing (and eventually high) concession
costs.
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to tie their hands to future concessions. Union leaders, for instance, may advertise their demands
publicly, essentially staking their credibility on achieving the outcome they have promised. In a
situation where sports teams try to arrange a multi-team trade, noisy communication could lead to
a situation where changing one’s demand leads to a positive probability that the deal falls through.
Many of these features are likely to become more salient when changes-of-mind happen late in
the game, justifying our assumption that switching costs increase.

Appendix

Proof of Proposition 1. We now build up a proof of Proposition 1 through a series of lemmas.
First, similar to the definition of flexible in the text (Definition 1), we define the following:

Definition 3. Player i is locked at (a, t) if ci(nexti (t)) > 1 − ∑
j �=i min(aj , cj (nextj

(t))).

As we will establish in Lemma 3, a player is locked when, subject to other players playing
equilibrium strategies, he prefers disagreement to further concessions. At t � t∗, no player is
locked, and late in the game, after time t ≡ maxj (c

−1
j (1)), all players are locked.

Lemma 1. Given any (a, t), the final demands arising in any equilibrium of the continuation
game starting at (a, t), a∗, satisfy a∗

i � min(ai, ci(nexti (t))) for all i. Moreover, if a is compatible
or at least one player switches, then a∗ is compatible.

Proof. If a player switches downward then he must at least recoup his switching costs
(ai �ci (nexti (t))), otherwise he would have been better off not switching and receiving at least
a continuation value of zero (net of switching costs incurred prior to t). If a player switches only
upward then a∗

i �ai . Since switching costs are positive in either direction, a switch is rationalized
only if a∗ is compatible. If a is compatible and nobody switches, then a∗ = a is compatible. �

Lemma 2. Let a∗ be the spe outcome of the subgame beginning at (a, t). If a∗ is compatible then
a∗
i �1 − ∑

j �=i min(aj , cj (nextj (t))) for all i.

Proof. This follows directly from the fact that if a∗ is compatible then a∗
i �1 − ∑

j �=i a∗
j , and

Lemma 1. �

Lemma 3. If player i is locked at (a, t), in equilibrium he will not switch downwards thereafter.

Proof. If i switched on equilibrium, the final demand profile a∗ would be compatible (Lemma 1),
implying that a∗

i �1 − ∑
j �=i min(aj , cj (nextj (t))) < ci(nexti (t)) (Lemma 2). But this would

imply that player i’s continuation payoff is negative. �

Lemma 4. If there exists a player who is flexible at (a, t) then any player k who is not flexible
must have ak < ck(nextk(t)).

Proof. Let i be a player who is flexible and k the player who is not flexible. Then

min{ai, ci(nexti (t))}�ci(nexti (t)) < 1 −
∑
j �=i

min{aj , cj (nextj (t))} (7)
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and rearranging,

min{ak, ck(nextk(t))} < 1 −
∑
j �=k

min{aj , cj (nextj (t))}. (8)

If ak �ck(nextk(t)) then the left-hand side above is ck(nextk(t)) and the assumption that k was
not flexible is violated. �

Lemma 5. If none of the players is flexible at (a, t) then any upward switch leaves demands
compatible.

Proof. Suppose player j moves at t. Then cj (nextj (next(t))) > cj (nextj (t)). If aj also increases
at time t (to a′

j ) then min(a′
j , cj (nextj (next(t)))) > min(aj , cj (nextj (t))). In that case, all players

i �= j who were not flexible become locked. Since cj (nextj (next(t))) > cj (nextj (t)), player j
also becomes locked. Thus, if player j increases his demand when no players are flexible, all
players are locked after his move, so by Lemma 3, nobody switches down in the future; if he
leaves a incompatible then no agreement is reached, giving j negative continuation value. �

Lemma 6. Consider the continuation game (a, t) where player i moves at t. If ai �ci(t), a is not
compatible, and no player is flexible then in equilibrium, player i does not switch at t.

