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Up to this point we have considered two models

I In the Roy model there is a lot of heterogeneity, but people

purely maximize income

I In the Compensating Differentials model workers care about

more than income, but no heterogeneity in ability

The generalized Roy model allows for heterogeneity in ability, but

also allows people to care about other things



The Generalized Roy Model

In particular we relax the assumption that choice only depends on

income.

Let Ufi and Uri be the utility that individual i would receive from

being a fisherman or a hunter respectively where for j ∈ {f , r},

Uji = Yji + ϕj(Zi ,X0i ) + νji .

The variable Zi allows for the fact that there may be other variables

that effect the taste for hunting versus fishing directly, but not

affect wages in either sector.

Workers choose to fish when

Ufi > Uri .



We continue to assume that

Yfi = gf (Xfi ,X0i ) + εfi

Yhi = gh(Xhi ,X0i ) + εhi .

Lets think about identification of this model using the same 4 steps

we used for the pure Roy model



Step 1

This is identical to what we did before, notice that

0 ≤Ufi − Uhi

=Yfi + ϕf (Zi ,X0i ) + νfi − (Yhi + ϕh(Zi ,X0i ) + νhi )

=gf (Xfi ,X0i ) + ϕf (Zi ,X0i )− gh(Xhi ,X0i )− ϕh(Xhi ,X0i )

+ εfi + νfi − εhi − νhi



We can use the same normalization as before to say Ji = f when

ϕ(Zi ,Xi )− νi ≥ 0

and νi has a uniform distribution



Step 2

Getting gf is exactly the same as before

For example

lim
ϕ(z,x)→1

E (Yi | Xi = x ,Zi = z , Ji = f )

=gf (xf , x0) + lim
ϕ(z,x)→1

E (εfi | Xi = x ,Zi = z , Ji = f )

=gf (xf , x0)

Getting gh is analogous, we just need to send probability of hunting

to 1 rather than fishing



Step 3

Again almost completely analogous to the case before since

Ufi − Uri =gf (Xfi ,X0i ) + ϕf (Zi ,X0i )− gh(Xhi ,X0i )− ϕh(Zi ,X0i )

+ εfi + νfi − εhi − νhi

We need exclusion restrictions in Xfi or Xhi since under the

assumption that the median of εfi + νfi − εhi − νhi , means that if

Pr(Ji = f | Xi = x ,Zi = z) = 0.5

then

ϕf (z , x0)− ϕh(z , x0) = gh(xh, x0)− gf (xf , x0)



Step 4

Finally we need to identify the distribution of the error terms.

Recall that the model is

Ufi − Uri = ϕ(Zi ,Xi )− νi

Yfi = gf (Xfi ,X0i ) + εfi

Yhi = gh(Xhi ,X0i ) + εhi

We can use an argument identical to the standard Roy model

Pr(Ji = f ,Yfi ≤ y | (Zi ,Xi ) = (z , x))

= Pr(νi ≤ ϕ(z , x), gf (xf , x0) + εfi ≤ y)

= Gν,εf (ϕ(z , x), y − gf (xf , x0)) .



where Gv ,εf is the joint distribution of (εfi + νfi − εhi − νhi , εfi ).

Using an analogous argument we can get the joint distribution of

(εfi + νfi − εhi − νhi , εhi )



However, this is all that can be identified.

In particular the joint distribution of (εfi , εhi ) is not identified.

The problem is that we never observe the same person as both a

hunter and a fisherman

Even with Normal error terms the covariance between εfi and εhi is

not identified



In the Roy model it was identified because from the choice/wage

equation we identified the joint distribution of (εfi − εhi , εhi ) from

which you can get the joint distribution of (εfi , εhi )

Clearly one can not do this from the joint distribution of

(εfi + νfi − εhi − νhi , εhi ).



Examples

There are a ton of examples of this model in labor economics:

1. Labor Supply

2. Occupational choice

3. Schooling

4. Job Training

5. Migration

6. General treatment effects



Treatment Effects

There is a very large literature on the estimation of treatment

effects.

