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Introduction

From Imbens and Angrist we showed that if one runs IV, we get
estimates of the Local Average Treatment Effect

However, we are not limited to LATE, there are a lot of other
things we could potentially do

In this set of lecture notes I want to put a little more structure on
the model and think about what can and can not be identified
under different assumptions

These models are the basis for a large class of structural
models

We will start with the Roy model, then the Generalized Roy
model, and then use that to think about identification of
treatment effects



The Roy Model

Economy is a Village

There are two occupations

hunter
fisherman

Fish and Rabbits are going to be completely homogeneous

No uncertainty in number you catch

Hunting is “easier” you just set traps



Let

πF be the price of fish
πR be the price of rabbits
F number of fish caught
R number of rabbits caught

Wages are thus

WF = πFF

WR = πRR

Each individual chooses the occupation with the highest wage

Thats it, that is the model

The relationship between this and the treatment effect
framework should be transparent: this is a model in which
people choose the treatment t = 0 or 1 to maximize Yti



This is an econometrics class rather than a labor class, so I
really shouldn’t talk about the model but I can’t help myself

Key questions:

Do the best hunters hunt?
Do the best fisherman fish?

It turns out that the answer to this question depends on the
variance of skill-nothing else

Whichever happens to have the largest variance in logs will
tend to have more sorting.

In particular demand doesn’t matter



To think of this graphically note that you are just indifferent
between hunting and fishing when

log(πR) + log(R) = log(πF) + log(F)

which can be written as

log(R) = log(πF)− log(πR) + log(F)

If you are above this line you hunt

If you are below it you fish







Case 1: No variance in Rabbits

Suppose everyone catches R∗

If you hunt you receive W∗ = πRR∗

Fish if F > W∗

πF
Hunt if F ≤ W∗

πF

The best fisherman fish
All who fish make more than all who hunt





Case 2: Perfect correlation

Suppose that
log(R) = α0 + α1 log(F)

with α1 > 0
var(log(R)) = α2

1var(log(F))

Thus if α1 > 1 then var(log(R)) > var(log(F))

if α1 < 1 then var(log(R)) < var(log(F))



Fish if

log(WF) ≥ log(Wr)

log(πF) + log(F) ≥ log(πR) + log(R)

log(πF) + log(F) ≥ log(πR) + α0 + α1 log(F)

(1− α1) log(F) ≥ log(πR) + α0 − log(πF)



If α1 < 1 then left hand side is increasing in log(F) meaning that
better fisherman are more likely to fish

This also means that the best hunters fish





If α1 > 1 pattern reverses itself





Thus when var(log(F)) > var(log(R)) (or α < 1) the best
fishermen fish, the best hunters fish

when var(log(R)) > var(log(F)) (or α > 1) the best hunters
hunt, the best fishermen hunt



Case 3: Perfect Negative Correlation

Exactly as before

(1− α1) log(F) ≥ log(πR) + α0 − log(πF)





Best fisherman still fish

Best hunters hunt



Case 4: Log Normal Random Variables

This can all be formalized with Log normal random variables.

Survey papers can be found in various places but I won’t get
into it here.

Instead we focus on nonparametric identification of the Roy
model.



Why is thinking about nonparametric identification
useful?

Speaking for myself, I think it is. I always begin a research
project by thinking about nonparametric identification.
Literature on nonparametric identification not particularly
highly cited
At the same time this literature has had a huge impact on
empirical work in practice. A Heckman two step model
without an exclusion restriction is often viewed as highly
problematic these days- because of nonparametric
identification
It is also useful for telling you what questions the data can
possibly answer. If what you are interested is not
nonparametrically identified, it is not obvious you should
proceed with what you are doing



Definition of Identification

Another term that means different things to different people

I will base my discussion on Matzkin’s (2007) formal definition
of identification but use my own notation and be a bit less
formal

This will all be about the Population in thinking about
identification we will completely ignore sampling issues



Data Generating Process

Let me define the data generating process in the following way

Xi ∼H0(Xi)

ui ∼F0(ui; θ)

Υi =y0(Xi, ui; θ)

The data is (Υi,Xi) with ui unobserved.

