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| will describe the basic ideas of RD, but ignore many of the
details

Good references (and things | used in preparing this are):

o “Identification and Estimation of Treatment Effects with a
Regression-Discontinuity Design,” Hahn, Todd, and Van
der Klaauw, EMA (2001)

o “Manipulation of the Running Variable in the Regression
Discontinuity Design: A Density Test,” McCrary, Journal of
Econometrics (2008)

o “Regression Discontinuity Designs: A Guide to Practice,”
Imbens and Lemieux, Journal of Econometrics (2008)

o “Regression Discontinuity Designs in Economics,” Lee and
Lemiux, JEL (2010)

You can also find various Handbook chapters or Mostly
Harmless Econometrics which might help as well



The idea of regression discontinuity goes way back, but it has
gained in popularity in recent years

The basic idea is to recognize that in many circumstances
policy rules vary at some cutoff point

To think of the simplest case suppose the treatment
assignment rule is:

0 X <«x*
T =
1 Xi>x*



Many different rules work like this.

Examples:

@ Whether you pass a test
Whether you are eligible for a program
Who wins an election

Q

Q

o Which school district you reside in

o Whether some punishment strategy is enacted
°

Birth date for entering kindergarten

This last one should look pretty familiar-Angrist and Krueger’s
quarter of birth was essentially a regression discontinuity
design



The key insight is that right around the cutoff we can think of
people slightly above as identical to people slightly below

Formally we can write it the model as:

Yi=aTi+e;

E(ei | Xi = x)

is continuous then the model is identified (actually all you really
need is that it is continuous at x = x*)

To see it is identified not that

limyrx« E(Yi | Xj = x) = E(gi | Xj = x7)
limy x-E(Y; | Xi =x) =a+ E(ej | Xi = x¥)

Thus
a = limyx-E(Yi | Xi = X) — limypx- E(Yi | Xi = X)
Thats it



What | have described thus far is referred to as a “Sharp
Regression Discontinuity”

There is also something called a “Fuzzy Regression
Discontinuity”

This occurs when rules are not strictly enforced
Examples
o Birth date to start school

o Eligibility for a program has other criterion
@ Whether punishment kicks in (might be an appeal process)



This isn’'t a problem as long as

To see identification we now have
limysx<E(Yi | Xi = x) — limyyx« E(Y; | X; = X)
limyrxs E(T; | X = x) — limy x- E(T; | X; = x)
_ a[”mxTx*E(Ti | X = X) — IimXU*E(T,- | X = X)]
limerx E(Ti | Xi = X) — limyy - E(T; | X; = x)

=

Note that this is essentially just Instrumental variables (this is
often referred to as the Wald Estimator)

You can also see that this works when T; is continuous



How do we do this in practice?

There are really two approaches.

The first comes from the basic idea of identification, we want to
look directly to the right and directly to the left of the policy
change

Lets focus on the Sharp case-we can get the fuzzy case by just
applying to Y; and T; and then taking the ratio

The data should look something like this (in stata)



We can think about estimating the end of the red line and the
end of the green line and taking the difference

This is basically just a version of nonparametric regression at
these two points



Our favorite way to estimate nonparametric regression in
economics is by Kernel regression

Let K (x) be a kernel that is positive and non increasing in | x|
and is zero when |x| is large

Examples:

o Normal pdf: exp(—x?) €D
o Absolute value:

1— x| |x| <1
0 x| > 1
o Uniform: 1(|x| < 1)CGEED
o Epanechnikov kernel:

d(1-) X<t
0

x| > 1



The kernel regressor is defined as

=)
R
it K(75~

where h is the bandwidth parameter

E(Y|X=x)

Y;
)

Note that this is just a weighted average

o it puts higher weight on observations closer to x
o when his really big we put equal weight on all observations

o when his really small, only the observations that are very
close to x influence it



This is easiest to think about with the uniform kernel

In this case

K(X’;X> =1(|X; — x| < h)

So we use take a simple sample mean of observations within h
units of X;

Clearly in this case as with other kernels, as the sample size
goes up, h goes down so that asymptotically we are only
putting weight on observations very close to x



To estimate limy x- E(T; | Xi = x) we only want to use values of
X; to the right of x*, so we would use

N Xi—x*
N 1G> x) KXY,
iy E(T; | X = ) 2 LX) K
S 1 (> x) K

However it turns out that this has really bad properties because
we are looking at the end point



For example suppose the data looked like this




For any finite bandwidth the estimator would be biased
downward



It is better to use local linear (or polynomial) regression.

