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The first part of Theorem 1 states that for any N ≥ 2, ρ > 0, and β > 0, an equilibrium exists.

The proof is constructive: for N ≥ 4, equilibrium strategies are given in the appendix of the paper.

Here, we show that these strategies do indeed make up an equilibrium, and deal separately with

the cases N = 3 and N = 2.

First Round Play

First-round strategies (and beliefs) for player 1 are

• Do not drop out at P = 0

• At any history where P > 0 and there is one other active bidder, believe that he has signal

si = 1, and

– If P < P ∗, remain active

– If P ≥ P ∗, drop out

and for player i 6= 1 are

• Drop out at P = 0

• At any history where P > 0 and bidder i is still active along with bidder 1,

– If P ≤ P ∗, believe s1 ∼ U [0, 1]; remain active if si = 1 (and drop out if si < 1)

– If P ∗ < P < P ∗∗, believe s1 = 1; remain active if si = 1 (and drop out if si < 1)

– If P ≥ P ∗∗, drop out immediately

where

P ∗ =


c+ β

N
N+1

2 + ρ if ρ ≥ β
2N

c+ β
N

(
1 + N

2

(
2Nρ
β

) 1
N

)
if ρ < β

2N

and

P ∗∗ =


c+ β

N
N+2

2 + ρ if ρ ≥ β
2N

c+ β
N

(
2 + N−1

2

(
2Nρ
β

) 1
N−1

)
if ρ < β

2N

Since all bidders other than bidder 1 are expected to drop out at P = 0, any history where

P > 0 and more than one of bidders 2, 3, . . ., N are still active could only be reached following
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simultaneous deviations by more than one player. Strategies at such histories therefore does not

affect equilibrium play, and we do not specify what strategies are played following such deviations.

Next, we will describe second-round beliefs and strategies, both on and off the equilibrium

path, and show that these are equilibrium strategies. After that, we will show that these first-

round strategies are best-responses given that continuation play.

Second Round Play On the Equilibrium Path

Bidder 1 won the first round at a price of 0. Common beliefs are that si ∼ U [0, 1] for all i.

Second-round bidding functions are

b(si) = c+ β
N

(
N−1
N si + (N − 1) si2

)
To see that these bid functions are an equilibrium, first note that bids above b(1) are strictly

dominated by bidding b(1), since this will still win with probability 1; and bids below b(0) earn

expected payoff of 0. For x ∈ [0, 1], a bidder with signal si who plans to bid b(x) will win whenever

sj < x for every j 6= i, which occurs with probability xN−1; in that event, the security is worth, on

average, c+ β
N

(
si + (N − 1)x2

)
, so his expected payoff is

xN−1
[
c+ β

N

(
si + (N − 1)x2

)
−
(
c+ β

N

(
N−1
N x+ (N − 1)x2

))]
= β

N x
N−1

[
si − N−1

N x
]

Differentiating with respect to x gives β
N

[
(N − 1)six

N−2 − (N − 1)xN−1
]

= β
N (N−1)xN−2(si−x),

which is positive when x < si and negative when x > si, so expected payoff is maximized by setting

x = si. Note also (plugging this into the payoff function) that this gives nonnegative expected

payoff, so bidding less than b(0) and losing for sure is not a profitable deviation.

Should bidder 1 choose to drop out at P = 0 along with the other bidders (so that the first-round

winner is chosen by a random tiebreaker), second-round beliefs and strategies are unchanged.

Second Round Play After a First-Round Deviation By Bidder i ≥ 2

We refer to this continuation game as CG2. As in the text, assume without loss of generality that

bidder 2 is the one who deviated. Since bidder 1’s equilibrium strategy following such a deviation is

to bid up to price P ∗, assume that either the deviating bidder has dropped out at a price P ∈ (0, P ∗]

or has won the first round at the price P ∗. All bidders commonly believe that s2 = 1; beliefs about
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the other bidders’ signals (including bidder 1) match the prior si ∼ U [0, 1]. Strategies are:

• Bidder 2 does not bid (regardless of his actual type)