Proof. By Lemma 5, player i does not switch upwards. If i is not flexible,

ci(t)�1 −
∑

j �=i
min(aj , cj (nextj (t))),

so by Lemma 2, a∗
i �ci(t). Since ai �ci(t), if i switches downwards at t, he incurs a cost ci(t),

and either receives a∗
i < ci(t), or receives a∗

i = ci(t) but incurs a cost di(t
′) of switching upwards

later. In either case, the continuation payoff is negative. �

We are now ready to prove Proposition 1. The proof is by induction on t. Late in the game, no
players are flexible. At the latest point in the game grid, t = max(	 | 	 ∈ ∪gi), if a is incompatible,
the proposition is vacuously true. Suppose a is compatible. If i moves at t and does not switch,
the game ends with compatible demands. If j �= i moves at t, j will not switch to incompatible
demands (doing so would give him negative continuation value), so the game ends in agreement
with a∗

i = ai .
Now suppose the proposition is proven for all t ′ �next(t); we prove it for t. There are two

cases:

1. First, suppose player i moves at t. If a is compatible then by not switching, i leaves a compatible
and the induction assumption proves the proposition. Suppose a is not compatible but some
player other than i is flexible. Since ai �ci(nexti (t)), if i does not switch, min(ai, ci(nexti (·)))
does not change, so that player remains flexible so the induction assumption proves the propo-
sition. Finally, if only player i is flexible then by Lemma 4 and the definition of flexible

ci(t)�1 −
∑
j �=i

min(aj , cj (nextj (t))) = 1 −
∑
j �=i

aj . (9)



G. Caruana et al. / Journal of Economic Theory 132 (2007) 147–166 161

Then since ai �ci(t)�1 − ∑
j �=i aj , a is compatible, in which case we have already proven

the proposition.
2. Now suppose player j �= i moves at t. If after j’s move, the new demands are compatible or

some player is flexible, the induction assumption proves the proposition. Thus, we only need
to consider the case where after j’s move, no player is flexible and demands are incompatible.
First, suppose j switches at time t. Assume that thereafter player i does not switch and the other
players play equilibrium strategies, and consider all the times that player i moves after t. If a
is compatible or some player is flexible at any of these times, then the induction assumption
proves the proposition. If a is incompatible and no player is flexible at all of these times, then
by Lemma 6, player i is playing his equilibrium strategy by not switching. Then starting at
(a, t), player j switches and every player plays his equilibrium strategy after t; by Lemma 1,
an agreement is reached.

We are left with the case where j does not switch at t but after j’s move, all players are not
flexible and a is not compatible. As we argued above, if these conditions do not remain at each
of player i’s subsequent moves, then the induction assumption proves the proposition; if they
do, then all players are playing equilibrium strategies, so player j’s inaction led to a subgame
where, in equilibrium, agreement is not reached, giving a continuation payoff of 0 to player j. If j
was the only player flexible at t, then switching down to a∗

j = 1−∑
k �=j ak > cj (t) would have

locked all players and led to positive continuation payoff. If j was not flexible at t, then some
other player was; since by Lemma 4, aj < cj (t), not switching could not have changed another
player’s flexibility, so by the induction assumption, an agreement would have been reached.
Finally, if j and another player were flexible at t, then j switching down to cj (t)+ � would have
left the other player flexible for � small enough; since cj (t) + � < cj (nextj (next(t))), player
j would have been ensured agreement without switching again (by the induction assumption)
for a continuation payoff of � > 0.

Thus, regardless of who moves at t, the proposition is proved. �

Proof of Theorem 3. We prove Theorem 3 using the following lemmas. Throughout we assume
that �1 = c1(t

∗)� 1
2 �c2(t

∗) = �2. This is without loss of generality since c1(t
∗) + c2(t

∗) = 1.
Recall also that di(t) = ci(t).

Lemma 7. For any t > t∗, (i) if, in equilibrium, player 1 switches at t then he switches to
a′

1 �c1(t); (ii) if a1 ��1 − �2 and, in equilibrium, player 2 switches at t then he switches to
a′

2 �c2(t).

Proof. To prove part (i) note that since c1(t)� 1
2 player 1 will obtain negative continuation

payoffs by switching twice, since switching costs would exceed the size of the entire pie. Thus,
if player 1 switches at t, his new demand a′

1 must compensate him for his switching cost, so
a′

1 �c1(t). To prove part (ii), note that because of (i) any future switch by player 1 will be to
a′

1 �c1(t)��1, so player 2 knows player 1’s final demand will be at least �1 − �2. Thus, if
agreement is reached, player 2’s final payoff will be at most 1− (�1 −�2) = 2�2. Since switching
at t > t∗ costs more than �2, this cannot be enough to compensate player 2 for two switches.
Thus, if player 2 switches to a′

2 at t, it must be with the intention of capturing a′
2 of the pie, and

so a′
2 �c2(t). �

Lemma 8. For any t > t∗, if aj ��j then in equilibrium player i does not switch.
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Proof. Since aj ��j ��j − �i , Lemma 7 holds: if i switches at t, it is to a′
i �ci(t) > �i . But

then Lemma 7 will hold for both players, so all future switches will leave a′′
i > �i and a′′

j ��j .
Since �1 + �2 = 1 demands will never become compatible; player i therefore cannot recover his
switching costs, so he does not switch. �

Lemma 9. In equilibrium, any switch at t > t∗ leaves demands compatible.

