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1 Environment

We are in the environment of Lien and Quint (2011). There are two objects for sale, one large and
one small. There are two bidders, with types ti which are independent and drawn from the uniform
distribution on [0, 1]. A bidder with type ti values the big object at U(ti) and the small object at
u(ti), and gets no additional benefit (beyond U(ti)) from getting both. U , u, and U − u are all
strictly increasing and continuous. (See Lien and Quint for motivation of the setup.)

2 Proof of Equilibria Discussed In Paper

As in the paper, let X(t) ≡ U(t)− u(t); and let X(t) = 1
1−t
∫ 1
t X(s)ds for t < 1 and X(1) = X(1).

Proposition 1. If U(0)− u(0) < r < U(1)− u(1), then the following bidding strategies constitute
a symmetric Bayesian Nash Equilibrium:

(b(ti), B(ti)) =


(0, 0) if ti < t∗(

1
1−ti

∫ t∗∗
ti

(r −X(s))ds, 0
)

if ti ∈ [t∗, t∗∗)(
0, 1

ti

∫ ti
0 max{r,X(s)}ds

)
if ti ≥ t∗∗

where t∗∗ solves X(t∗∗) = r and t∗ is the unique solution to t∗U(t∗) +
∫ t∗∗
t∗ X(s)ds = t∗∗X(t∗∗).

Proof. t∗ < t∗∗ uniquely defined. t∗∗ is uniquely defined since X(·) is assumed to be strictly

increasing and continuous with X(0) < r < X(1). Let φ(t) = tU(t) +
∫ t∗∗
t X(s)ds, which is

continuous and strictly increasing. φ(0) =
∫ t∗∗
0 X(s)ds < t∗∗X(t∗∗) and φ(t∗∗) = t∗∗U(t∗∗) >

t∗∗X(t∗∗); so φ(t) = t∗∗X(t∗∗) has a unique solution, which is strictly below t∗∗.

Deviations to other types’ equilibrium strategies. Let π(t̂, t) be the expected payoff of a bidder
with type t̂ who makes the equilibrium bid of a bidder with type t. For t ≥ t∗∗, he wins the small
item for free when his opponent has type tj > t, and the large object for B(t) otherwise, so

π(t̂, t) = (1− t)u(t̂) + tU(t̂)− tE (max{r,X(s)} | s < t)

= u(t̂) + tX(t̂)− t∗∗r −
∫ t
t∗∗ X(s)ds

↓
∂
∂tπ(t̂, t) = X(t̂)−X(t)

For t∗ ≤ t < t∗∗, he wins the small object for b(t) when tj > t, and the large object for r otherwise,
so

π(t̂, t) = (1− t)u(t̂)− (1− t)
(
t∗∗−t
1−t E (r −X(s) | s ∈ (t, t∗∗))

)
+ tU(t̂)− tr

= u(t̂)− (t∗∗ − t)r + (t∗∗ − t)E (X(s) | s ∈ (t, t∗∗)) + tX(t̂)− tr
= u(t̂) + tX(t̂)− t∗∗r +

∫ t∗∗
t X(s)ds

↓
∂
∂tπ(t̂, t) = X(t̂)−X(t)
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(Note that the left- and right-limits of π(t̂, t) as t→ t∗∗ are identical, since equilibrium bids approach
(0, r) from both sides.) Finally, the difference in expected payoff between bidding as type t∗ and
bidding (0, 0) is

π(t̂, t∗)− π(t̂, (0, 0)) = (1− t∗)u(t̂)− (1− t∗)
(
t∗∗−t∗
1−t∗ E (r −X(s) | s ∈ (t∗, t∗∗))

)
+t∗U(t̂)− t∗r − (1− t∗)u(t̂)

= −(t∗∗ − t∗)r + (t∗∗ − t∗)E (X(s) | s ∈ (t∗, t∗∗)) + t∗U(t̂)− t∗r
= −t∗∗r + t∗U(t̂) +

∫ t∗∗
t∗ X(s)ds

which is increasing in t̂ and, by construction of t∗, equal to 0 at t̂ = t∗. Together, these establish
that π(t̂, t) is at least weakly increasing in t for t < t̂ and decreasing in t for t > t̂, ruling out
profitable deviations to other bidders’ equilibrium bids.

Other deviations. A deviation to (B, b) with B > r and b > 0 is dominated by a deviation to
either (B−b, 0) or (r, b−(B−r)). A deviation to (B, 0) with B > B(1) is dominated by (B(1), 0). A
deviation to (r, b) with b > b(t∗) is dominated by (r, b(t∗)). This rules out all additional deviations
to (B, b) with B ≥ r.