• If P ≥ c+ β
N

(
1 + N

2

)
, then nobody bids

• If P ∈
(
c+ β

N , c+ β
N

(
1 + N

2

))
, then let s∗ solve P = c + β

N

(
1 + N

2 s
∗). Bidder i 6= 2 does

not bid when si ≤ s∗; when si > s∗, he bids

b(si) = c+ β
N

(
N−2
N−1si + si

N−1

(
s∗

si

)N−1
+ (N − 2) si2 + 1

)
• If P ≤ c+ β

N , then bidders i 6= 2 each bid

b(si) = c+ β
N

(
N−2
N−1si + (N − 2) si2 + 1

)
In the first case, P ≥ c + β

N (1 + N
2 ), each bidder i 6= 2 expects nobody to bid; winning the

object would require bidding strictly more than P , therefore strictly more than c+ β
N (1 + N

2 ), for

an object that will be worth, on average, c+ β
N

(
si + 1 + N−2

2

)
≤ c+ β

N (1 + N
2 ), so not bidding is a

best-response. Bidder 2 expects the object to be worth c+ β
N

(
s2 + N−1

2

)
< c+ β

N (1 + N
2 ), so not

bidding is a best-response for him as well.

In the second case, b(si) is strictly increasing, so bids above b(1) are again strictly dominated.

By construction, b(s∗) = P . For x ∈ [s∗, 1], a bidder with signal si who bids b(x) expects to win

when the other N − 2 bidders (excluding himself and bidder 2) have signals below x; he therefore

earns expected payoff

xN−2
[
c+ β

N

(
si + 1 + (N − 2)x2

)
− c− β

N

(
N−2
N−1x+ x

N−1

(
s∗

x

)N−1
+ (N − 2)x2 + 1

)]
= xN−2 β

N

[
si − N−2

N−1x−
x

N−1

(
s∗

x

)N−1
]

= β
N

[
six

N−2 − N−2
N−1x

N−1 − (s∗)N−1

N−1

]
Differentiating with respect to x gives (N−2)xN−3(si−x), which is positive for x < si and negative

for x > si, so expected payoff is maximized at b(si). Bidding P = b(s∗) (or a tiny bit above that)

wins only if nobody else bids, giving expected payoff

(s∗)N−2
[
c+ β

N

(
si + 1 + (N − 2) s

∗

2

)
− c− β

N

(
N−2
N−1s

∗ + s∗

N−1

(
s∗

s∗

)N−1
+ (N − 2) s

∗

2 + 1
)]

= (s∗)N−2 β
N

[
si − N−2

N−1s
∗ − s∗

N−1

]
= (s∗)N−2 β

N [si − s∗]

making it worse than not bidding when si < s∗. So for si < s∗, any bid equal or greater than P

would earn negative expected profits; and for si > s∗, bidding b(si) earns greater payoff than b(s∗),

which is itself positive, so b(si) is a best-response.
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(Note that if bidder 2 dropped out at a price P < P ∗ but above c + β
N , then bidder 1 is the

first-round winner. The fact that he will win the object if nobody bids in the second round means

that by not bidding, he pays b(s∗) for the object whenever all other bidders (aside from 2) have

signals si < s∗. This is equivalent to bidder 1 having to bid b(s∗) if he does not bid higher than

that; his optimal move is therefore still to bid b(s1) when s1 > s∗, and to not bid in the second

round when s1 ≤ s∗.)

As for bidder 2, bidding b(x) (x ≥ x∗) would give expected payoff

xN−1
[
c+ β

N

(
s2 + (N − 1)x2

)
− c− β

N

(
N−2
N−1x+ x

N−1

(
s∗

x

)N−1
+ (N − 2)x2 + 1

)]
= xN−1 β

N

[
s2 − 1 + x

2 −
N−2
N−1x−

x
N−1

(
s∗

x

)N−1
]

< 0

so not bidding is a best-response.

In the third case, bids above b(1) are again dominated, and a bid of b(x) for x ∈ [0, 1] earns

expected payoff

xN−2
[
c+ β

N

(
si + 1 + (N − 2)x2

)
− c− β

N

(
N−2
N−1x+ (N − 2)x2 + 1

)]
= xN−2 β

N

[
si − N−2

N−1x
]

The derivative with respect to x is again (n−2)xN−3(si−x), so expected payoff is again maximized

at si = x, which gives positive expected payoff (so bidding less than b(0) is not a profitable

deviation). For bidder 2, bidding b(x) would give

xN−1
[
c+ β

N

(
s2 + (N − 1)x2

)
− c− β

N

(
N−2
N−1x+ (N − 2)x2 + 1

)]
= xN−1 β

N

[
s2 − 1 + x

2 −
N−2
N−1x

]
< 0

so not bidding is again a best-response.