Here we choose

N
S A i Xi—x* %112 *
(a,b):argm/na7bi§_1K< " >[Y,-—a—b(X,-—x)] 1(X; > x¥)

Then the estimate of the right hand side is a.

We do the analogous thing on the other side:

(é,f)) :argm/'na,biz:l;K<X" - )[Y—a b(X; — x*)]?1(X; < x*)

(which with a uniform kernel just means running a regression
using the observations between x* — h and x*

Lets try this in stata



There is another approach to estimating the model

Define
g(x) = E(ei | Xi = x)

then
E(Yi| Xi, Ti) = aT; + g(Xj)

where g is a smooth function

Thus we can estimate the model by writing down a smooth
flexible functional form for g and just estimate this by OLS

The most obvious functional form that people use is a
polynomial



There are really two different ways to do it:

Y; = aTj+ by + by X; + b2 X7 + v;

or

Yi =aTi+ by + b1 Xi1 (Xi < X) + b2 XP1(X; < x)
+ b3 Xi1 (X; > X) + baXP1 (X = X) + v

Lee and Lemieux say the second is better



Note that this is just as “nonparametric” as the Kernel approach

o You must promise to increase the degree of the polynomial
as you increase the sample size (in the same way that you
lower the bandwidth with the sample size)

@ You still have a practical problem of how to choose the
degree of the polynomial (in the same way you have a
choice about how to choose the bandwidth in the kernel
approaches)

You can do both and use a local polynomial-in one case you
promise to lower the bandwidth, in the other you promise to add
more terms, you could do both

Also, for the “fuzzy” design we can just do IV



Problems

While RD is often really nice, there are three major problems
that arise

The first is kind of obvious from what we are doing-and is an
estimation problem rather than an identification problem

Often the sample size is not very big and as a practical matter
the bandwidth is so large (or the degree of the polynomial so
small) that it isn’t really regression discontinuity that is
identifying things



The second problem is that there may be other rules changes
happening at the same cutoff so you aren’t sure what exactly
you are identifying

One suggestion to test for this is to look at observable
characteristics



The third is if the running variable is endogenous

Clearly if people choose X; precisely the whole thing doesn'’t
work

For example suppose

o carrying 1 pound of drugs was a felony, but less than 1 was
a misdemeanor

o people who get their paper in by 5:00 on thursday
afternoon are on time, 5:01 is late and marked down by a
grade

Note that you need X; to be precisely manipulated, if there is
still some randomness on the actual value of Xj, rd looks fine



Mccrary (2008) suggests to test for this by looking at the
density around the cutoff point:

@ Under the null the density should be continuous at the
cutoff point

o Under the alternative, the density would increase at the
kink point when T; is viewed as a good thing



Lets look at some examples



Randomized Experiments from Non-random Selection
in U.S. House Elections

Lee, Journal of Econometrics, 2008

One of the main points of this paper is that the running variable
can be endogenous as long as it can not be perfectly chosen.

In particular it could be that:
Xi= W +¢&

where W; is chosen by someone, but &; is random and
unknown when W; is chosen

Lee shows that regression discontinuity approaches still work in
this case



Incumbency

We can see that incumbents in congress are re-elected at very
high rates

Is this because there is an effect of incumbency or just because
of serial correlation in preferences?

Regression discontinuity helps solves this problem-look at
people who just barely won (or lost).
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Table 1

Electoral outcomes and pre-determined election characteristics: democratic candidates, winners vs. losers: 1948-1996

Variable All |Margin| <.5 |Margin| <.05 Parametric fit
Winner Loser Winner Loser Winner Loser Winner Loser

Democrat vote share election 7+ 1 0.698 0.347 0.629 0.372 0.542 0.446 0.531 0.454
(0.003) (0.003) (0.003) (0.003) (0.006) (0.006) (0.008) (0.008)
[0.179] [0.15] [0.145] [0.124] [0.116] [0.107]

Democrat win prob. election 7+ 1 0.909 0.094 0.878 0.100 0.681 0.202 0.611 0.253
(0.004) 0.005)  (0.006) 0.006)  (0.026) 0.023)  (0.039) (0.035)
[0.276] [0.285] [0.315] [0.294] [0.458] [0.396]

