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One thing we need to do as empirical economists is to calculate
standard errors.

Often a nice way to do this is using the bootstrap which has
good properties and is also very easy to program

However, for complicated structural models this is not feasible.

I want to review asymptotic theory for you emphasizing the
main ideas and abstracting from some details.



The most Important Asymptotic Theory You Really
Need to Know...

Really the key to understand standard errors for most models
requires just four things

1 Slutsky
2 Law of Large Numbers
3 Central Limit Theorem
4 Mean Value Theorem



The mean value theorem

As long as f is continuously differentiable for any a ≤ b there
exists a c

a ≤ c ≤ b

such that

f ′(c) =
f (b)− f (a)

a− b



The Delta Method

Suppose you know that θ̂ is approximately normal with known
variance covariance matrix

How do you calculate the distribution of f
(
θ̂
)

?

Its just the mean value theorem with θ̂ and the true value θ0

where θ̂ is a consistent estimate of θ0 and

√
N
(
θ̂ − θ0

)
≈N (0,Σθ)



Then we know that for some θ̃ between θ̂ and θ0 (which means
element by element they are in between)

f
(
θ̂
)
− f (θ0) =

∂f
(
θ̃
)

∂θ′

(
θ̂ − θ0

)

throw a
√

N in front of both sides and you get

√
N
(

f
(
θ̂
)
− f (θ0)

)
=
∂f
(
θ̃
)

∂θ′

√
N
(
θ̂ − θ0

)
≈∂f (θ0)

∂θ′

√
N
(
θ̂ − θ0

)



but since
√

N
(
θ̂ − θ0

)
≈N (0,Σθ)

this means that

√
N
(

f
(
θ̂
)
− f (θ0)

)
≈N

(
0,
∂f (θ0)

∂θ′
Σθ
∂f (θ0)

∂θ

)

we approximate ∂f (θ0)
∂θ′ with

∂f(θ̂)
∂θ′



GMM

Lets see how GMM works focusing on the just identified case

The model is

E [m (Xi, θ0)] =0

We estimate it by setting

0 =
1
N

n∑
i=1

m(Xi, θ̂)



To see consistency we use mean value theorem putting
√

N on
both sides

√
N

1
N

N∑
i=1

m(Xi, θ̂)−
√

N
1
N

N∑
i=1

m(Xi, θ0)

=

[
1
N

N∑
i=1

∂m(Xi, θ̃)

∂θ′

]
√

N
[
θ̂ − θ0

]

√
N

1
N

N∑
i=1

m(Xi, θ̂) =0

by definition of θ̂

For the second one just think of m(Xi, θ0) as an i.i.d. random
variable with expected value zero



We can use a central limit theorem on this and we know that

√
N

1
N

N∑
i=1

m(Xi, θ0) ≈N
(
0,E

[
m(Xi, θ0)m(Xi, θ0)′

])
Now just notice that

√
N
[
θ̂ − θ0

]
=

[
1
N

n∑
i=1

∂m(Xi, θ̃)

∂θ′

]−1√
N

1
N

N∑
i=1

m(Xi, θ0)

≈N
(
0,G−1ΨG′−1)

where

G ≡E
(
∂m(Xi, θ0)

∂θ′

)
Ψ ≡E

[
m(Xi, θ0)m(Xi, θ0)′

]
In practice you just replace population values with sample
analogues



M-Estimation
Think about choosing θ̂ to maximize

1
N

N∑
i=1

g(Xi, θ)

Examples:

Maximum Likelihood
Ordinary Least Squares
Nonlinear Least Squares

From first order condition we know that

1
N

N∑
i=1

∂g(Xi, θ̂)

∂θ′
=0



But now this is (locally) just like GMM

Just use

m(Xi, θ) =
∂g(Xi, θ)

∂θ′

and then we get

√
N
[
θ̂ − θ0

]
=

[
1
N

N∑
i=1

∂2g(Xi, θ̃)

∂θ∂θ′

]−1√
N

1
N

N∑
i=1

∂g(Xi, θ)

∂θ′

≈N

(
0,
[

E
(
∂2g(Xi, θ0)

∂θ∂θ′

)]−1

E
[
∂g(Xi, θ0)

∂θ

∂g(Xi, θ0)

∂θ′

] [
E
(
∂2g(Xi, θ0)

∂θ′∂θ

)]−1
)

For maximum likelihood

E
(
∂2g(Xi, θ0)

∂θ∂θ′

)
= E

[
∂g(Xi, θ0)

∂θ

∂g(Xi, θ0)

∂θ′

]



Indirect Inference

I want to sketch how this works. it can get more complicated.

From our model

Yi ≡y(Xi, ui; θ)

ui ∼Ψ(ui; θ)

β̂ ≡argminβF

(
1
N

N∑
i=1

g(Xi,Yi, β), β

)

B̃(θ) ≡ 1
H

H∑
h=1

argminβF

(
1
S

S∑
s=1

g(Xhs, y(Xhs, uhs; θ);β), β

)
θ̂ =argminθ

(
B̃(θ)− β̂

)′
Ω
(

B̃(θ)− β̂
)



and some notation:

β0 ≡argminβF(E [g(Xi,Yi, β)] , β).

B(θ) =argminβF (G(θ, β)) .