We know this model up to θ



To think of this as non-parametric we can think of θ as infinite
dimensional

For example if F0 is nonparametric we could write the model as
θ = (θ1,F0(·))



To put the Roy Model in this context we need to add some more
structure to go from an economic model into an econometric
model.

This means writing down the full data generation model.

First a normalization is in order.

We can redefine the units of F and R arbitrarily Lets normalize

πF = πR = 1

We consider the model

Wfi = gf (Xfi,X0i) + εfi

Whi = gh(Xhi,X0i) + εhi

where the joint distribution of (εfi, εhi) is G.



Let Fi be a dummy variable indicating whether the worker is a
fisherman.

We can observe Fi and

Wi ≡ FiWfi + (1− Fi) Whi

Thus in this case

Υi = (Fi,Wi)

Xi = (X0i,Xfi,Xhi)

ui = (εfi, εhi)

θ = (gf , gh,G)

y0(Xi, ui; θ) =

[
1 (gf (Xfi,X0i) + εfi > gh(Xhi,X0i) + εhi)

max {gf (Xfi,X0i) + εfi, gh(Xhi,X0i) + εhi}

]
You can see the selection problem-we only observe the wage in
the occupation the worker chose, we don’t observe the wage in
the occupation they didn’t



Point Identification of the Model

The model is identified if there is a unique θ that could have
generated the population distribution of the observable data
(Xi,Υi)

A bit more formally, let Θ be the parameter space of θ and let θ0
be the true value

If there is some other θ1 ∈ Θ with θ1 6= θ0 for which the joint
distribution of (Xi,Υi) when generated by θ1 is identical to
the joint distribution of (Xi,Υi) when generated by θ0 then θ
is not (point) identified
If there is no such θ1 ∈ Θ then θ is (point) identified



Set Identification of the Model

Define ΘI as the identified set.

I still want to think of there as being one true θ0

ΘI is the set of θ1 ∈ Θ for which the joint distribution of (Xi,Υi)
when generated by θ1 is identical to the joint distribution of
(Xi,Υi) when generated by θ0.

So another way to think about point identification is the case in
which

ΘI = {θ0}



Identification of a feature of a model

Suppose we are interested not in the full model but only a
feature of the model: ψ(θ)

We can identify
ΨI ≡ {ψ(θ) : θ ∈ ΘI}

Most interesting cases occur when ΘI is a large set but ΨI is a
singleton



In practice ψ(θ) could be something complicated like a policy
counterfactual in which we typically need to first get θ and then
simulate ψ(θ)

However, often it is much simpler and we can just write it as a
known function of the data.

Classic example is the reduced form parameters in the
simultaneous equations model-without an instrument the
reduced form parameters are identified but the structural ones
are not



Identification of the Roy Model

Lets think about identifying this model

The reference is Heckman and Honore (EMA, 1990)

I loosely follow the discussion in French and Taber, Handbook
of Labor Economics, 2011

While the model is about the simplest in the world, identification
is difficult



Assumptions

(εfi, εhi) is independent of Xi = (X0i,Xfi,Xhi) and
continuously distributed
Normalize E(εfi)=0
To see why this is a normalization we can always subtract
E(εfi) from εfi and add it to gf (Xfi,X0i) making no difference
in the model itself
Normalize the median of εfi − εhi to zero.
A bit non-standard but we can always add the median of
εfi − εhi to εhi and subtract it from gh(Xhi,X0i)

supp(gf (Xfi, x0), gh(Xhi, x0)) = R2 for all x0 ∈ supp(X0i)

The econometrician observes Fi and observes the wage
when Fi = 1



Step 1: Identification of Reduced Form Choice Model

This part is well known in a number of papers (Manski and
Matzkin being the main contributors) We can write the model as

Pr(Fi = 1 | Xi = x) = Pr(gh(xh, x0) + εih ≤ gf (xf , x0) + εif )

= Pr(εih − εif ≤ gf (xf , x0)− gh(xh, x0))

= Gh−f (gf (xf , x0)− gh(xh, x0)),

where Gh−f is the distribution function for εih − εif

We can not separate gf (xf , x0)− gh(xh, x0) from Gh−f , but we can
identify the combination



This turns out to be useful

It means that we know that for any two values x1 and x2, if

Pr(Fi = 1 | Xi = (xa
0, x

a
h, x

a
f )) =Pr(Fi = 1 | Xi = (xb

0, x
b
h, x

b
f ))

then

gf (xa
f , x

a
0)− gh(xa

h, x
a
0) =gf (xb

f , x
b
0)− gh(xb

h, x
b
0)



Step 2: Identification of the Wage Equation gf

Next consider identification of gf . This is basically the standard
selection problem.