Democrat vote share election 7 — 1 0.681 0.368 0.607 0.391 0.501 0.474 0.477 0.481
(0.003) (0.003) (0.003) (0.003) (0.007) (0.008) (0.009) (0.01)
[0.189] [0.153] [0.152] [0.129] [0.129] [0.133]

Democrat win prob. election 7 — 1 0.889 0.109 0.842 0.118 0.501 0.365 0.419 0.416
(0.005) 0.006)  (0.007) 0.007)  (0.027) 0.028)  (0.038) (0.039)
[0.31] [0.306] [0.36] [0.317] [0.493] [0.475]

Democrat political experience 3.812 0.261 3.550 0.304 1.658 0.986 1.219 1.183
(0.061) (0.025) (0.074) (0.029) (0.165) (0.124) (0.229) (0.145)
[3.766] [1.293] [3.746] [1.39] [2.969] [2.111]

Opposition political experience 0.245 2.876 0.350 2.808 1.183 1.345 1.424 1.293
(0.018) 0.054)  (0.025) 0.057)  (0.118) 0.115  (0.131) (0.17)
[1.084] [2.802] [1.262] [2.775] [2.122] [1.949]

Democrat electoral experience 3.945 0.464 3.727 0.527 1.949 1.275 1.485 1.470
(0.061) (0.028) (0.075) (0.032) (0.166) (0.131) (0.23) (0.151)
[3.787] [1.457] [3.773] [1.55] [2.986] [2.224]

Opposition electoral experience 0.400 3.007 0.528 2.943 1.375 1.529 1.624 1.502
0.019) 0.054)  (0.027) 0.058)  (0.12) 0.119)  (0.132) (0.174)
[1.189] [2.838] [1.357] [2.805] [2.157] [2.022]

Observations 3818 2740 2546 2354 322 288 3818 2740




Table 2

Effect of winning an election on subsequent party electoral success: alternative specifications, and refutability test, regression discontinuity

estimates
Dependent variable (1) ?2) 3) “4) 5) (6) 7) 8)
Vote share Vote share Vote share Vote share Vote share Res. vote share Ist dif. vote share, Vote share
t+1 t+1 t+1 t+1 t+1 t+1 t+1 t—1
Victory, election ¢ 0.077 0.078 0.077 0.077 0.078 0.081 0.079 —0.002
0.011) (0.011) (0.011) (0.011) 0.011) (0.014) 0.013) 0.011)
Dem. vote share, 0.293 0.298
t—1
0.017) (0.017)
Dem. win, ¢ — 1 - —0.017 - - —0.006 - —0.175 0.240
(0.007) (0.007) (0.009) (0.009)
Dem. political - - —0.001 - 0.000 - —0.002 0.002
experience
(0.001) (0.003) (0.003) (0.002)
Opp. political - - 0.001 - 0.000 - —0.008 0.011
experience
(0.001) (0.004) (0.004) (0.003)
Dem. electoral - - - —0.001 —0.003 - —0.003 0.000
experience
(0.001) (0.003) (0.003) (0.002)
Opp. electoral - - - 0.001 0.003 - 0.011 —0.011
experience
(0.001) (0.004) (0.004) (0.003)




Maimonides’ Rule

Angrist and Lavy look at the effects of school class size on kid’s
outcomes

Maimonides was a twelfth century Rabbinic scholar

He interpreted the Talmud in the following way:

Twenty-five children may be put it charge of one
teacher. If the number in the class exceeds twenty-five
but is not more than forty, he should have an assistant
to help with the instruction. If there are more than
forty, two teachers must be appointed.

This rule has had a major impact on education in Israel

They try to follow this rule so that no class has more than 40
kids



But this means that

o If you have 80 kids in a grade, you have two classes with
40 each

o if you have 81 kids in a grade, you have three classes with
27 each



That sounds like a regression discontinuity

We can write the rule as
€s

e [int (551 ) + 1]

Ideally we could condition on grades with either 80 or 81 kids

More generally there are two ways to do this

o condition on people close to the cutoff and use fs; as an
instrument

o Control for class size in a “smooth” way and use fs; as an
instrument



Quantiles

Variable Mean SD. 010 025 050 0.75 0.90

A. Full sample
5th grade (2019 classes, 1002 schools, tested in 1991)

Class s:ze 29.9 65 21 26 31 35 38
Enrollme 7.7 388 31 50 72 100 128
Percent dlsadvantaged 14.1 135 2 4 10 20 35
Reading size 27.3 66 19 23 28 32 36
Math size 27.7 66 19 23 28 33 36
Average verbal 4.4 77 642 699 754 79.8 83.3
Average math 67.3 96 548 611 678 74.1 79.4
4th grade (2049 classes, 1013 schools, tested in 1991)