A deviation to (B, b) with b ≥ r > B > 0 is dominated by (0, b − B) if b − B ≥ r, and by
(B − (b − r), r) otherwise. A deviation to (B, r) with B < r is equivalent to a bid of (0, r), since
either one will always win the small object for price r; this is dominated by bidding (r, 0), since this
wins either the large object at r or the small object for free. Bids of (0, b) with b > r are similarly
dominated.

All remaining deviations only win anything when the opponent’s type is tj ≥ t∗. Since bidding
(0, 0) gets the small item for free in all these situations, the only potential deviations are to bid
high enough to sometimes win two items against opponent types above t∗. Since b(t∗) is the highest
opponent bid on the small item, such bids only matter if

B > r − b(t∗)
= 1

1−t∗
(

(1− t∗)r − (t∗∗ − t∗)r +
∫ t∗∗
t∗ X(s)ds

)
= 1

1−t∗
(

(1− t∗∗)r +
∫ t∗∗
t∗ X(s)ds

)
= E (min{X(s), X(t∗∗)} | s > t∗)
> X(t∗)

Thus, this is only profitable for types t > t∗, since types below t∗ prefer the small item for free.
Consider a deviation by type t > t∗ to (0, B) with B = r − b(t′) for some t′ ∈ (t∗, t∗∗), and

compare it to simply playing the equilibrium strategy of type t′. This being profitable would require

(t′ − t∗)(U(t)− r + b(t′)) + (1− t′)u(t) > t′(U(t)− r) + (1− t′)(u(t)− b(t′))
t′U(t)− t′r + t′b(t′)− t∗U(t) + t∗r − t∗b(t′) > t′U(t)− t′r − b(t′) + t′b(t′)

(t′ − t∗)(U(t)− r + b(t′)) > t′(U(t)− r)− (1− t′)b(t′)
t′U(t)− t′r + t′b(t′)− t∗U(t) + t∗r − t∗b(t′) > t′U(t)− t′r − b(t′) + t′b(t′)

−t∗U(t) + t∗r − t∗b(t′) > −b(t′)
−t∗U(t) + t∗r + (1− t∗)b(t′) > 0

(1− t∗)u(t) > t∗(U(t)− r) + (1− t∗)(u(t)− b(t′))
(1− t∗)u(t) > t∗(U(t)− r) + (1− t∗)(u(t)− b(t∗))

since b(t∗) < b(t′). But this means bidding like a low type must be preferable to bidding like t∗ for
some type t > t∗, which we ruled out above. 2
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Proposition 2. If U(1) − u(1) ≤ r < U(1), then the following bidding strategies constitute a
symmetric Bayesian Nash Equilibrium:

(b(ti), B(ti)) =

{
(0, 0) if ti < t∗(
r −X(ti), r

)
if ti ≥ t∗

where t∗ is the unique solution to r = t∗U(t∗) + (1− t∗)X(t∗).

Proof. t∗ uniquely defined. Let ψ(t) = tU(t) + (1 − t)X(t) = tU(t) +
∫ 1
t (U(s) − u(s))ds =∫ 1

0 (U(max(t, s))− 1s>tu(s)) ds. This is continuous, strictly increasing, approaches X(0) < X(1) ≤
r as t→ 0, and approaches U(1) > r as t→ 1; so ψ(t) = r has a unique solution.

Deviations to other types’ equilibrium strategies. First, consider a bidder with type t̂ who bids
as if he had type t > t∗. He wins the big item for r when tj < t, and the small item for bi(t) when
tj > t, for an expected payoff of

π(t̂, t) = t
(
U(t̂)− r

)
+ (1− t)

(
u(t̂)− r +X(t)

)
= u(t̂)− r + tX(t̂) +

∫ 1
t X(s)ds

↓
∂
∂tπ(t̂, t) = X(t̂)−X(t)

The difference in expected payoffs between bidding like type t∗ and bidding like a low type is

π(t̂, t∗)− π(t̂, (0, 0)) = u(t̂)− r + t∗X(t̂) +
∫ 1
t∗ X(s)ds− (1− t∗)u(t̂)

= t∗u(t̂)− r + t∗X(t̂) +
∫ 1
t∗ X(s)ds

= t∗U(t̂)− r +
∫ 1
t∗ X(s)ds

which is increasing in t̂ and, by construction of t∗, 0 at t̂ = t∗. Together, these tell us that types
above t∗ prefer their own equilibrium strategies to those of other types above t∗, including t∗, and
prefer this to bidding like a low type; and types below t∗ prefer bidding their equilibrium strategies
to bidding like t∗, which they prefer to bidding like a higher type. Type t∗ is indifferent between
his own strategy and bidding (0, 0), and strictly prefers either to bidding like a higher type. So no
type can gain by bidding like a different type.