Proof. First, suppose it is player 1 who moves at t, so c1(t) > 1
2 . Part (i) of Lemma 7 holds, so

player 1 switches to at least c1(t) > �1. By Lemma 8, he does not expect player 2 to switch in
response and he cannot plan to switch again, since switching twice exhausts the entire available
surplus. So player 1 only gets a non-negative continuation payoff by switching to a compatible
demand.

Next, suppose player 2 moves at t and c2(t) > 1−a1. We argue that player 2 will never switch.
From part (i) of Lemma 7, player 1’s final demand will be at least c1(t) if he switches and exactly
a1 if he does not. Thus, if agreement is reached, player 2’s final payoff will be either a′

2 �1−c1(t)

or a′
2 �1 − a1. In either case, a′

2 < c2(t), so player 2 cannot recover his switching costs if he
switches at t.

Finally, suppose player 2 moves at t and c2(t)�1 − a1. If player 2 switches to a′
2 = 1 −

a1 �c2(t) > �2 and never switches again, player 1 will never switch (by Lemma 8), so player
1 is guaranteed a continuation payoff of 1 − a1 − c2(t)�0. We show that this is strictly more
than player 2 can get if he switches to an incompatible demand. Since t > t∗, c1(t) + c2(t) > 1,
and so a1 �1 − c2(t) < c1(t). From part (i) of Lemma 7, any switch by player 1 will be to
a′

1 �c1(t) > a1. If player 2 switches to an incompatible demand at time t, then he will have to
switch again later to get agreement, and will still get a final demand of at most 1 − a1. Therefore,
his continuation payoff would be less than 1 − a1 − 2c2(t), which is strictly less than he could
get by switching to the compatible demand a′

2 = 1 − a1 at t. �

Lemma 10. Suppose that player j moves at time t > t∗, and that ai < �i and cj (t) < 1 − ai .
Then after j’s move, in equilibrium demands will be compatible.

Proof. Suppose first that demands are already compatible before player j’s move. Since t >

t∗, by Lemma 9 any switch leaves demands compatible. Therefore, suppose that ai + aj > 1
before j moves at t. If player j switches, then by Lemma 9 he switches to a compatible de-
mand. Thus, we need only show that in equilibrium player j must switch at t. We treat two cases
separately.

First, suppose player j is player 1, so cj (t)� 1
2 . Since ai < �i and demands are incompatible,

we must have aj > �j . By Lemma 7, any switch by player j (either at t or later) will leave a′
j > �j .

By Lemma 8, player i will never switch again in equilibrium. So if agreement is to be reached,
player j must switch at some point to a final demand less than or equal to 1 − ai ; player j gets
strictly higher payoff by switching to 1 − ai at time t than he could get by switching later. Since
1 − ai > cj (t), this is also strictly better than he gets by never switching. Thus, in equilibrium
player j must switch at t.

Second, suppose player j is player 2 and does not switch at t. From part (i) of Lemma 7, player
j must expect i’s final demand to be greater than ci(t) > �i > ai if he switches, and equal to
ai if he does not. Thus, if agreement is to be reached, player j’s share will be at most 1 − ai .
Further, since demands were assumed to be incompatible at t and player i’s demand will not fall,
j will have to switch at t ′ > t to reach agreement. Thus, if agreement is to be reached, player j’s
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continuation payoff will be at most 1 − ai − cj (t
′), and if agreement is not reached, it is at most

0; both of these are strictly less than what j would get by switching to a′
j = 1 − ai at t. So not

switching at t cannot occur in equilibrium. �

We can now prove Theorem 3. Consider the following strategy for player i: demand �i − �j at
every point, ignoring any new information which may be received over the course of the game.
With probability at least pj , player j would move at some t > t∗ with ai = �i − �j < �i and
cj (t) < �j + �j = 1 − ai . By Lemma 10, this would lead to compatible demands after j’s
move. By Lemma 9, any subsequent switch by j would still leave demands compatible. Thus,
with probability at least pj , this strategy would lead to agreement, so player i’s (ex ante) expected
payoff would be at least pj