Class size 6.3 26 31 35 38
Enrollment 37.7 30 51 74 101 127
Percent disadvantaged 134 2 4 9 19 35
Reading size 65 19 24 28 32 36
Math size 65 19 24 29 33 36
Average verbal 80 621 67.7 733 78.2 82.0
Average math 88 575 636 693 75.0 794

3rd grade (2111 classes, 1011 schools, tested in 1992)

Class size 30.5 62 22 26 31 35 38
Enrollme 79.6 373 34 52 74 104 129
Percent dlsadvantaged 13.8 134 2 4 9 19 35
Reading size 24.5 54 17 21 25 29 31
Math size 24.7 54 18 21 25 29 31
Average verbal 86.3 6.1 784 830 872 90.7 93.1
Average math 84.1 68 750 802 847 89.0 91.9

B. +/- 5 Discontinuity sample (enrollment 36-45, 76-85, 116-124)

5th grade 4th grade 3rd grade
Mean SD. Mean SD. Mean SD.
(471 classes, (415 classes, (441 classes,
224 schools) 195 schools 206 schools)
Class size 30.8 7.4 31.1 7.2 30.6 7.4
Enrollment 76.4 29.5 785 30.0 75.7 28.2
Percent disadvantaged 13.6 132 12.9 123 14.5 14.6
Reading size 28.1 73 28.3 7.7 24.6 6.2
Math size 28.5 74 28.7 7.7 24.8 6.3
Average verbal 745 82 725 78 86.2 6.3
Average math 67.0 10.2 68.7 9.1 84.2 7.0

size = number of students in classin the spring, Enrollment =
from

backgrounds,”Reading sse ~ number of students wh took the reading test, Math size — number of students
who took the math test, Average verbal = average compasite reading score in the class, Average math =
average composite math score in the class.
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b. Fourth Grade

Maimonides Rule
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Average reading score

a. Fifth Grade
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Average reading score

b. Fourth Grade
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To estimate the model they use an econometric framework
Yies = Bo + B1Ces + B2 Xies + s + €jcs

Now we can’t just put in a school effect because we will loose
too much variation so think of as as part of the error term

Their data is a bit different because it is by class rather than by
individual-but for this that isn’t a big deal

Angrist and Lavy first estimate this model by OLS to show what
we would get



TABLE IT
OLS ESTIMATES FOR 1991

5th Grade 4th Grade
Reading comprehension Math Reading comprehension Math
@ @) @) @) ) ®) @ 8) () (10) 11 12)
Mean score 74.3 67.3 72.5 69.9
(s.d) (8.1) (9.9) (8.0) (8.8)
Regressors
Class size 221 —.031 -.025 322 076 019 0.141 —-.0563  -.040 221 055 .009
(.031) (.026)  (.031) (.039) (.036) (.044) (.033) (.028)  (.033) (.036) (.033) (.039)
Percent disadvantaged —-.350 -.351 —.340 -.332 —.339 -.341 —.289 -.281
(012)  (.013) (.018)  (.018) (.013)  (.014) (.016)  (.016)
Enrollment —.002 017 ~.004 014
(.006) (.009) (.007) (.008)
Root MSE 7.54 6.10 6.10 9.36 8.32 8.30 7.94 6.65 6.65 8.66 7.82 7.81
R? .036 .369 .369 048 249 252 013 .309 .309 025 204 207
N 2,019 2,018 2,049 2,049
‘The unit of observation is the average score in the class. Standard errors are reported in Standard errors d for within-school correlation b 1

H1NY SAAINOWIVIN DNIS1
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Next, they want to worry about the fact that Ccs is correlated
with ag + €jes

They run instrumental variables using fsc as an instrument.