Notice that we can identify the distribution of Wfi conditional on
(Xi = x,Fi = 1.)

In particular we can identify

E(Wi | Xi = x,Fi = 1) =gf (xf , x0)

+ E(εif | εih − εif < gf (xf , x0)− gh(xh, x0)).



Lets think about identifying gf up to location.

That is, for any
(

xa
f , x
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0

)
and

(
xb

f , x
b
0

)
we want to identify

gf (xb
f , x

b
0)−gf (xa

f , x
a
0)

An exclusion restriction is key

Take xb
h to be any number you want. From step 1 and from the

support assumption we know that we can identify a xa
h such that

Pr(Fi = 1 | Xi = (xa
0, x

a
h, x

a
f )) =Pr(Fi = 1 | Xi = (xb

0, x
b
h, x

b
f ))

which means that
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But then
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Identification at Infinity

What about the location?

Notice that

lim
gh(xh,x0)→−∞;(x0,xf ) fixed

E(Wi | Xi = (x0, xh, xf ),Fi = 1)

= gf (xf , x0)

+ lim
gh(xh,x0)→−∞;(x0,xf ) fixed

E(εfi | εih − εif < gf (xf , x0)− gh(xh, x0)))

= gf (xf , x0) + E(εfi)

= gf (xf , x0)

Thus we are done



An important point is that the model is not identified without
identification at infinity.

To see why suppose that gf (xf , x0)− gh(xh, x0) is bounded from
above at gu then if εih − εif > gu, we know for sure that Fi = 0.
Thus the data is completely uninformative about

E(εfi | εih − εif > gu)

so the model is not identified.

Parametric assumptions on the distribution of the error term is
an alternative.



Who cares about Location?

Actually we do, a lot

Without our intercept we know something about wage
variation within fishing
However we can not compare the wage level of fishing to
the wage level of hunting
This is what we need to construct treatment effects



Step 3: Identification of gh

For any (xh, x0) we want to identify gh(xh, x0)

What will be crucial is the other exclusion restriction (i.e. Xfi).

Again from step 1 and the other support condition, we know
that can find an xf so that

Pr(Fi = 1 | Xi = (x0, xh, xf )) = 0.5.



This means that

0.5 = Pr (εhi − εfi ≤ gf (xf , x0)− gh(xh, x0)) .

But the fact that εhi − εfi has median zero implies that

gh(xh, x0) = gf (xf , x0).

Since gf is identified, gf (xf , x0) is known, so gh(xh, x0) is
identified from this expression.



Step 4: Identification of G

To identify the joint distribution of (εfi, εhi) note that from the
data one can observe

Pr(Ji = f , log(Wi) < s | Xi = x)

= Pr(gh(xh, x0) + εhi ≤ gf (xf , x0) + εfi, gf (xf , x0) + εfi ≤ s)

= Pr(εhi − εfi ≤ gf (xf , x0)− gh(xh, x0), εfi ≤ s− gf (xf , x0))

which is the cumulative distribution function of (εhi − εfi, εfi)
evaluated at the point (gf (xf , x0)− gh(xh, x0), s− gf (xf , x0))

Thus by varying (gf (xf , x0)− gh(xh, x0) and (s− gf (xf , x0)) we
can identify the joint distribution of (εhi − εfi, εfi)

from this we can get the joint distribution of (εfi, εhi).



The Generalized Roy Model

Now we relax the assumption that choice only depends on
income.

Let Ufi and Ufi be the utility that individual i would receive from
being a fisherman or a hunter respectively where for j ∈ {f , h},

Uji = Yji + ϕj(Zi,X0i) + νji.

The variable Zi allows for the fact that there may be other
variables that effect the taste for hunting versus fishing directly,
but not affect wages in either sector.

Workers choose to fish when

Ufi > Uhi.