Other deviations. Bids of (B, b) with B > r and b > 0 are dominated by either (r, b− (B − r))
or (B − b, 0). Bids of (r, b) with b > b(t∗) are dominated by (r, b(t∗)), the equilibrium strategy of
type t∗. Bids of (B, 0) with B > r are dominated by (r, 0), since given other bidders’ strategies,
this still always wins the large item. Given equilibrium bids, (r, 0) gives the same result as (r, b(1)),
the equilibrium strategy of type t = 1. This rules out profitable deviations to (B, b) with B ≥ r.

A deviation to (B, b) with b ≥ r > B > 0 is dominated by (0, b − B) if b − B ≥ r, and by
(B − (b − r), r) otherwise. A deviation to (B, r) with B < r is equivalent to a bid of (0, r), since
either one will always win the small object for price r; this is dominated by bidding (r, 0), since this
wins either the large object at r or the small object for free. Bids of (0, b) with b > r are similarly
dominated. This rules out deviations which ever win against types tj < t∗. Bidding (0, 0) wins
the small object for free against all types tj ≥ t∗, so the only possible deviations remaining are to
sometimes win the large object rather than the small one when tj ≥ t∗, by bidding B > r − b(t∗).
We can assume without loss that these are deviations to (B, 0) with B < r.

Such a deviation only matters if B > r−b(t∗) = X(t∗). For t < t∗, this deviation is not profitable
– a bidder with t < t∗ prefers the small item for free to the large item at price X(t∗) < X(t∗). So
we only need to worry about deviations by high types.

3



Fix t > t∗, and suppose a bidder with type t considers such a strategy. Bids B ≤ r − b(t∗) are
irrelevant, since they never win; bids B > r− b(1) are dominated by B = r− b(1), since either one
wins the big object against all opponents tj ≥ t∗ but the latter involves paying less. So we may
assume that any potential deviation strategy (B, 0) with B < r satisfies r − b(t∗) ≤ B ≤ r − b(1),
and therefore, by continuity of b above t∗, B = r − b(t′) for some t′ ∈ [t∗, 1]. The expected payoff
to this strategy, then, is

π(t, (B, 0)) = (1− t′)u(t) + (t′ − t∗) (U(t)− (r − b(t′)))
= (1− t′)(u(t)− b(t′)) + t′(U(t)− r)− t∗ (U(t)− r)) + (1− t∗)b(t′)
= π(t, t′)− t∗ (U(t)− r)) + (1− t∗)

(
r −X(t′)

)
= π(t, t′) + r − t∗U(t)− (1− t∗)X(t′)

= π(t, t′) + t∗U(t∗) + (1− t∗)X(t∗)− t∗U(t)− (1− t∗)X(t′)

= π(t, t′)− t∗ (U(t)− U(t∗))− (1− t∗)
(
X(t′)−X(t∗)

)
≤ π(t, t′) ≤ π(t, t)

where the first inequality is because by assumption, t ≥ t∗, t′ ≥ t∗, and U and X are increasing,
and the second is because we’ve already ruled out profitable deviations to other types’ equilibrium
strategies. 2

Proposition 3. If U(1) ≤ r < U(1) + u(1), then the following bidding strategies constitute a
symmetric Bayesian Nash Equilibrium:

(b(ti), B(ti)) =


(0, 0) if ti < t∗(
1
2 (r −X(1)) , 0

)
if ti ∈ [t∗, t∗∗)(

r+X(1)
2 −X(ti),

r+X(1)
2

)
if ti ≥ t∗∗

where t∗ = 0 if u(0) > 1
2(r −X(1)), t∗ solves u(t∗) = 1

2(r −X(1)) otherwise, and t∗∗ is the unique
solution over (t∗, 1) to (1− t∗∗)

(
X(1)−X(t∗∗)

)
= (t∗∗ − t∗)

(
U(t∗∗)− 1

2(r +X(1))
)
.

Proof. t∗ and t∗∗ uniquely defined. Since r < U(1) + u(1), 1
2 (r −X(1)) < u(1); so either u(0) ≥

1
2 (r −X(1)) or u(t) = 1

2 (r −X(1)) has a unique interior solution t∗.
As for t∗∗, the expression (1 − t)

(
X(1)−X(t)

)
is decreasing in t, goes to 0 as t → 1, and is

strictly positive everywhere else. Let t∗∗∗ solve U(t∗∗∗) = 1
2(r + X(1)) if it has a solution above

t∗, otherwise let t∗∗∗ = t∗. (Since r < U(1) + u(1), 1
2(r + X(1)) < U(1), so t∗∗∗ < 1.) Then

the expression (t − t∗)
(
U(t)− 1

2(r +X(1))
)

is 0 at t = t∗∗∗ and strictly increasing above it. This
guarantees equation ?? has a unique solution on (t∗, 1).