TABLE IV
2SLS ESTIMATES FOR 1991 (FIFTH GRADERS)
Reading comprehension Math
+/-5 +/-5
Discontinuity Discontinuity
Full sample sample Full sample sample
@ 2) 3) @) (5) (6) (@] (8) (] 10) a1 (12)
Mean score 744 745 67.3 67.0
(s.d.) 1.7 (8.2) (9.6) (10.2)
Regressors
Class size —-.158 -.275 -.260 —.186 —.410 -.582 -.013 -.230 -.261 -—.202 -.185 —.443
(.040) (.066) (.081) (.104) (.113) (.181) (.056) (.092) (.113) (.131) (151) (.236)
Percent disadvantaged ~ —.372 —.369 —.369 —477 -461 -355 -.350 —.350 —.459 —.435
(.014) (014 (.013) (037)  (.037) (.019) (.019) (.019) (.049)  (.049)
Enrollment 022 012 053 041 .062 079
(.009)  (.026) (.028) (012)  (.037) (.036)
Enrollment squared/100 .005 —-.010
(.011) (.016)
Piecewise linear trend 136 193
(.032) (.040)
Root MSE 6.15 6.23 6.22 7.1 6.79 715 8.34 8.40 8.42 9.49 8.79 9.10
N 2019 1961 471 2018 1960 471
‘The unit of observation is the average score in the class. Standard errors are reported in Standard errors d for within-school correlation between classes.

All estimates use f,c as an instrument for class size.

1294
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Do Better Schools Matter? Parental Valuation of
Elementary Education

Sandra Black, QJE, 1999

In the Tiebout model parents can “buy” better schools for their
children by living in a neighborhood with better public schools

How do we measure the willingness to pay?

Just looking in a cross section is difficult: Richer parents
probably live in nicer areas that are better for many reasons



Black uses the school border as a regression discontinuity

We could take two families who live on opposite side of the
same street, but are zoned to go to different schools

The difference in their house price gives the willingness to pay
for school quality.
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FIGURE 1

Example of Data Collection for One City: Melrose
Streets, and Attendance District Boundaries



TABLE II
REGRESSION RESULTS?
(ADJUSTED STANDARD ERRORS ARE IN PARENTHESES®)
DEPENDENT VARIABLE = In (HOUSE PRICE)

Distance from (1 (2) 3) (4) (5)
boundary: 0.15 mile
0.35 mile from 0.20 mile from 0.15 mile from  from
All boundary boundary boundary  boundary
houses! (616 yards) (850 yards) (260 yards) (260 yards)
Elementary .035 .016 .013 015 .031
school test  (.004) (.007) (.0065) (.007) (.006)
score®
Bedrooms .033 .038 .037 .033 .035
(.004) (.005) (.006) (.007) (.007)
Bathrooms 147 143 135 167 193
(.014) (.018) (.024) (.027) (.028)
Bathrooms —.013 -.017 —.015 —.024 —.025
squared (.003) (.004) (.005) (.006) (.007)
Lot size (1000s) .003 .005 -.005 .005 .004
(.0003) (.0005) (.0005) (.0007) (.0006)
Internal 207 .193 191 195 191
square
footage (.007) (.01) (.01) (.02) (.012)
(1000s)
Age of
building —.002 —.002 -.003 -.003 -.002
(.0003) (.0002) (.0005) (.0006) (.0004)
Age squared .000003  .000003 .00001 000009 .000005
(.000001) (.0000006) (.000002) (.000003)  (.000002)
Boundary
fixed effects NO YES YES YES NO
Census vari-
ables Yes No No No Yes
N 22,679 10,657 6,824 4,594 4,589
Number of
boundaries N/A 175 174 172 N/A
Adjusted R?  0.6417 0.6745 0.6719 0.6784 .6564




DIFFERENCES IN MEANS?

Distance from boundary: Full sample 0.35 mile 0.20 mile 0.15 mile
Difference Ratio of 0.35 Ratio of 0.20 Ratio of 0.15
inmeans  T-statistic to full sampled 7T-statistic to full sampled T-statistic to full sampled T-statistic

In (house price) .045 3.82 0.85 3.32 0.85 3.17 0.93 3.17
Test score (sum of reading and math) 1.0 32.90 1.03 27.28 1.06 24.44 1.06 22.57
House characteristics

Bedrooms 0.02 1.68 0.90 0.91 —0.35 -0.30 0.25 0.18

Bathrooms 0.03 2.98 0.23 0.52 —0.02 —0.05 —-0.07 =0.12

Lot size 2011 11.39 0.22 2.14 0.24 1.95 0.12 0.83

Internal square footage 31 2.93 0.61 1.32 0.61 1.07 0.84 1.17

Age of building -3.13 —-6.92 0.75 -3.71 0.94 —3.76 1.09 —3.52
Neighborhood characteristics®