Since all that matters is relative utility we can define

ϕ(Zi,X0i) ≡ ϕf (Zi,X0i)− ϕh(Zi,X0i)

νi ≡ νif − νih

We continue to assume that

Yfi = gf (Xfi,X0i) + εfi

Yhi = gh(Xhi,X0i) + εhi.



We can simplify further by writing the reduced form of the first
stage using

ϕ∗(Zi,X0i,Xfi,Xhi) ≡ϕ(Zi,X0i) + gf (Xfi,X0i)− gh(Xhi,X0i)

ν∗i ≡− νi − εfi + εhi

so that

Ufi − Uhi =ϕ∗(Zi,X0i,Xfi,Xhi)− ν∗i



Lets think about identification of this model using the same 4
steps we used for the pure Roy model

A major difference, though, is now we assume that we also
have data on Yhi



Step 1

This is identical to what we did before, notice that

Pr(Fi = 1 | Xi = x) = Pr(Uhi ≤ Ufi)

= Pr(ν∗i ≤ ϕ∗(Zi,X0i,Xfi,Xhi))

= Gν∗(ϕ∗(Zi,X0i,Xfi,Xhi)),

as before we can not separate Gν∗ from ϕ∗(Zi,X0i,Xfi,Xhi), but
we can identify level sets of ϕ∗(Zi,X0i,Xfi,Xhi)



Step 2

Getting gf is exactly the same as before

lim
ϕ∗(.)→∞;(x0,xf ) fixed

E(Wi | (Zi,Xi) = (z, x0, xh, xf ),Fi = 1))

= gf (xf , x0)

+ lim
ϕ∗(.)→∞;(x0,xf ) fixed

E(εfi | ν∗i < ϕ∗(z, x0, xf , xh))

= gf (xf , x0) + E(εfi)

= gf (xf , x0)



Step 2′

Now think about identifying gh-this is completely analogous to gf

lim
ϕ∗(.)→−∞;(x0,xh) fixed

E(Wi | (Zi,Xi) = (z, x0, xh, xf ),Fi = 0)

= gh(xh, x0)

+ lim
ϕ∗(.)→∞;(x0,xh) fixed

E(εhi | ν∗i > ϕ∗(z, x0, xf , xh))

= gh(xh, x0) + E(εhi)

= gh(xh, x0)



Step 3

Again almost completely analogous to the case before since we
can write

Ufi − Uhi =gf (Xfi,X0i) + ϕ(Zi,X0i)− gh(Xhi,X0i)

+ εfi + νi − εhi

We need exclusion restrictions in Xfi or Xhi since under the
assumption that the median of εfi + νfi − εhi − νhi, means that if

Pr(Ji = f | Xi = x,Zi = z) = 0.5

then
ϕ(z, x0) = gh(xh, x0)− gf (xf , x0)



Step 4

Finally we need to identify the distribution of the error terms.

Recall that the model is

Ufi − Uhi = ϕ∗(Zi,Xi)− ν∗i
Yfi = gf (Xfi,X0i) + εfi

Yhi = gh(Xhi,X0i) + εhi

We can use an argument identical to the standard Roy model

Pr(Fi = 1,Yfi ≤ y | (Zi,Xi) = (z, x))

= Pr(ν∗i ≤ ϕ∗(z, x), gf (xf , x0) + εfi ≤ y)

= Gν∗,εf (ϕ∗(z, x), y− gf (xf , x0)) .



where Gv,εf is the joint distribution of (εfi + νi − εhi, εfi).

Using an analogous argument we can get the joint distribution
of (εfi + νi − εhi, εhi)



However, this is all that can be identified.

In particular the joint distribution of (εfi, εhi) is not identified.

The problem is that we never observe the same person as both
a hunter and a fisherman

Even with Normal error terms the covariance between εfi and
εhi is not identified



In the Roy model it was identified because from the
choice/wage equation we identified the joint distribution of
(εfi − εhi, εhi) from which you can get the joint distribution of
(εfi, εhi)

Clearly one can not do this from the joint distribution of
(εfi + νi − εhi, εhi).