We don’t want to discuss full literature, but want to talk about how

it fits into our framework

Assume the data is generated according to generalized Roy model

Define

πi = Yfi − Yhi .

and think about identification of Average Treatment Effect

ATE ≡ E (πi )

= E (Yfi )− E (Yhi ).



We focus on the “reduced form” selection model which here we

define as Ji = f when

ϕ(Zi ) + νi ≥ 0

With the one additional assumption that expectations are finite, it

is trivial to show that if the Generalized Roy model is identified, the

ATE is identified.

It is weaker in that you only need an exclusion restriction in the

selection equation, not in the outcome equation



It is really just “identification at infinity” (+ and -) with an

exclusion restriction

lim
ϕ(z)→1

E (Yi | Ji = f ,Zi = z)− lim
ϕ(z)→0

E (Yi | Ji = j ,Zi = z)

= E (Yfi )− E (Yhi )

= ATE



For the most part the goal of different approaches in the treatment

effect literature is to relax these assumptions in one way or another

Some focus on relaxing the support conditions

others focus on relaxing the exclusion restrictions.

First focus on relaxing the support conditions (and note that the

authors don’t necessarily sell it this way)



Instrumental Variables

Before thinking about Local Average Treatment Effects, it is useful

to think about instrumental variables

Define

Yi =

{
Yfi if Ji = f
Yri if Ji = h

,

and letting Dfi be a dummy variable indicating whether Ji = f .



Let µh be the mean of Yhi so Yhi = µh + εhi then notice that

Yi = Yhi + Dfi [Yfi − Yhi ]

= µh + πiDfi + εhi

Assume that Zi is correlated with Dfi but not with ui .



Lets abstract from other regressors

IV yields

plimβ̂1 =
Cov(Zi ,Yi )

Cov(Zi ,Dfi )

=
Cov(Zi , µh + πiDfi + εhi )

Cov(Zi ,Dfi )

=
Cov(Zi , µh)

Cov(Zi ,Dfi )
+

Cov(Zi , πiDfi )

Cov(Zi ,Dfi )
+

Cov(Zi , εhi )
Cov(Zi ,Dfi )

=
Cov(Zi , πiDfi )

Cov(Zi ,Dfi )
.



In the case in which treatment effects are constant so that πi = π0

for everyone

plimβ̂1 =
Cov(Zi , π0Dfi )

Cov(Zi ,Dfi )

= π0

However, more generally IV does not converge to the Average

treatment effect



Local Average Treatment Effects

Imbens and Angrist (1994) consider the case in which there are not

constant treatment effects

The consider a simple version of the model in which Zi takes on 2

values, call them 0 and 1 for simplicty and without loss of generality

asssume that Pr(Dfi = 1 | Zi = 1) > Pr(Dfi = 1 | Zi = 0)



There are 4 different types of people those who fish when:

1. Zi = 1,Zi = 0

2. never

3. Zi = 1 only

4. Zi = 0 only

Imbens and Angrist’s monotonicity rules out 4 as a possibility



This is guaranteed in our index model where Ji = f when

ϕ(Zi ) + νi ≥ 0

since we have normalized ϕ(1) > ϕ(0)

Imbens and Angrist do not use an index model, but since we are I

will use it



Note that

β̂1
p→Cov(Zi ,Dfiπi )

Cov(Zi ,Dfi )

=
E (πiDfiZi )− E (πiDfi )E (Zi )
E (DfiZi )− E (Dfi )E (Zi )

Let Ph denote the probability that Zi = 1. Lets look at the pieces



first the numerator

E (πiDfiZi )− E (πiDfi )E (Zi )

=PhE (πiDfi | Zi = 1)− E (πiDfi )Ph

=PhE (πiDfi | Zi = 1)

− [PhE (πiDfi | Zi = 1) + (1− Ph)E (πi ,Dfi | Zi = 0)]Ph

=Ph(1− Ph) [E (πiDfi | Zi = 1)− E (πiDfi | Zi = 0)]

=Ph(1− Ph)E (πi | ϕ(0) < νi ≤ ϕ (1))Pr(ϕ (0) < νi ≤ ϕ (1))



where the key simplification comes from the fact that

E (πiDfi | Zi = 1)

=E (πi1 (νi ≤ ϕ(1)))

=E (πi [1 (νi ≤ ϕ(0)) + 1 (ϕ(0) < νi ≤ ϕ(1))])

=E (πiDfi | Zi = 0)

+ E (πi | ϕ(0) < νi ≤ ϕ (1))Pr(ϕ (0) < νi ≤ ϕ (0)).