Bidder 2’s Payoff From Deviating In the First Round

By deviating in the first round and dropping out before P ∗, bidder 2 guarantees entry into CG2

discussed above, in which he does not bid and earns expected payoff 0; so remaining active past

price 0, but planning to drop out before P ∗, is not a profitable deviation.

On the other hand, if bidder 2 deviates in the first round and does not drop out before P ∗, he

expects bidder 1 to drop out at price P ∗. We next show that this would earn expected profit of 0

or less for bidder 2.
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If ρ ≥ β
2N , then P ∗ = c+ β

N
N+1

2 + ρ ≥ c+ β
N
N+2

2 , so if the first round reaches price P ∗, nobody

bids in the second round. In that case, by winning the first round at price P ∗ (and not updating

beliefs about s1), bidder 2 earns second-round payoff

c+ β
N

(
s2 + N−1

2

)
−
[
c+ β

N
N+1

2 + ρ
]

= β
N (s2 − 1)− ρ

Combined with winning the premium, then, bidder 2’s expected payoff would be nonpositive.

If ρ < β
2N , then if P = P ∗ = c+ β

N

(
1 + N

2

(
2Nρ
β

) 1
N

)
, s∗ solves

c+ β
N

(
1 + N

2

(
2Nρ
β

) 1
N

)
= c+ β

N

(
1 + N

2 s
∗)

and so s∗ =
(

2Nρ
β

) 1
N

. After winning the first round at price P ∗, bidder 2 expects to be “stuck

with” the security with probability (s∗)N−1, for second-round expected payoff

(s∗)N−1
[
c+ β

N

(
s2 + (N − 1) s

∗

2

)
−
(
c+ β

N

(
1 + N

2 s
∗))]

= β
N (s∗)N−1

[
s2 − 1− 1

2s
∗] = − β

N (s∗)N−1(1− s2)− β
2N (s∗)N

= − β
N (s∗)N−1(1− s2)− β

2N
2Nρ
β = − β

N (s∗)N−1(1− s2)− ρ

So including winning the premium in the first round, winning the first round at price P ∗ gives

expected payoff 0 to bidder 2 if s2 = 1, and negative expected payoff otherwise.

(Note therefore that if s2 = 1 and bidder 2 has already deviated by failing to drop out imme-

diately, he expects payoff 0 whether he drops out before P ∗ or waits for bidder 1 drop out at P ∗.

This means that once he has already deviated, it is a weak best response not to drop out before

P ∗ (which makes bidder 1 willing to “punish” him by staying in until P ∗); but also that deviating

in the first place cannot be profitable.)

Second Round Play After Deviations By Bidders i ≥ 2 and 1

Again, assume i = 2 is the first deviating bidder. If bidder 2 does not drop out immediately, and

bidder 1 either drops out at a price P < P ∗, or fails to drop out at price P ∗ (so that either bidder

1 or 2 wins the first round at a price P > P ∗), we refer to the resulting continuation game as CG3.

Beliefs and strategies in the second round are as follows:

• Everyone believes s1 = s2 = 1

• Bidders 1 and 2 (regardless of their actual types) do not bid
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• If P ≥ c+ β
N

(
1 + N−3

2 + 2
)
, then nobody bids

• If P ∈
(
c+ 2β

N , c+ β
N

(
1 + N−3

2 + 2
))

, then let s∗ solve

P = c+ β
N

(
s∗ + (N − 3) s

∗

2 + 2
)

Bidder i ≥ 3 does not bid when si ≤ s∗; when si > s∗, he bids

b(si) = c+ β
N

(
N−3
N−2si + si

N−2

(
s∗

si

)N−2
+ (N − 3) si2 + 2

)
• If P ≤ c+ 2β

N , then bidders i ≥ 3 each bid

b(si) = c+ β
N

(
N−3
N−2si + (N − 3) si2 + 2

)
In the first case, if P ≥ c+ β

N (1 + N−3
2 + 2), then a bidder i ≥ 3 with signal si expects no one

else to bid, and believes that the security is worth in expectation c + β
N (si + N−3

2 + 1 + 1) ≤ P ,

and therefore does not bid. Bidder i ∈ {1, 2} believes the security to be worth in expectation

c+ β
N (si + N−2

2 + 1) < P and therefore does not bid either.