Without getting into details of how we can show that

√
N
(
β̂ − β0

)
∼N (0,Σ)

and notice that if we have the right data generation process

√
S
(

B̃(θ)− β0

)
∼N

(
0,

1
H

Σ

)

Lets assume these guys are independent of each other (thats
not quite right because they both depend on the sample draw
of Xi)



The first order condition is

0 =− 2
∂B̃(θ̂)′

∂θ
Ω
(

B̃(θ̂)− β̂
)

Now we want to use the mean value theorem with

f (θ) =
∂B̃(θ)′

∂θ
Ω
(

B̃(θ)− β̂
)

so

√
N
(

f
(
θ̂
)
− f (θ0)

)
=
∂f
(
θ̃
)

∂θ′

√
N
(
θ̂ − θ0

)



First note that
√

Nf
(
θ̂
)

=0

√
Nf (θ0) =

∂B̃(θ0)′

∂θ
Ω
√

N
(

B̃(θ0)− β̂
)

=
∂B̃(θ0)′

∂θ
Ω
[√

N
(

B̃(θ0)− β0

)
−
√

N
(
β̂ − β0

)]
∼N

(
0,
∂B̃(θ0)′

∂θ
ΩVΩ

∂B̃(θ0)

∂θ′

)



To derive V note that

√
N
(

B̃(θ)− β0

)
=

√
N√
S

√
S
(

B̃(θ)− β0

)
∼N

(
0,

N
SH

Σ

)
so

V =

[
N

SH
+ 1
]

Σ



and

∂f
(
θ̃
)

∂θ′
≈
∂ ∂B̃(θ0)

∂θ′ Ω
(

B̃(θ0)− β0

)
∂θ

=op(1) +
∂B̃(θ0)′

∂θ
Ω
∂B̃(θ0)

∂θ′



Thus

√
N
(
θ̂ − θ0

)
∼

N

(
0,
[
∂B(θ0)′

∂θ
Ω
∂B(θ0)

∂θ′

]−1 ∂B̃(θ0)′

∂θ
ΩVΩ

∂B̃(θ0)

∂θ′

[
∂B(θ0)′

∂θ
Ω
∂B(θ0)

∂θ′

]−1
)



Two Stage Estimation

Now suppose we estimate a model in two steps

First estimate θ1

Then use estimate of θ1 to get θ2

In getting standard errors for θ2 we need to worry about the fact
that θ1 was estimated

Lets think about how to get our standard errors



Lets focus on the case where both stages are GMM estimators

Stage 1:

Choose θ̂1 to solve

1
N1

N1∑
i1=1

m1(Xi1 , θ̂1) = 0

Stage 2: Use θ̂1 and solve for θ̂2 by minimizing 1
N2

N2∑
i2=1

m2

(
Xi2 , θ̂1, θ2

)′W2

 1
N2

N2∑
i2=1

m2

(
Xi2 , θ̂1, θ2

)
This is very common

The standard errors for θ̂1 are fine, but the standard errors for θ̂2
need to be adjusted to account for the fact that θ̂1 is estimated



In terms of notation define for ` and j (which can be 1 or 2)

G`j =E

(
∂m`(Xi, θ0)

∂θ′j

)

and

Ψ`j =E
[
m`(Xi, θ10)mj(Xi, θ10)′

]



Write the first stage using as

√
N
[
θ̂1 − θ10

]
=

[
1
N

N∑
i=1

∂m1(Xi, θ̃1)

∂θ′1

]−1√
N

1
N

N∑
i=1

m1(Xi, θ10)

≈G′−1
11

1√
N

N∑
i=1

m1(Xi, θ10)



For the second stage we use the mean value theorem once
again

√
N

1
N

N∑
i=1

m2(Xi, θ̂)−
√

N
1
N

N∑
i=1

m2(Xi, θ0)

=

[
1
N

N∑
i=1

∂m2(Xi, θ̃)

∂θ′

]
√

N
[
θ̂ − θ0

]
≈G21

√
N
[
θ̂1 − θ10

]
+ G22

√
N
[
θ̂2 − θ20

]
=G21G′−1

11
1√
N

N∑
i=1

m1(Xi, θ10)

+ G22
√

N
[
θ̂2 − θ20

]



And as above

√
N

1
N

N∑
i=1

m2(Xi, θ̂) =0

so

√
N
[
θ̂2 − θ20

]
=− G−1

22
1√
N

N∑
i=1

[
m2(Xi, θ0) + G21G′−1

11 m1(Xi, θ10)
]

∼N
(
0,G2

22ΨG22
)

where

Ψ =E
([

m2(Xi, θ10, θ20) + G21G′−1
11 m1(Xi, θ10)

] [
m2(Xi, θ10, θ20) + G21G′−1

11 m1(Xi, θ10)
]′)

=Ψ22 + G21G′−1
11 Ψ12 + Ψ21G−1

11 G12 + G21G′−1
11 Ψ11G−1

11 G12



A much easier way to do it

Now back to the two step procedure

We can just think of this as one big GMM expression with

m (Xi, θ) ≡
[

m1(Xi, θ1)
m2(Xi, θ1, θ2)

]
it is numerically identical and we can use the standard GMM
formula to get standard errors



Note that we have written this as GMM, but it also can be
M-estimation as we showed above

An alternative way to deal with this is to bootstrap

We have to bootstrap the whole procedure, not just the second
stage and we are done