(
�i − �j

)
. This would therefore be a profitable deviation from any

supposed equilibrium giving player i a lower expected payoff. �

Proof of Theorem 4. We use a similar approach to the one we use to prove Theorem 2. Given a
grid g, we define

t∗ = max

⎧⎨
⎩t

∣∣∣∣∣∣
∑
j

�j
T − nextj (t)

�1

⎫⎬
⎭ (10)

and

�i =
⎧⎨
⎩

�i
T − nexti (t∗)

if t∗ /∈ gi,

1 − �j if t∗ ∈ gi.

(11)

As before, we will abstract from the grid and show through a series of lemmas and propositions
that in equilibrium players immediately demand �i and do not change these demands thereafter.
We need to introduce some more notation. We will refer to

a∗
i = 1

T − t

∫ T

t

ai(	) d	 (12)

as the average continuation demand. This does not need to coincide with average payoffs, as it
may be the case that the demand profiles are not compatible, so at least temporarily no agreement
is reached.

Lemma 11. Given any (a, t), the average demands arising in any equilibrium of the continuation
game starting at (a, t), a∗, satisfy a∗

i � min(ai,
�i

T −t
) ∀i.

Proof. Consider the equilibrium path of (a, t). If player i never switches on equilibrium then
a∗
i = ai . If player i switches in equilibrium (at time t or after), he must obtain non-negative

payoffs. This can only be possible if �i �(T − t)a∗
i , otherwise he cannot hope to cover his

switching costs. Therefore, we obtain that a∗
i � min(ai,

�i
T −t

). �

Proposition 3. Given (a, t) such that ai ��i and t > nexti (t∗), player j never switches in any
equilibrium of the continuation game (a, t).

Proof. By Lemma 11 we know that player j’s continuation payoffs are at most (T − t)(1 −
min(ai,

�i
T −t

)). By switching he pays �j . Therefore, player j never switches if
�j

T −t
> 1 −
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min(ai,
�i

T −t
). But it is easy to check that this inequality is now satisfied. Note that for t >

nexti (t∗) we have that �i
T −t

> �i and
�j

T −t
> �j . With ai ��i we have that

�j
T −t

> �j =
1 − �i �1 − min(ai,

�i
T −t

). �

Lemma 12. Without loss of generality, let t∗ ∈ gi . In equilibrium, player j plays a′
j ��j at

((�i , aj ), nextj (t∗)).

Proof. If player j plays a′
j > �j then by Proposition 3 we know that none of the players will

switch thereafter, the demands are not compatible, so continuation values are at most zero. By
playing a′

j = �j , we know by Proposition 3 that none of the players will switch thereafter, the
demands are now compatible, so continuation values are (T − nextj (t∗))�j , which are equal to
�j . Thus, playing �j weakly dominates playing a′

j > �j . 24 �

Corollary 1. Player i, by playing ai = �i at t∗ and never switching thereafter, can guarantee
himself an agreement from nextj (t∗) on.

Proposition 4. Let the fineness of the grid satisfy �(g) < min(�i , �j ). Consider a subgame
((�i , aj ), t) for t � t∗ and t ∈ gi . Player i can guarantee himself continuation payoffs of �i (T −
nextj (t)) by never switching.

Proof. We prove it by induction on the game tree. The base is proved above for t∗ (Corollary 1).
Suppose now that the proposition is true for next(t) and we need to show it for t. By applying
the induction assumption for player i’s subsequent move (at nexti (next(t))), we already know
that i can guarantee himself continuation value of �i (T − nexti (next(t))). Therefore, all we need
to show is that player j will accommodate immediately, namely that at t ′ = nextj (t) player j
will play a′

j ��j . Note that if player j plays �j at t ′, because of the induction assumption, his
continuation value would be at least �j (T − t ′) − �j : player i will immediately accommodate,
and agreement will be achieved already at t ′ because the demands are compatible.