Next consider the denominator

E (DfiZi )− E (Dfi )E (Zi )

=PhE (Dfi | Zi = 1)− E (Dfi )Ph

=PhE (Dfi | Zi = 1)

− [PhE (Dfi | Zi = 1) + (1− Ph)E (Dfi | Zi = 0)]Ph

=Ph(1− Ph) [E (Dfi | Zi = 1)− E (Dfi | Zi = 0)]

=Ph(1− Ph)Pr(ϕ (0) < νi ≤ ϕ (1))



Thus

β̂1
p→E (πiDfiZi )− E (πiDfi )E (Zi )

E (DfiZi )− E (Dfi )E (Zi )

=
Ph(1− Ph)E (πi | ϕ(0) < νi ≤ ϕ (1))Pr(ϕ (0) < νi ≤ ϕ (1))

Ph(1− Ph)Pr(ϕ (0) < νi ≤ ϕ (1))

= E (πi | ϕ(0) < νi ≤ ϕ (1))

They call this the local average treatment effect



Lets think about how this relates to identification at infinite and

support considerations

Instead of binary suppose that Zi had larger support.

For any two points in the support z`and zh with ϕ(zh) > ϕ(z`) we

can identifyE (πi | ϕ(z`) < νi ≤ ϕ
(
zh
)
)

Thus if I can find points so that ϕ(z`) = 0 and ϕ(zh) = 1, then

one can identify

E (πi | 0 < νi ≤ 1) = ATE .

Clearly if the support of ϕ(Zi ) is bounded away from 0 or from 1,

then this does not work



Local Instrumental Variables and Marginal Treatment Effects

Heckman and Vytlacil (1999, 2001, 2005) construct a framework

that is useful for constructing many types of treatment effects.

They focus on the marginal treatment effect defined in our context

as

∆MTE (x , ν) ≡ E (πi | Xi = x , νi = ν).

To see where identification comes from, note that adding regressors

to the argument above, it is easy to show that one can identify

E (πi | ϕ(z`, x) < νi ≤ ϕ
(
zh, x

)
,Xi = x)

for any z`and zh.



From this note that

lim
ϕ(z`,x)↑ν,ϕ(zh,x)↓ν

E (πi | ϕ(z`, x) < νi ≤ ϕ
(
zh, x

)
,Xi = x)

= E (πi | Xi = x , νi = ν)

= ∆MTE (x , ν)



They show that one can use this to build a lot of treatment effects

if they are identified including the ATE

ATE =

ˆ ˆ 1

0
∆MTE (xf , xr , x0, ν)dνdµ(xf , xr , x0).

Theyalso show the instrumental variables estimator can be written

as ˆ 1

0
∆MTE (x , ν)hIV (x , ν)dν

for some function hIV that they can calculate

Further they show how to use this framework to think about policy

evaluation.



Relaxing the Exclusion Restriction Assumption

We next think of relaxing the exclusion restrictions.

We know of two main nonparametric alternatives in this case



Selection only on Observables

Assumption

ν is independent of (εf , εr )



Interestingly this is still not enough if there are values of observable

covariates (Xf ,Xr ,X0) for which Pr(J = f | Xf ,Xr ,X0) = 1 or

Pr(J = f | Xf ,Xr ,X0) = 0

Thus we need the additional assumption

Assumption

For almost all x in the support of Xi ,

0 < Pr(J = f | Xi = x) < 1



Theorem

Under assumptions 1 and 2 the Average Treatment Effect is

identified

Estimation in this case is relatively straightforward. One can use

matching or regression analysis to estimate the average treatment

effect.