Percent Hispanic —.0008 -0.79 2.50 -1.35 2.50 -1.21 2.50 -1.26

Percent non-Hispanic black —.0007 -1.50 0.43 —0.54 0.00 =0.07 —-0.14 0.16

Percent 0-9 years old .005 3.30 0.16 0.63 —0.08 —0.31 —-0.30 -1.21

Percent 65+ years old —.01 —2.04 0.40 -0.72 0.67 —1.28 0.60 ;. —0.95

Percent female-headed households

with children —.001 —3.67 1.00 -3.17 1.20 —2.53 1.00 —2.38

Percent with bachelor’s degree .002 1.06 0.75 0.64 1.00 0.74 0.75 0.67

Percent with graduate degree .008 3.32 0.88 2.77 0.88 3.02 0.88 3.31

Percent with less than high school

diploma —.005 -2.19 1.20 -2.02 0.80 -1.57 0.34 —0.64

Median household income 2,135 2.87 0.60 1.90 0.65 211 0.52 1.61




TABLE IV
MAGNITUDE OF RESULTS?

(68) @ . 3) 4)
Basic 0.35sample  0.20 sample  0.15 sample
hedonic boundary boundary boundary

regressiond  fixed effects  fixed effects  fixed effects
Coefficient on .035 .016 .013 .015
elementary (.004) (.007) (.0065) (.007)

school test score®

Magnitude of effect 4.9% 2.3% 1.8% 2.1%

(percent change
in house price as
aresult of a 5%
change in test
scores)©
$ Value (at mean $9212 $4324 $3384 $3948
tax-adjusted
house price of
$188,000 in
$1993)
$ Value (at median $7742 $3634 $2844 $3318
tax-adjusted
house price of
$158,000 in
$1993)

a. The results presented here are based on estimates from Table II, columns (1)~(4).

b. Test scores are measured at the elementary school level and represent the sum of the reading and math
scores from the fourth grade MEAP test averaged over three years (1988, 1990, and 1992). Source:

h ts Department of Ed i

c. Approximately a one-standard- dewatmn change in the average test scores at the mean.

d. Regression includes house ct ics, school char: istics measured at the school district level,
and neighborhood characteristics measured at the census block group level. See Table II, column (1), and
Appendix 1 for more complete results.




Does Air Quality Matter? Evidence from the Housing
Market

Chay and Greenstone, JPE, 2005.

The goal of this paper is to look at the willingness to pay for
clean air



Using their notation

Yeso = Xggols + 0 Tego + €cgo

where

9 ycgo is log of median property value in county ¢ in 1980

o T.gg is the geometric mean of total suspended particulates
(TSP)

They focus on the first differenced version of the model

Yeso — Yero = (Xego — X70)' 8+ 0(Tego — Tero) + €cso — €c70



They solve the identification problem by making use of the
Clean Air Act Amendments of 1970

A county violates federal standards if:

@ Annual geometric mean of TSP exceeds 75 ug/m
o Second highest daily measure exceeds 260 ug/m

If you fail the test (non-attainment) the county needs to derive a
plan to clean something else

They use failing the test as an instrument for (Tzg0 — T¢70)-



You can see that those that failed had much larger declines
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You can also see the discontinuity in pollution and housing
prices

(note that there are nonattainers to the left of the line because
of the second rule)
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F1c. 4—1970-80 change in mean TSPs by 1975 nonattainment status and the geometric
mean of TSPs in 1974.
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TABLE 2