Deviations to other types’ equilibrium strategies. A bidder with type t̂ who bids like type t > t∗∗

gets expected payoff

π(t̂, t) = (1− t)
(
u(t̂)− 1

2(r +X(1)) +X(t)
)

+ (t− t∗)
(
U(t̂)− 1

2(r +X(1))
)

= (1− t∗)u(t̂) + (t− t∗)X(t̂)− (1− t∗)12(r +X(1)) + (1− t)X(t)

= (1− t∗)u(t̂) + (t− t∗)X(t̂)− (1− t∗)12(r +X(1)) +
∫ 1
t X(s)ds

↓
∂
∂tπ(t̂, t) = X(t̂)−X(t)

so no type t̂ 6= t will deviate to the equilibrium strategy of type t > t∗∗, and no type t̂ > t∗∗ will
deviate to the equilibrium strategy of type t∗∗. The gain from bidding like t∗∗ instead of like a type
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t ∈ [t∗, t∗∗) is

π(t̂, t∗∗)− π(t̂, t) = (t∗∗ − t∗)
(
U(t̂)− 1

2(r +X(1))
)

+ (1− t∗∗)
(
u(t̂)− 1

2(r +X(1)) +X(t∗∗)
)

−(1− t∗∗)
(
u(t̂)− 1

2(r −X(1))
)

= (t∗∗ − t∗)
(
U(t̂)− 1

2(r +X(1))
)

+(1− t∗∗)
(
1
2(r −X(1))− 1

2(r +X(1)) +X(t∗∗)
)

= (t∗∗ − t∗)
(
U(t̂)− 1

2(r +X(1))
)
− (1− t∗∗)

(
X(1)−X(t∗∗)

)
which is strictly increasing in t̂ and, by equation ??, equal to 0 at t̂ = t∗∗, so no type t̂ < t∗∗ can
gain from this deviation, and no type t̂ > t∗∗ can benefit from bidding like a type t ∈ [t∗, t∗∗).

Finally, bidding like a type t ∈ [t∗, t∗∗) gives a payoff of (1− t∗∗)
(
u(t̂)− 1

2(r −X(1))
)
, which by

construction is positive for t̂ > t∗ and negative for t̂ < t∗; so low types can’t gain by impersonating
medium types (or, by transitivity, high types), and medium types can’t gain by impersonating low
types (nor can high types by transitivity).

Other deviations. Deviations to B ≥ r are unprofitable because by assumption r ≥ U(1).
(When X(1) ≤ r < U(1), the strategies in Proposition 3 may still be an equilibrium, but this
deviation must be explicitly checked; if u(·) is steep enough near 0, the equilibrium may break
down.) Note that the rule for choosing a winner implies increasing B cannot increase the chance
your other bid wins. Deviations to b ≥ r are similarly unprofitable.

Deviations to (b, B) with B ∈
(
1
2(r +X(1)), r

)
can be ruled out because if b > 0, reducing both

b and B until either B = 1
2(r + X(1)) or b = 0 does strictly better, and if b = 0, then reducing

B to 1
2(r + X(1)) does strictly better. The latter case – bidding B = 1

2(r + X(1)) and b = 0 – is
payoff-equivalent to making the equilibrium bids of type t = 1, since the low bid b(1) never wins
in equilibrium. The former case – bidding B = 1

2(r + X(1)) and b > 0 – is either the equilibrium
bid of some type t ∈ [t∗, t∗∗), or else dominated by bidding like type t∗. We’ve already ruled out
profitable deviations to equilibrium bids of other types, so these are not profitable either.

Any other deviation wins nothing against opponent types tj < t∗∗, and bidding like a type
t ∈ [t∗, t∗∗) already gets the highest possible payoff against opponents tj ≥ t∗∗, so there are no
other profitable deviations. 2

3 Optimal Mechanism for This Environment

We characterize the optimal mechanism under two additional assumptions:

Assumption 1. The auctioneer cannot sell one object and keep the other.

This is motivated by the procurement example, where the two “objects” are contracts to com-
plete two parts of a larger project – the government would not want to award a contract to finish
half the project without someone committing to build the other half. (We can also characterize the
optimal mechanism when the seller can sell one object and withhold the other, but at the cost of
more notation and complexity; the simpler case will be sufficient for the example we want.)

Assumption 2. The random variables u(ti), U(ti), and X(ti) = U(ti) − u(ti) are all regular, in
the sense of Myerson (1981): letting Fu, FU , and FX be their respective cumulative probability

distributions and fu, fU , and fX their corresponding densities, s − 1−Fu(s)
fu(s)

, s − 1−FU (s)
fU (s) , and s −

1−FX(s)
fX(s) are all nondecreasing.
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The analysis is nearly identical to that in Myerson. Restrict attention to direct-revelation
mechanisms. Let v0 be the seller’s benefit from selling nothing. Let pi(t) be the probability that
given reported types t = (t1, t2), bidder i gets the large object (and, consequently, j gets the small),
and p0(t) = 1 − p1(t) − p2(t) the probability the objects go unsold. Let Qi(ti) = Etjpi(ti, tj) be
bidder i’s probability of winning the big object, and qi(ti) = Etjpj(ti, tj) his probability of winning
the small object.