Matching

The idea of matching with data with discrete support is relatively

easy

1. Take any person in the population i

1.1 If Ji = f then find another individual ` with J` = h, but
X` = Xi and define

∆i = Yi − Y`

1.2 If Ji = h then find another individual ` with J` = j , but
X` = Xi and define

∆i = Y` − Yi

2. Estimate the average treatment effect as

∆̂ =
1
N

N∑
i=1

∆i



This is difficult to do in practice for two reasons:

1. If Xi is continuous we can’t match exactly

2. If Xi is very high dimensional, even with discrete data we

couldn’t match directly



Propensity Score Matching

Propensity score matching is a way of getting around this problem.

Rather than matching on the high dimensional Xi we can match on

the low dimensional

P(X ) = Pr(Dfi = 1 | Xi )



The reason why comes from Bayes Theorem

For a set X ,

Pr(Xi ∈ X | P(Xi ) = ρ,Dfi = 1)

=
Pr(Dfi = 1 | Xi ∈ X ,P(Xi ) = ρ)Pr(Xi ∈ X | P(Xi ) = ρ)

Pr(Dfi = 1 | P(Xi = ρ)

=
ρPr(Xi ∈ X | P(Xi ) = ρ)

ρ

= Pr(Xi ∈ X | P(Xi ) = ρ)

Pr(Xi ∈ X | P(Xi ) = ρ,Dfi = 0)

=
Pr(Dfi = 0 | Xi ∈ X ,P(Xi ) = ρ)Pr(Xi ∈ X | P(Xi ) = ρ)

Pr(Dfi = 0 | P(Xi = ρ)

=
(1− ρ)Pr(Xi ∈ X | P(Xi ) = ρ)

(1− ρ)

= Pr(Xi ∈ X | P(Xi ) = ρ)



Thus if we condition on the propensity score, the distribution of Xi

is identical for the controls and the treatments.

But since the error term is uncorrelated with Xi

E (Yi | Dfi = 1,P(Xi ) = ρ)− E (Yi | Dfi = 0,P(Xi ) = ρ)

= E (Yi | Dfi = 1,P(Xi ) = ρ)− E (Yi | Dfi = 0,P(Xi ) = ρ)

= E (Yfi − Yhi | P(Xi ) = ρ)

= E (πi | P(Xi ) = ρ)

This means that we can match on the propensity score rather than

the full set of X ′s.

You still need to deal with the continuity problem, but there are

quite a few ways of doing this.



Bounds on treatment Effects

Manski and others have focused on set identification rather than

point identification.

That is even if I Can not point identify π0 is, I can Identify a set in

which π0 lies



As an example consider the instrument case in which ϕ(zh) and

ϕ(z`) represent the upper and lower bounds of the support of

ϕ(Zi ).

Further assume that the support of Yfi and Yhi are bounded above

by yh and from below by y `. Then notice that

E (Yfi ) = E (Yfi | Ji = f ,Zi = zh)Pr(Ji = f | Z = zh)

+ E (Yfi | νi > ϕ(zh))(1− Pr(Ji = f | Z = zh))

We know everything here but E (Yfi | νi > ϕ(zh)) which was exactly

what we said couldn’t be identified without identification at infinity



However we do know something about this

We know that

y ` ≤ E (Yfi | νi > ϕ(zh)) ≤ yh



Using this, one can show that

E (Yfi | Ji = f ,Zi = zh)P(zh) + y `(1− P(zh))

− E (Yhi | Ji = h,Zi = z`)(1− P(z`)) + yuP(z`)

≤ATE ≤

E (Yfi | Ji = f ,Zi = zh)P(zh) + yu(1− P(zh))

− E (Yhi | Ji = h,Zi = z`)(1− P(z`)) + y `P(z`).

where

P(z) = Pr(Ji = f | Zi = z)



Set Estimates of Treatment Effects

There are quite a few other ways to bound treatment effects

I No assumption bounds

I Montone Treatment Effects

I Monotone Treatment Response

I Montone Selection

I Use selection on observables to bound selection on

unobservables
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