Treatment Effects
The generalized Roy model can also be thought of as the
“treatment effect model”

We just interpret Yfi to be the outcome with treatment, Yhi to be
the outcome without treatment

This literature does not typically worry about the effect of the
treatment on enrollment, so we can used the“reduced form”
version of the selection model (I am also going to ignore other
regressors for now, so the only observable is the exclusion
restriction)

Thus the model is Ji = f when

ϕ∗(Zi)− ν∗i ≥ 0

and we observe Yfi when Fi = 1 and Yhi when Fi = 0



Identification of Average Treatment Effect

Analogous to the previous set of lecture notes we define

αi = Yfi − Yhi.

Think about identification of Average Treatment Effect

ATE ≡ E(αi)

= E(Yfi)− E(Yhi).

It is trivial to show that if the Generalized Roy model is
identified, the ATE is identified.

It is weaker in that you only need an exclusion restriction in the
selection equation, not in the outcome equation



It is really just “identification at infinity” (+ and -) with an
exclusion restriction

lim
ϕ∗(z)→∞

E(Yi | Fi = 1,Zi = z)− lim
ϕ∗(z)→−∞

E(Yi | Fi = 0,Zi = z)

= E(Yfi)− E(Yhi)

= ATE



There are two major limitations of this.

We can identify the marginal distributions of Yfi and Yhi but
not their joint distribution
Without full support we can do even less

Lets think about each of these in turn



We showed that we can identify the joint distribution of (ν∗i , εfi).
This means we can identify the marginal distribution of (εfi) and
thus the marginal distribution of Yfi

Analogously from the joint distribution of (εfi + νi − εhi, εhi) we
can identify the marginal distribution of of (εhi) and thus the
marginal distribution of Yhi.

However, we can not identify their joint distribution which limits
what we can do.

It is important to understand quantile treatment effects within
this context.



Quantile Treatment Effects

Lets assume the the support conditions and assume from
identification at infinite we can identify the full marginal
distribution of Yfi and Yhi.

When we estimate the Average Treatment Effect we compare

ÂTE =Y f − Yh

But there is nothing special about means, we could do the
same thing with medians

T̂E[0.5] =Yf [0.5] − Yh[0.5]

That is we can take the difference between the medians of the
controls and the median of the treatments.



There is nothing special about the median. We can do this at
any quantile

Pr(Yi ≤ Y[q]) = q

T̂E[q] =Yf [q] − Yh[q]

This is referred to as the quantile treatment effect



One important clarification

The quantile treatment effect is NOT the quantile of the
treatment effects

For expectations

E (Y1i − Y0i) = E (Y1i)− E (Y0i)

Because the difference in the expectations is the expectation of
the difference

This is not true with Quantiles-the difference in the medians is
not the median of the difference



Example
Suppose only three people

Person Yhi Yfi ∆i

1 1.2 3.4 2.2
2 2.3 2.8 0.5
3 4.4 5.1 0.7

Median 2.3 3.4 0.7

The median treatment effect is 3.4-2.3=1.1

The median of the treatment effect is 0.7

We cannot figure out what the median of the treatment effect is
in general because we don’t know who goes with who

The data identifies the two marginal distributions of Yfi and Yhi

but in the generalized Roy model, it does not identify the joint
distribution.







Social Welfare Function

The fact that we can not identify the joint distribution is not
necessarily a problem

Suppose we want to compare the world with the treatment
versus the world without it (not so interesting in pure Roy
model).

If we have social welfare function V(·) we can calculate E[V(Yfi)]
and E[V(Yhi)] from the marginal distributions only



Support Conditions

The second issue was the support conditions.

For the most part the goal of different approaches in the
treatment effect literature is to relax these assumptions in one
way or another

Some focus on relaxing the support conditions

others focus on relaxing the exclusion restrictions-though this
requires strong assumptions like no selection on unobservables

Lets think about literatures that think about relaxing the support
conditions (and note that the authors don’t usually sell it this
way)



LATE

Imbens and Angrist showed that IV with a binary instrument
converged to

E(αi | Gi = 3)

To map this into the current framework recall that we thought
about the case in which Zi is either one or zero

People choose the treatment (fish) when

ϕ∗(Zi)− ν∗i ≥ 0



The Gi people are those who would choose to fish when Zi = 1
but not when Zi = 0 This means that for them:

ϕ∗(1)− ν∗i ≥ 0

ϕ∗(0)− ν∗i < 0

and thus
ϕ∗(0) < ν∗i ≤ ϕ∗(1)

In other words the local average treatment effect can be written
as

E(αi | ϕ∗(0) < ν∗i ≤ ϕ∗(1))



Lets think about how this relates to identification at infinite and
support considerations

Instead of binary suppose that Zi had larger support.