Let Vi(ti) denote the expected payoff to bidder i with type ti; the envelope theorem gives

Vi(ti) = Vi(0) +

∫ ti

0

[
qi(s)u

′(s) +Qi(s)U
′(s)
]
ds (1)

which is a necessary condition for incentive compatibility. The monotonicity requirement is now
for both Qi and qi + Qi to be nondecreasing. Since equation 1 implies Vi is increasing, individual
rationality requires Vi(0) ≥ 0; together, these conditions are sufficient for a mechanism to be
feasible.

The monotonicity requirement as given here may be stronger than necessary, but it will not
bind under Assumption 2. To see why it (along with the envelope condition) is sufficient for
incentive-compatibility, note that the expected payment by a bidder reporting type t̂i must be
qi(t̂i)u(t̂i) + Qi(t̂i)U(t̂i)− Vi(t̂i). For a bidder with true type ti, the expected gain from reporting
type t̂i > ti is therefore

πi(t̂i, ti)− πi(ti, ti) = qi(t̂i)u(ti) +Qi(t̂i)U(ti)

−
(
qi(t̂i)u(t̂i) +Qi(t̂i)U(t̂i)− Vi(0)−

∫ t̂i
0 [qi(s)u

′(s) +Qi(s)U
′(s)] ds

)
−Vi(0)−

∫ ti
0 [qi(s)u

′(s) +Qi(s)U
′(s)] ds

= qi(t̂i)
(
u(ti)− u(t̂i)

)
+Qi(t̂i)

(
U(ti)− U(t̂i)

)
+
∫ t̂i
ti

[qi(s)u
′(s) +Qi(s)U

′(s)] ds

=
∫ t̂i
ti

[
(qi(s)− qi(t̂))u′(s) + (Qi(s)−Qi(t̂))U ′(s)

]
ds

= −
∫ t̂i
ti

[
qi(t̂) +Qi(t̂)− qi(s)−Qi(s)

]
u′(s)ds−

∫ t̂i
ti

[
Qi(t̂)−Qi(s)

]
X ′(s)ds

u′ and X ′ are both positive; if qi+Qi and Qi are both nondecreasing, both integrands are everywhere
nonnegative, so the entire expression is nonpositive. A symmetric argument holds for t̂i < ti.

The ex-ante expected payoff to bidder i is

πi ≡ EtiVi(ti) =
∫ 1
0

(
Vi(0) +

∫ ti
0 [qi(s)u

′(s) +Qi(s)U
′(s)] ds

)
dti

= Vi(0) +
∫ 1
0

∫ 1
s [qi(s)u

′(s) +Qi(s)U
′(s)] dtids

= Vi(0) +
∫ 1
0 [qi(s)u

′(s) +Qi(s)U
′(s)] (1− s)ds

The expected payment from a bidder with type ti can be written as EP (ti) = qi(ti)u(ti) +
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Qi(ti)U(ti)− Vi(ti), so the seller’s expected payoff is

Π = Et {EP (t1) + EP (t2) + p0(t)v0}

= Et1,t2 {p1(t)(U(t1) + u(t2)) + p2(t)(U(t2) + u(t1)) + p0(t)v0)}
−V1(0)−

∫ 1
0 (q1(t1)u

′(t1) +Q1(t1)U
′(t1))(1− t1)dt1

−V2(0)−
∫ 1
0 (q2(t2)u

′(t2) +Q2(t2)U
′(t2))(1− t2)dt2

= Et1,t2 {p1(t)(U(t1) + u(t2)) + p2(t)(U(t2) + u(t1)) + p0(t)v0)}
−V1(0)−

∫ 1
0

∫ 1
0 (p2(t1, t2)u

′(t1) + p1(t1, t2)U
′(t1))(1− t1)dt2dt1

−V2(0)−
∫ 1
0

∫ 1
0 (p1(t1, t2)u

′(t2) + p2(t1, t2)U
′(t2))(1− t2)dt1dt2

= −V1(0)− V2(0) + Et1,t2 {p1(t) [U(t1)− (1− t1)U ′(t1) + u(t2)− (1− t2)u′(t2)]
+ p2(t) [U(t2)− (1− t2)U ′(t2) + u(t1)− (1− t1)u′(t1)] + p0(t)v0}

Let R(t) = U(t)− (1− t)U ′(t) and r(t) = u(t)− (1− t)u′(t); then this is equal to

Π = −V1(0)− V2(0) + Et {p1(t) [R(t1) + r(t2)] + p2(t) [R(t2) + r(t1)] + p0(t)v0}

Provided it satisfies monotonicity, this is maximized by setting V1(0) = V2(0) = 0 and pi(t) = 1
whenever R(ti) + r(tj) > max{R(tj) + r(ti), v0}.