We will now show that for player j playing �j dominates not accommodating, namely setting
a′
j > �j . Let t ′′ = nexti (t ′) and t ′′′ = nextj (t ′′). Let vi(s) be time s continuation values for player

i on the equilibrium path of subgame ((�i , a
′
j ), t

′). Using the induction assumption (for player i
at time t ′′), we have that vi(t

′′′)��i (T − t ′′′). For player i to get this much, it must be that player j
(at t ′′′ or later) eventually changes his high demand of a′

j . Let AllCosts Denote all switching costs
spent (by both players) on the equilibrium path of ((�i , a

′
j ), t

′′′). Because we know that player j
will eventually change his high demand, we can write AllCosts = �j + OtherCosts. Let also a′

i

and a′′
i denote player i’s equilibrium play at ((�i , a

′
j ), t

′′) and at ((�i , �j ), t
′′), respectively.

Now, note that

vi(t
′′′) + vj (t

′′′)�(T − t ′′′) − AllCosts = (T − t ′′′) − �j − OtherCosts (13)

24 While, in principle, there could be other equilibria of the subgame ((�i , aj ), nextj (t∗)) in which player j sets a′
j

=
aj > �j (because of indifference), it is easy to show that such equilibria of the subgame cannot be part of an equilibrium
of the whole game. Since player j must switch in equilibrium at ((�i − 
, aj ), nextj (t∗)) for any 
 > 0, if he did not
switch at ((�i , aj ), nextj (t∗)), player i would have no best response earlier in the game.
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and thus

vj (t
′) = (t ′′ − t ′)�j (�i , a

′
j ) + (t ′′′ − t ′′)�j (a

′
i , a

′
j ) + vj (t

′′′)
� 0 + (t ′′′ − t ′′)�j (a

′
i , a

′
j ) + (T − t ′′′) − vi(t

′′′) − �j − OtherCosts

� (t ′′′ − t ′′)�j (a
′
i , a

′
j ) + (T − t ′′′) − �i (T − t ′′′) − �j − OtherCosts

= (t ′′′ − t ′′)�j (a
′
i , a

′
j ) + �j (T − t ′′′) − �j − OtherCosts, (14)

where the first inequality arises from Eq. (13) and the second from the induction assumption. The
last equality just uses the fact that �i + �j = 1.

Now, we can finally check that this continuation value of vj (t
′) is lower than what j would get

by playing �j at t ′. By playing a′
j player j gets

vj (t
′)�(t ′′′ − t ′′)�j (a

′
i , a

′
j ) + �j (T − t ′′′) − �j − OtherCosts (15)

while by playing �j player j gets

�j (T − t ′) − �j = �j (t
′′′ − t ′) + �j (T − t ′′′) − �j . (16)

The latter is greater as long as

�j (t
′′′ − t ′)�(t ′′′ − t ′′)�j (a

′
i , a

′
j ) − OtherCosts. (17)

Now, if �j (a
′
i , a

′
j ) = 0 we are done. If �j (a

′
i , a

′
j ) > 0, this implies that player i reduced his

demand in period t ′′ (from �i to a′
i), and thus OtherCosts��i . For a sufficiently fine grid (e.g.

t ′′′ − t ′′ < �(g) < �i), the inequality of Eq. (17) holds, which finishes the proof. �

Proposition 5. Let the fineness of the grid satisfy �(g) < 1
2 min(�i , �j ). On the equilibrium path

of the flow-payoff game each player i demands a∗
i ∈

(
�i

T −2�(g)
T

, 1 − �j
T −2�(g)

T

)
the first time

he plays and never switches thereafter.

Proof. Without loss of generality, let nexti (0) < nextj (0). Let t1 = nextj (0) and t2 = nexti (nextj
(0)). As the first decisions do not involve switching costs, player i’s value of the game vi satisfies
vi ��i (T − t1) and player j’s value of the game vj satisfies vj ��j (T − t2). Note that vi +
vj ��i (T − t1)+�j (T − t2)�T − t2 > T −2�(g). It is now easy to see that there are no switches
on equilibrium path: a switch implies that vi + vj < T − min(�i , �j ), which is a contradiction.
Without switching, it is clear that demands will be compatible starting at nextj (0) = t1 (the
first time at which both players have demands). Thus, each player’s demand a∗

i must satisfy
(T − t1)a

∗
i = vi . This establishes the proof. Note that the bounds on demands are tighter once

we know which player moves first. The lower bound for the first mover is �i , making the upper
bound for the second mover 1 − �i . �

At this point, all we need is to take limits of the result in Proposition 5 in order to finish the
proof of Theorem 4. �
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