For the second case, a bid above c+ β
N

(
1 + N−3

2 + 2
)

is dominated; a bid by bidder i ≥ 3 equal

to b(x) (x > s∗) wins whenever sj < x for all j ∈ {3, 4, . . . , N} − {i}, which is with probability

xN−3, and therefore delivers expected payoff of

xN−3
[
c+ β

N

(
si + (N − 3)x2 + 2

)
−
(
c+ β

N

(
N−3
N−2x+ x

N−2

(
s∗

x

)N−2
+ (N − 3)x2 + 2

))]
= xN−3 β

N

[
si − N−3

N−2x−
(s∗)N−2

N−2 x−(N−3)
]

= β
N

[
six

N−3 − N−3
N−2x

N−2 − (s∗)N−2

N−2

]
Differentiating with respect to x gives

β
N

[
(N − 3)six

N−2 − (N − 3)xN−3
]

which is positive for x < si and negative for x > si, so b(si) is a best-response among bids above

P . Bidding P (or slightly above P ) would give expected payoff

β
N

[
si(s

∗)N−3 − N−3
N−2(s∗)N−2 − (s∗)N−2

N−2

]
= β

N

[
si(s

∗)N−3 − (s∗)N−2
]

which is positive for si > s∗ and negative for si < s∗. So not bidding is a best-response for si ≤ s∗,

and b(si) a best-response for si > s∗. Bidder i ∈ {1, 2} who is not the first-round winner would, by
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bidding b(x), earn expected payoff

xN−2
[
c+ β

N

(
si + (N − 2)x2 + 1

)
−
(
c+ β

N

(
N−3
N−2x+ x

N−2

(
s∗

x

)N−2
+ (N − 3)x2 + 2

))]
= β

N x
N−2

[
si − 1 + x

2 −
N−3
N−2x−

x
N−2

(
s∗

x

)N−2
]

≤ 0

and so prefers not to bid. Bidder i ∈ {1, 2} who is the first-round winner is effectively bidding

b(s∗) by not making a new bid; but since

d
dx

{
β
N

[
(si − 1)xN−2 + xN−1

(
1
2 −

N−3
N−2

)
− x

N−2(s∗)N−2
]}

= β
N

[
(N − 2)xN−3(si − 1) + (N − 1)xN−2

(
1
2 −

N−3
N−2

)
− 1

N−2(s∗)N−2
]

< 0

he prefers b(s∗) to a higher bid, and does not bid again.

For the third case, a bid of b(x) by bidder i ≥ 3 gives expected payoff

xN−3
[
c+ β

N

(
si + (N − 3)x2 + 2

)
− c− β

N

(
N−3
N−2x+ (N − 3)x2 + 2

)]
= β

N x
N−3

[
si − N−3

N−2x
]

which has derivative β
N

(
(N − 3)xN−2si − (N − 3)xN−3

)
, which once again is positive for x < si

and negative for x > si; setting x = si gives strictly positive payoff, so b(si) is a best-response.

For bidder i ∈ {1, 2} (whether or not the first-round winner, since the first-round winner will for

sure be outbid if he does not bid again, but counting the premium received as a “sunk benefit”),

bidding b(x) gives payoff

xN−2
[
c+ β

N

(
si + (N − 2)x2 + 1

)
− c− β

N

(
N−3
N−2x+ (N − 3)x2 + 2

)]
= β

N x
N−2

[
si − 1 + x

2 −
N−3
N−2x

]
≤ 0

so not bidding is a best-response.

Bidder 1’s Expected Payoff From Failing To Punish

Next, we show that if s1 = s2 = 1 and either bidder 1 or 2 wins the first round at price P ∗∗, his

expected payoff (including the first-round premium) is 0. This ensures that (i) once the price passes

P ∗ and bidder 2 believes s1 = 1, then assuming s2 = 1 as well, bidder 2 is willing to stay in until

P ∗∗; and (ii) bidder 1 cannot gain by “failing to punish” a deviation by bidder 2, since he expects

bidder 2 to stay in until P ∗∗, and even if s1 = s2 = 1, winning the first round would therefore give

bidder 1 zero expected payoff.

If ρ ≥ β
2N , then P ∗∗ ≥ c + β

N
N+3

3 , so if P = P ∗∗, nobody will bid in the second round; in
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that case, the first-round winner wins the security for sure (regardless of others’ signals), so if

s1 = s2 = 1, his expected payoff is

c+ β
N

(
2 + N−2

2

)
−
[
c+ β

N
N+2

2 + ρ
]

= −ρ

which, combined with winning the premium ρ in the first round, gives a net expected payoff of 0.