For any two points in the support z1and z0 with ϕ∗(z1) > ϕ∗(z0)
we can use IV to identify

E(αi | ϕ∗(z0) < ν∗i ≤ ϕ∗ (z1))



Thus if I can find points so that ϕ∗(z0) = −∞ and ϕ∗(z1) =∞,
then one can identify

E(πi | −∞ < ν∗i ≤ ∞) = ATE.

However if the support of ϕ(Zi) is bounded away from 0 or from
1, then this does not work



For example let Z be the support of Zi.

Define

z` ≡ arg min
z∈Z

ϕ∗(z)

zu ≡ arg max
z∈Z

ϕ∗(z)

and if z` < 0 then there is no state of the world in which an
individual with νi < ϕ∗(z`) would ever hunt so we can never
hope to identify the effect for them.



Local Instrumental Variables and Marginal Treatment
Effects

Heckman and Vytlacil (1999, 2001, 2005) construct a
framework that is useful for constructing many types of
treatment effects and showing what can be identified.

They focus on the marginal treatment effect defined in our
context as

∆MTE(x, ν) ≡ E(αi | Xi = x, νi = ν).

To see where identification comes from, note that adding
regressors to the argument above, it is easy to show that one
can identify

E(αi | ϕ∗(z0, x) < ν∗i ≤ ϕ∗ (z1, x) ,Xi = x)

for any z0 and z1.



From this note that

lim
ϕ∗(z0,x)↑ν,ϕ∗(z1,x)↓ν

E(αi | ϕ∗(z0, x) < ν∗i ≤ ϕ∗ (z1, x) ,Xi = x)

= E(αi | Xi = x, ν∗i = ν)

= ∆MTE(x, ν)



They show that one can use this to build a lot of treatment
effects if they are identified including the ATE

ATE =

∫ ∫ 1

0
∆MTE(xf , xr, x0, ν)dνdµ(xf , xr, x0).

They also show the instrumental variables estimator can be
written as ∫ 1

0
∆MTE(x, ν)hIV(x, ν)dν

for some function hIV that they can calculate

Further they show how to use this framework to think about
policy evaluation.



Bounds on treatment Effects

Manski and others have focused on set identification rather
than point identification.

That is even if I can not point identify ATE, I can Identify a set in
which ATE lies



As an example consider the instrument case in which ϕ∗(zh)
and ϕ∗(z`) represent the upper and lower bounds of the support
of ϕ∗(Zi).

Then notice that

E (Yfi) = E(Yfi | Fi = 1,Zi = zh)Pr(Fi = 1 | Z = zh)

+ E(Yfi | ν∗i > ϕ∗(zh))(1− Pr(Fi = 1 | Z = zh))

We know everything here but E(Yfi | νi > ϕ∗(zh)) which was
exactly what we said couldn’t be identified without identification
at infinity



However suppose that the support of Yfi and Yhi are bounded
above by yh and from below by y`.

We know that

y` ≤ E(Yfi | ν∗i > ϕ∗(zh)) ≤ yh



Using this, one can show that

E(Yfi | Fi = 1,Zi = zh)P(zh) + y`(1− P(zh))

− E(Yhi | Fi = 1,Zi = z`)(1− P(z`)) + yuP(z`)

≤ATE ≤
E(Yfi | Fi = 1,Zi = zh)P(zh) + yu(1− P(zh))

− E(Yhi | Fi = 0,Zi = z`)(1− P(z`)) + y`P(z`).

where
P(z) ≡ Pr(Fi = 1 | Zi = z)



Set Estimates of Treatment Effects

There are quite a few other ways to bound treatment effects

No assumption bounds
Monotone Treatment Effects
Monotone Treatment Response
Monotone Selection
Use selection on observables to bound selection on
unobservables
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