Next, we show that under Assumption 2, this allocation rule is feasible. ti ∼ U [0, 1], so Fu(s) =
Pr(u(t) < s) = Pr(t < u−1(s)) = u−1(s); differentiating,

fu(s) = ∂
∂su
−1(s) = 1

u′(u−1(s))

and so
s− 1−Fu(s)

fu(s)
= s−

(
1− u−1(s)

)
u′(u−1(s)) = u(t)− (1− t)u′(t)

where t ≡ u−1(s) (which is strictly increasing in s). So if Fu is regular, r(t) is nondecreasing in t.
Similarly, FU regular implies R(t) is nondecreasing, and FX regular implies X(t)− (1− t)X ′(t) =
R(t)− r(t) is nondecreasing.

These lead to a clean characterization of the optimal mechanism:

Theorem 1. Suppose the seller cannot sell one object without selling the other. Let t1 = max{t1, t2}
and t2 = min{t1, t2}. Then the optimal mechanism is:

• If R(t1) + r(t2) ≥ v0, give the big object to the bidder with type t1, the small object to the
bidder with type t2

• If R(t1) + r(t2) < v0, keep both objects

• Charge the transfers implied by this allocation rule, Vi(0) = 0, and the envelope theorem

The envelope condition has already been imposed, as has Vi(0) ≥ 0. Under this allocation rule,
since R and r are increasing,

q(ti) +Q(ti) = Pr (max{R(ti) + r(tj), r(ti) +R(tj)} ≥ v0)

is increasing; and since R and R− r are increasing,

Q(ti) = Pr (R(ti) + r(tj) > v0 and R(ti)− r(ti) > R(tj)− r(tj))
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is as well. So the three sufficient conditions are satisfied, and the allocation rule is therefore
implementable.

(We can use the same logic to characterize the optimal mechanism when the seller is able to sell
one object without the other. For i, j ∈ {0, 1, 2}, let pij(t) be the probability, given reported types
t, then the big item is allocated to bidder i and the small to bidder j (where “bidder 0” indicates
the seller keeping the object). Letting v1, v2, and v12 be the seller’s reservation value for the big
item, the small item, and both together, the integrand in the simplified expression for expected
payoff would become

Π = Et1,t2 {p12(t) [R(t1) + r(t2)] + p21(t) [R(t2) + r(t1)] + p10(t) [R(t1) + v2]
+ p20(t) [R(t2) + v2] + p01(t) [r(t1) + v1] + p02(t) [r(t2) + v1] + p00(t) [v12]}

which leads to a characterization of the optimal allocation rule based on which of the seven terms
in square brackets is largest at each t.)

4 An Example

Next, we show a particular example where the optimal mechanism can be implemented using the
auction considered in Lien and Quint: a pay-as-bid auction with exclusive-or bids and an aggregate
reserve price.

Example 1. Assume the seller can only sell the two objects together. Let u(t) = t, U(t) = 2t, and
v0 = 1. Consider a pay-as-bid auction with exclusive-or bidding and an aggregate reserve price of
3
2 . One symmetric equilibrium in this auction is

b(ti) = 1
2 ti and B(ti) =


0 if ti ≤ 2

3

ti + 1
2 if ti >

2
3

and this equilibrium implements the optimal mechanism.

First we will solve explicitly for the optimal mechanism (allocation rule and expected payoffs to
each bidder type) in this example. We then show that these strategies are indeed an equilibrium,
and give the same allocation rule and expected payoffs as the optimal mechanism.

4.1 Optimal Mechanism when u(t) = t, U(t) = 2t, and v0 = 1

When u(t) = t and U(t) = 2t, R(t) = 2t− (1− t)2 = 4t− 2 and r(t) = t− (1− t) = 2t− 1, so

R(t1) + r(t2) = 4t1 − 2 + 2t2 − 1 = 4t1 + 2t2 − 3

The optimal auction, then, allocates the big object to the bidder with the higher type, and the small
object to the bidder with the lower type, whenever 4t1 + 2t2 − 3 ≥ v0 = 1, or when t1 + 1

2 t
2 ≥ 1.

Given this allocation rule, there are two relevant regions of types. Types ti ≤ 2
3 never win the

big object, since tj < ti → ti + 1
2 tj <

2
3 + 1

3 = 1. They win the big object whenever tj + 1
2 ti ≥ 1,

which is when tj ≥ 1− 1
2 ti. For ti ≤ 2

3 , then, Qi(ti) = 0 and qi(ti) = Pr
(
tj ≥ 1− 1

2 ti
)

= 1
2 ti.