If ρ < β
2N , then when P = P ∗∗, s∗ solves

c+ β
N

(
2 + N−1

2

(
2Nρ
β

) 1
N−1

)
= c+ β

N

(
s∗ + N−3

2 s∗ + 2
)

and therefore s∗ =
(

2Nρ
β

) 1
N−1

. So with probability (s∗)N−2, nobody bids in the second round,

and the security is worth, in expectation (assuming s1 = s2 = 1), c + β
N

(
(N − 2) s

∗

2 + 2
)
. So the

first-round winner i ∈ {1, 2} at price P ∗∗, assuming s1 = s2 = 1, gets expected payoff (gross of

winning the premium)

(s∗)N−2
[
c+ β

N

(
(N − 2) s

∗

2 + 2
)
− c− β

N

(
(N − 1) s

∗

2 + 2
)]

= β
N (s∗)N−2

[
− s∗

2

]
= − β

2N (s∗)N−1 = − β
2N

2Nρ
β = −ρ

and so including winning the premium, the first-round winner would get ex-ante expected payoff 0.

First Round Strategies Are Equilibrium Strategies

Finally, we need to show the strategies given earlier for the first round are indeed best-responses.

First, consider bidder 1 at P = 0. If he drops out immediately (leading to the first round being

determined by a random tiebreaker), he wins the premium with probability 1
N instead of 1, and

does not affect second-round play, so this is not a profitable deviation.

Following a deviation by bidder 2, bidder 1 believes s2 = 1, and expects bidder 2 to stay

active until the price reaches P ∗∗. Dropping out at price P ∗ would lead to CG2 and nonnegative

payoffs. Dropping out before or after P ∗ would lead to CG3 and zero payoffs; staying in until P ∗∗

would lead to zero payoffs (or negative payoffs if s1 < 1). So sticking to equilibrium strategies is a

best-response.

As for bidder 2 (representing all bidders i > 1), dropping out immediately leads to nonnegative

(strictly positive if s2 > 0) expected payoffs in the second round. Not dropping out immediately,

bidder 2 would expect bidder 1 to remain active until P ∗ and then drop out; dropping out before
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then would lead to CG2 and zero payoffs; winning the first round at price P ∗ would likewise lead

to CG2 and zero payoffs (or negative if s2 < 1). So having already failed to drop out at P = 0, it

remains a best-response to stay active until P = P ∗. If bidder 1 fails to drop out at P = P ∗, bidder

2 then believes s1 = 1; provided s2 = 1 as well, bidder 2 expects zero payoffs if he stays in and wins

at price P ∗∗, strictly positive payoffs if he stays in and wins at a lower price than that; dropping

out prior to P ∗∗ would lead to CG3, and zero payoffs for bidder 2. So having stayed in past P = 0,

bidder 2 has no reason to drop out prior to P ∗∗. Once the price passes P ∗∗, the winner of the first

round is assured negative payoffs, so both players best-respond by dropping out immediately.

As mentioned above, any history not explicitly addressed in the strategies above could only be

reached via simultaneous deviations by multiple bidders, and therefore cannot affect play on the

equilibrium path; we therefore do not specify what happens at these histories.

What if N = 3?

If N = 3, define

P ∗∗ = max
{
P ∗, c+ β

3

(
2 +

√
6ρ
β

)}
If P ∗∗ = P ∗, modify both bidder 1’s strategy following a deviation by bidder 2 to be, “stay in till

P ∗, drop out at P ∗, and drop out immediately at any P > P ∗”, and bidder 2’s strategy following

a deviation by himself to be, “stay in till P ∗, do not drop out at P ∗, drop out immediately at any

P > P ∗.” Play at all histories other than CG3 are otherwise unchanged.

In CG3 whenN = 3, bidders effectively play the “drainage tract auction” equilibrium considered

in Engelbrecht-Wiggans, Milgrom and Weber (1983), Milgrom and Weber (1982b), and Hendricks,

Porter and Wilson (1994), where the one bidder with private information plays a pure strategy

and the uninformed bidders play mixed strategies and earn zero expected profit. We will construct

such an equilibrium where the round-one winner plays a mixed strategy while the third bidder –

whiever of bidders 1 and 2 lost the first round – does not bid.