DIFFERENCES IN SAMPLE MEANS BETWEEN GROUPS OF COUNTIES, DEFINED BY TSPs LEVELS, CHANGES, OR NONATTAINMENT STATUS

TSPs NONATTAINMENT

In 1975
CROSS FIRsT In 1970, Regression In 1975
SECTION DIFFERENCE 1971, or In 1975 Discontinuity Bad Day
1970 1980—1970 1972 or 1976 Sample Sample
M ) ®) @) ®) ®)
Total counties (nonattainment) 988 988 988 988 475 419
(380) (280) (123) (67)
Housing value 1,092 —3,237%% —517 2,609%* 2,007 2,503
(918) (713) (726) (806) (1,193) (1,585)
Mean TSPs 39.2%% —30.9%* —19.6%* —10.0%* —12.3%* —4.8
(1.2) (1.0) (1.4) (1.8) (2.4) (2.9)
Economic condition variables:
Income per capita (1982-84 377.7%% —159.9%* —81.6% 48.6 47.2 —37.2
dollars) (94.7) (40.7) (41.2) (46.4) (65.1) (94.1)
Total population (% change) 142,016%* —.058%* —.046%* —.001 005 015
(24,279) (.013) (.013) (.017) (.028) (.030)
Unemployment rate (x 100) —.144 519 .200 .043 .305 —.082
(.120) (.129) (.182) (.152) (.215) (.274)
% employment in manufacturing 098 —.119%* —.081%* —.005 —.057 —.066
(x10) (.083) (.026) (.026) (.028) (.042) (.051)

Demographic and socioeconomic
variables:



TABLE 3
CROSS-SECTIONAL AND FIRST-DIFFERENCE ESTIMATES OF THE E¥reEcT OF TSPs
PorLruTiON ON LoG HOUSING VALUES

1)

(2) (3)

(4)

Mean TSPs (1/100)

R2
Sample size

Mean TSPs (1/100)

R2
Sample size

Mean TSPs (1/100)

R2

Sample size

County Data Book covariates

Flexible form of county
covariates

Region fixed effects

A. 1970 Cross Section

.032 —.062 —.040 —.024
(.038) (.018) (.017) (.017)
.00 .79 .84 .85
988 987 987 987
B. 1980 Cross Section
.093 .096 .076 .027
(.066) (.031) (.030) (.028)
.00 .82 .89 .89
988 984 984 984
C. 1970-80 (First Differences)

.102 .024 .004 —.006
(.032) (.020) (.016) (.014)
.02 .bb .65 73
988 983 983 983
no yes yes yes
no no yes yes
no no no yes



TABLE 4
ESTIMATES OF THE IMPACT OF MID-DECADE TSPS NONATTAINMENT ON 197080
CHANGES IN TSPs PoLLuTION AND LOoG HOUSING VALUES

(1) (2) (3) 4)
A. Mean TSPs Changes

TSPs nonattainment in 1975 -9.96 —10.41 —9.57 -9.40
or 1976 (1.78) (1.90) (1.94) (2.02)
Fstatistic TSPs 31.3 29.9 24.4 21.5
nonattainment* (1) (1) (1) (1)
Jia .04 .10 .19 .20
B. Log Housing Changes
TSPs nonattainment in 1975 .036 .022 .026 .019
or 1976 (.012) (.009) (.008) (.008
Fstatistic TSPs 8.5 6.2 9.3 6.4
nonattainment* (1) () @Y (1)
R .01 .56 .66 73
County Data Book covariates no yes yes yes
Flexible form of county
covariates no no yes yes
Region fixed effects no no no yes

Sample size 988 983 983 983



TABLE 5
INSTRUMENTAL VARIABLES ESTIMATES OF THE EFFECT OF 1970—80 CHANGES IN TSPs
PorruTioN oN CHANGES IN Lo HOUSING VALUES

(1) (2) (3) (4)
A. TSPs Nonattainment in 1975 or 1976

Mean TSPs (1/100) —.362 —.213 —.266 —.202
(.152) (.096) (.104) (.090)

Sample size 988 983 983 983

B. TSPs Nonattainment in 1975

Mean TSPs (1,/100) —.350 —.204 —.228 —.129
(.150) (.099) (.102) (.084)

Sample size 975 968 968 968
C. TSPs Nonattainment in 1970, 1971, or 1972

Mean TSPs (1,/100) 072 —.032 —.050 -.073
(.058) (.042) (.041) (.035)

Sample size 988 983 983 983

County Data Book covariates no yes yes yes

Flexible form of county

covariates no no yes yes
Region fixed effects no

no no yes




1.0

0.8

0.6

0.4

0.2

0.0




1.0

0.8

0.6

0.4+

0.2

0.0

=15

-1.0

-0.5

0.0

0.5

1.0

15



0.2+

0.0

=15

-1.0

-0.5

0.0

0.5

1.0

15



0.8

0.7

0.5+

0.4+

0.3F

0.2+

0.0

=15

-1.0

-0.5

0.0

0.5

1.0

15