Since U ′(t) = 2 and u′(t) = 1, the envelope theorem states that

V (ti) = V (0) +

∫ ti

0
[2Qi(s) + qi(s)] ds
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For ti ≤ 2
3 , this is

V (ti) =

∫ ti

0

1

2
sds =

1

4
t2i

Note that V
(
2
3

)
= 1

4

(
2
3

)2
= 1

9 .
Types ti >

2
3 can win either object. Specifically, they win the small object whenever tj > ti,

since that means tj + 1
2 ti > 1. And they win the big object whenever tj < ti but ti+

1
2 tj ≥ 1, which

is when tj ≥ 2− 2ti. So Qi(ti) = ti − (2− 2ti) = 3ti − 2, and qi(ti) = 1− ti. For ti >
2
3 , then,

V (ti) = V

(
2

3

)
+

∫ ti

2
3

[2(3s− 2) + (1− s)] ds =
1

9
+

∫ ti

2
3

[5s− 3] ds

=
1

9
+

5

2
t2i −

5

2

(
2

3

)2

− 3

(
ti −

2

3

)
=

5

2
t2i − 3ti + 1

4.2 Strategies in Example 1 Give This Outcome

Allocation

Bidders with types ti ≤ 2
3 bid

(
1
2 ti, 0

)
, and bidders with types ti >

2
3 bid

(
1
2 ti, ti + 1

2

)
. With a

global reserve of 3
2 , then, this means that (i) when t1 and t2 are both below 2

3 , the reserve is not
met; (ii) when t1 and t2 are both above 2

3 , the reserve is met, and B(t1) + b(t2) > b(t1) +B(t2), so
the bidder with the higher type gets the big object; and (iii) when t1 > 2

3 > t2, the reserve is met
(by B(t1) + b(t2)) if and only if t1 + 1

2 + 1
2 t

2 ≥ 3
2 , or t1 + 1

2 t
2 ≥ 1. So these strategies implement

the same allocation as the optimal mechanism.

Payoffs

Given the allocation rule, by following this strategy, bidder i with type ti ≤ 2
3 never wins the big

object, and wins the small object whenever tj + 1
2 ti ≥ 1, or tj ≥ 1 − 1

2 ti, which is has probability
1
2 ti; so his expected payoff is 1

2 ti
(
ti − 1

2 ti
)

= 1
4 t

2
i .

For ti >
2
3 , he wins the big object (and pays ti + 1

2) when tj < ti and ti + 1
2 tj ≥ 1, or

tj ∈ [2− 2ti, ti], which has probability 3ti − 2; and wins the small object (for 1
2 ti) when tj > ti,

with probability 1− ti. His expected payoff is then

(3ti − 2)

(
2ti −

(
ti +

1

2

))
+ (1− ti)

(
ti −

1

2
ti

)
= (3ti − 2)

(
ti −

1

2

)
+

1

2
ti(1− ti)

= 3t2i − 2ti −
3

2
ti + 1 +

1

2
ti −

1

2
t2i =

5

2
t2i − 3ti + 1

4.3 Strategies in Example 1 Are An Equilibrium

When bidder j 6= i plays the strategies described above, bidder i’s expected payoffs are continuous
in his bids. Since undominated bids are taken from a subset of a compact space (say, [0, 1]× [0, 2]),
a maximizer exists. Thus, we need only show that this maximizer cannot achieve an expected
payoff higher than the payoffs calculated above. We consider three cases: when the maximizer
(b, B) satisfies B = 0, satisfies b = 0, or satisfies b > 0 and B > 0. (Since Bj(tj) = tj + 1

2 ≤
3
2 , a

bid of (0, 0) earns 0 expected payoff.)
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Bidding on Just The Small Object

A bidder who bids only on the small object will win it whenever b + tj + 1
2 ≥

3
2 , or whenever

tj ≥ 1− b, which has probability b; so expected payoff is b(ti − b), which is maximized at b = 1
2 ti.

For ti ≤ 2
3 , this is the equilibrium strategy; for ti >

2
3 , this gives expected payoff 1

4 t
2
i , which is less

than the equilibrium payoff because 5
2 t

2
i − 3ti + 1− 1

4 t
2
i = 9

4 t
2
i − 3ti + 1 =

(
3
2 ti − 1

)2
.

Bidding on Just The Large Object

A bidder who bids only on the large object will win it whenever B+ 1
2 tj ≥

3
2 , or whenever tj ≥ 3−2B,

which has probability 0 when B ≤ 1 and probability 1− (3− 2B) = 2B − 2 otherwise. Assuming
B ≥ 1, expected payoff is (2B − 2)(2ti − B). When ti ≤ 1

2 , this is never profitable. When ti >
1
2 ,

this is maximized at B = ti + 1
2 , giving expected payoff 2

(
ti − 1

2

)2
. If ti ≤ 2

3 , this is at most
2
62

= 1
18 ; but if ti ≥ 1

2 , the equilibrium payoff is 1
4 t

2
i ≥ 1

16 . For ti >
2
3 , the gain from deviating

is 2t2i − 2ti + 1
2 −

(
5
2 t

2
i − 3ti + 1

)
= −1

2 t
2
i + ti − 1

2 = −1
2(1 − ti)2 < 0, so this is never a profitable

deviation.