Let i denote the identity of the first-round winner, and j whichever of 1 and 2 is not i. Recall that

this continuation game includes the common beliefs that s1 = s2 = 1. Let s3 solve P = c+ β
3 (2+s3),

or s3 = 0 if P < c+ 2β
3 . Define a function Γ : [s3, 1]→ <+ by

Γ(t) = c+ β
3

(
2 + 1

2 t+ 1
2
s23
t

)
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and note that Γ′(t) = β
3

(
1
2 −

1
2
s23
t2

)
> 0 for t ∈ (s3, 1], so Γ is strictly increasing. Also note that

Γ(s3) = P .

Define a probability distribution G with support [P,Γ(1)] by

G(x) =


1 if x ≥ Γ(1)

exp

(
−
∫ Γ(1)
x

(
1

c+β
3

(2+Γ−1(t))−t

)
dt

)
if x ∈ [P,Γ(1))

0 if x < P

(Note that this distribution has a point mass at P .)

Bidding strategies are as follows:

• Bidder 3 bids Γ(s3) if s3 > s3, and does not bid if s3 ≤ s3

• If si = 1, bidder i mixes such that the CDF of his bids is G (with the point mass at P

indicating no new bid); if si < 1, bidder i does not bid

• Bidder j does not bid

To see this is an equilibrium, we first show that if bidder 3 plays this strategy, bidder i is

indifferent between not bidding and bidding any number in the support of b3. Treat the first-round

bonus won by bidder i as a “sunk benefit”, and note that (since bidder 3 never bids exactly P ) not

bidding is identical to bidding P = Γ(s3) for bidder i. By bidding Γ(x) for x ∈ [s3, 1] , bidder i

wins when s3 < x; if bidder i has signal si and believes sj = 1, this gives expected payoff

x
[
c+ β

3

(
1 + si + x

2

)
− Γ(x)

]
= x

[
c+ β

3

(
1 + si + x

2

)
− c− β

3

(
2 + 1

2x+ 1
2
s23
x

)]
= β

3x
[
si − 1− 1

2
s23
x

]
= −β

3 (1− si)x− β
6 s

2
3

If si = 1, then this is the same for all x, so bidder i is indifferent among all bids in the range

of Γ and not bidding (effectively bidding P ), and is therefore best-responding by playing a mixed

strategy.

As for bidder j, by those same calculations, if si = 1, bidding Γ(x) would give an expected

payoff of
(
−β

3 (1− sj)x− β
6 s

2
3

)
G(x), which is nonpositive for any x and any sj , so j best-responds

by not bidding.

Finally, knowing the value of the security is c + β
3 (2 + s3), bidder 3 solves the maximization

problem

maxb∈(P,Γ(1)]∪{0} ln
[
G(b)

(
c+ β

3 (2 + s3)− b
)]
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Taking the derivative with respect to b gives

g(b)

G(b)
− 1

c+ β
3 (2 + s3)− b

=
1

c+ β
3 (2 + Γ−1(b))− b

− 1

c+ β
3 (2 + s3)− b

This is positive when Γ−1(b) < s3, or b < Γ(s3) and negative when b > Γ(s3); so bidder 3’s log-profit

problem is strictly quasiconcave and solved at b = Γ(s3). For s3 > s3,

c+ β
3 (2 + s3)− Γ(s3) = c+ β

3 (2 + s3)− c− β
3

(
2 + 1

2s3 + 1
2
s23
s3

)
= β

3

(
1
2s3 − 1

2
s23
s3

)
> 0

so bidder 3 prefers bidding to not bidding; and for any s3 ≤ s3, c + β
3 (2 + s3) ≤ P , so bidder 3

prefers not bidding to bidding.

What we need from CG3 is for bidder j (the one who is not the first-round winner) to earn

0 payoffs (which is true since he doesn’t bid), and if P ≥ P ∗∗, for player i to earn non-postiive

ex-ante payoffs. To see the latter, note that

c+ β
3 (2 + s3) = P ≥ P ∗∗ = c+ β

3

(
2 +

√
6ρ
β

)
means s3 ≥

√
6ρ
β ; bidder i’s second-round profit is therefore

−β
3 (1− si)x− β

6 s
2
3 ≤ −ρ

and therefore even counting the first-round bonus, bidder i’s profits are not positive.

What if N = 2?

For N = 2, the game is modified in the following way:

• First-round strategies are the same, but with P ∗ and P ∗∗ modified to be P ∗ = c+β
2

(
1 + 2

√
ρ
β

)
and P ∗∗ = c+ β + ρ

• If bidder 2 deviates in the first round but drops out at a price P ≤ P ∗, leaving bidder 1 as the

first-round winner, CG2 is replaced by a drainage tract auction where s2 = 1 and s1 ∼ U [0, 1].

Bidder 1’s strategy is to bid Γ2(si) = c+ β
2 (1 + s1

2 ) if this is above P , and not bid otherwise.

Bidder 2’s strategy is to mix over not bidding and bidding in the range of Γ, such that the

11



distribution of his bids is

G2(x) =


1 if x ≥ Γ2(1)

exp

(
−
∫ Γ(1)
x

(
1

c+β
2 (1+Γ−1

2 (t))−t

)
dt

)
if x ∈ [P,Γ2(1))

0 if x < P

(with the point mass at P corresponding to not bidding).

• If bidder 2 deviates in the first round and wins when bidder 1 drops out at price P ∗, CG2

is replaced by a different drainage tract auction where s2 = 1 and s1 ∼ U [0, 1]. Bidder 1’s

strategy is to bid Γ3(s1) = c+ β
2 (1+ s1

2 )+ ρ
s1

if s1 > 2
√

ρ
β , and to not bid if s1 ≤ 2

√
ρ
β ; bidder

2 mixes such that the distribution of his bids is

G3(x) =


1 if x ≥ Γ3(1)

exp

(
−
∫ Γ(1)
x

(
1

c+β
2 (1+Γ−1

3 (t))−t

)
dt

)
if x ∈ [P,Γ3(1))

0 if x < P

• If both bidders deviate in the first round, leading to either bidder 2 winning at a price P < P ∗

or either bidder winning a price P > P ∗, beliefs are s1 = s2 = 1; if P < c + β, both bidders

bid c+ β in the second round, and if P ≥ c+ β, neither bidder bids in the second round.

In the case where 2 deviated but still dropped out at P ≤ P ∗, losing the premium, bidder 1’s

strategy implies that a bid of Γ2(x) by bidder 2 gives expected payoff

x
(
c+ β

2 (s2 + x
2 )− Γ2(x)

)
= xβ2 (s2 − 1)

so if s2 = 1, bidder 2 earns zero payoffs from any bid (and is thus content to mix). Given bidder

2’s mixed strategy, bidder 1 (having already won the premium and believing that s2 = 1), by

bidding b, earns additional payoff G2(b)
(
c+ β

2 (1 + s1)− b
)

. Taking the log and then the first-

order condition gives 1

c+β
2

(1+Γ−1
2 (b))−b

− 1

c+β
2

(1+s1)−b
, which is positive when b < Γ2(s1) and negative

when b > Γ2(s1), making Γ2(s1) a best-response when it is greater than P (and making not bidding,

equivalent to bidding P , a best-response when Γ2(s1) < P ).
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In the case where bidder 2 won the first round at price P ∗, the logic is similar, but now bidding

Γ3(x) earns bidder 2 a second-round payoff of

x
(
c+ β

2 (s2 + x
2 )− Γ3(x)

)
= x

(
c+ β

2 (s2 + x
2 )− c− β

2 (1 + x
2 )− ρ

x

)
= xβ2 (s2 − 1)− ρ

so if s2 = 1, any second-round bid gives the same payoff of −ρ, exactly countering the win of the

premium in the first round. (Since bidder 2 won the premium, not bidding is the same as bidding

P , and gives the same payoff of −ρ.) Again given bidder 2’s mixing strategy, Γ3 is a best-response

for bidder 1.

If bidder 2 deviates, bidder 1 expects to drop out of the first round at price P ∗ and earn positive

payoff in the second round; by dropping out earlier, he would induce bidder 2 to bid c + β in the

second round, so he would earn 0. So it is credible for bidder 1 to stay in until P ∗. If bidder 2

deviates, then, he expects to either drop out before P ∗, in which case he earns nothing; or to win

the first round at P ∗, in which case he wins the premium ρ but then earns payoff −ρ in the second

round. So deviating in the first round is not profitable for bidder 2. Second-round play on the

equilibrium path is the same symmetric equilibrium as in the N > 2 cases.
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