Bidding on Both Objects

A bid that never wins is payoff-equivalent to no bid; so we only have to consider further deviations
such where the profit-maximizing bid (b, B) > 0 and both b and B win with strictly positive
probability.

First, suppose B−b < 5
6 . Since tj >

2
3 implies Bj−bj = 1

2 tj+ 1
2 >

5
6 , bidder i never wins the big

object when tj >
2
3 . i wins the big object when tj ≤ 2

3 and B + bj = B + 1
2 tj ≥

3
2 , or tj ≥ 3− 2B,

so i wins the big object if and only if tj ∈
[
3− 2B, 23

]
. For this to be nonempty requires B > 7

6 ,
which means b > 2

6 , which means that whenever tj >
2
3 , Bj + b > 2

3 + 1
2 + 1

3 = 3
2 , so i wins the

small object whenever tj >
2
3 . A small enough decrease in b would not change this probability, but

would reduce what i pays for the small object, so B − b < 5
6 is never optimal. So without loss, we

can add the additional constraint B − b ≥ 5
6 to the maximization problem.

Now, consider B − b ≥ 5
6 . Bidder i wins the big object when B + bj ≥ 3

2 and B + bj ≥ Bj + b.
The former is B + 1

2 tj ≥
3
2 , or tj ≥ 3 − 2B. The latter holds whenever tj ≤ 2

3 , as well as when
B − b ≥ Bj − bj = 1

2 tj + 1
2 , or tj ≤ 2(B − b) − 1. When B − b ≥ 5

6 , 2(B − b) − 1 ≥ 2
3 , so

B + bj ≥ Bj + b if and only if tj ≤ 2(B − b) − 1. So bidder i wins the big object if and only if
tj ∈ [3− 2B, 2B − 2b− 1]. By assumption, this interval is nonempty, so 3 − 2B < 2B − 2b − 1,
or 4B − 2b − 4 > 0. In addition, bidder i wins the small object whenever tj > 2B − 2b − 1 and
Bj + b ≥ 3

2 , or tj + 1
2 + b ≥ 3

2 , or tj ≥ 1− b. We’re already assuming that 4B − 2b− 4 > 0, which
means 2B − b− 2 > 0, or 2B − 2b− 1 > 1− b; so i wins the small object when tj ≥ 2B − 2b− 1.

Locally, then, expected payoffs are

π(ti, B, b) = (2B − 2b− 1− (3− 2B)) (2ti −B) + (1− (2B − 2b− 1)) (ti − b)
= (4B − 2b− 4) (2ti −B) + (2− 2B + 2b) (ti − b)

∂π
∂B = 4(2ti −B)− (4B − 2b− 4)− 2(ti − b)

= 6ti − 8B + 4b+ 4

∂π
∂b = −2(2ti −B) + 2(ti − b)− (2− 2B + 2b)

= −2ti + 4B − 4b− 2

Both first-order conditions hold only at B = ti + 1
2 and b = 1

2 ti, and π is strictly concave, so this
is the unique maximizer.
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For ti ≥ 2
3 , the maximizer satisfies B − b ≥ 5

6 , so this is the “constrained” maximizer. (For
ti >

2
3 , this is the equilibrium strategy. For ti = 2

3 , this gives the same expected payoff as the
equilibrium strategy (b, B) =

(
1
3 , 0
)
, since at

(
1
3 ,

7
6

)
, the big bid never wins.) For ti <

2
3 , however,

the “unconstrained” maximizer has B − b < 5
6 ; since the objective function is strictly concave, this

means the constrained optimum satisfies B − b = 5
6 . For ti <

2
3 , then, we can impose B − b = 5

6
and solve for B.

π(ti, B, b) = (2(B − b)− 1− (3− 2B)) (2ti −B) + (2− 2(B − b))
(
ti −

(
B − 5

6

))
=

(
5
3 − 1− (3− 2B)

)
(2ti −B) +

(
2− 5

3

) (
ti −

(
B − 5

6

))
=

(
2B − 7

3

)
(2ti −B) + 1

3

(
ti −B + 5

6

)
∂π
∂B = 2(2ti −B)−

(
2B − 7

3

)
− 1

3
= 4ti − 4B + 2

So expected payoff is increasing in B until B = ti + 1
2 , decreasing after that. But for ti <

2
3 ,

ti + 1
2 <

5
6 , which would make b negative; so the maximizer is B = 5

6 and b = 0, which we already
dismissed as a profitable deviation.
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