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Papers

I am basically going to talk about three different papers here:

“Selection on Observed and Unobserved Variables:
Assessing the Effectiveness of Catholic Schools, with J.
Altonji and T. Elder,Journal of Political Economy, Vol. 113,
February 2005.
“An Evaluation of Instrumental Variable Strategies for
Estimating the Effects of Catholic Schooling," with J. Altonji
and T. Elder, Journal of Human Resources, Fall 2005.
“Methods for Using Selection on Observed Variables to
Address Selection on Unobserved Variables,” with J.
Altonji, T. Conley, and T. Elder, 2012.



In giving these lectures I will start from the beginning and talk
about the basic framework, (which was done early), but I will
use our current notation (which was done later)

I will discuss the Catholic school work and describe where it fits
in and then discuss what is new.



The IV Model

To start lets think about a standard instrumental variables
model.

Yi = αTi + W ′
i Γ + ui .

The key assumption is that we have some instrument Zi which
is correlated with Ti , but

cov(Zi ,ui) = 0.

One can never verify this assumption but must take it on face
value

Of course a special case of this model is OLS in which Zi = Ti .

Virtually all causal empirical work in economics makes some
assumption analogous to this in some place.



The best justification for the instrument is random assignment

However, if Zi were truly randomly assigned, it should not be
correlated with the observable covariates either

Researchers have recognized this for a long time

Balancing tests are standard in randomized control trials
It is common to run a regression of Zi on Wi and test
whether these are related



For the standard reasons, testing is not the right way to guide
empirical researchers. The problem manifests itself in two
ways:

Just because we don’t reject the null does not mean that
the assumption is right (perhaps just low power)
If we do reject the null that doesn’t mean the assumption is
not approximately true

In other words what we really care about is the magnitude of
the relationship not just the F-statistic

In order to judge the magnitude one needs a framework for
thinking about it



Basic Model

Yi = αTi + X ′i ΓX + W ∗′
i Γ∗

where W ∗
i contains all possible covariates-those we get to see

and those we might not get to see

We can write this as

W ∗′
i Γ∗ =

K∗∑
j=1

WijΓj

=
K∗∑
j=1

SjWijΓj +
K∗∑
j=1

(
1− Sj

)
WijΓj

= W ′
i Γ + ui

where Sj is an indicator for whether Wij is contained in the data
set.



We need some way to characterize what it means for “The
Observables to be like the Unobservables”

The most natural is to think of Sj as i.i.d so that the observables
are just a random set of stuff that I could have observed.

This motivates the main idea: If Selection on the
unobservables is the same as selection on the observables
how large would the bias be?

Think about running a regression of Zi on the observable index
and unobservable:

Proj
(
Zi | Xi ,W ′

i Γ,ui
)

= φ0 + φ′xXi + φ
(
W ′

i Γ
)

+ φuui .

It turns out that when Sj is i.i.d.,

φu ≈ φ



We actually want to think about this as an extreme case.
Imagine two types of data collectors:

An incompetent data collector would have no idea what he
was doing and choose Sj at random. We show that yields
the condition that (asymptotically)

φu = φ

By contrast suppose we had a perfect data collector. That
person would collect all of the variables that were
correlated with Zi so that the only unobservables left would
be uncorrelated with Zi . In that case

φu = 0

The truth is probably somewhere in between.



We formalize this idea in two different ways.

The first is by adding the possibility of another unobservable ξi
so that

Yi = αTi +
K∗∑
j=1

SjWijΓj +
K∗∑
j=1

(
1− Sj

)
WijΓj + ξi

Without this variable we will get "observables like
unobservables"

It is there to pick up the fact that we think this is an extreme
assumption and that selection on observables is likely greater
than selection on unobservables.

Structurally it can represent measurement error or
unanticipated events that occur between the data collection on
Wij and when the outcome Yi is realized. That is if Xi ,Wi ,Zi are
all determined at time 0,

E(Yi − αTi | I0) = X ′i β + W ′
i Γ

Then
ξi = Yi − E(Yi − αTi | I0)



The second way we will formalize it is to allow the distribution of
(Wij ,Zi , Γj) conditional on Sj = 1 to differ from the distribution of
(Wij ,Zi , Γj) conditional on Sj = 0

This is the part of the approach l in progress and I won’t focus
on it

I will come back to that later, but forget about it for a little while



The Econometric Model

Lets formalize the model:

Since Sj does not vary across people, to get bight from its
iidness we need our set of potential covariates to be growing
large, so this will be thought of as a sequence of models

Yi = αTi + X ′i Γx +
1√
K ∗

K∗∑
j=1

WijΓj + ξi

It embodies the idea that a large number of factors are
important in determining outcomes in social science data and
that none dominate.



It will turn out that Xi plays no important role in this going
forward, so we can use the same trick we used in the IV lecture
notes and regress everything else in the model on Xi and
taking residuals and then just working with that.

Thus for generic variable Mij define

M̃ij ≡ Mij − Proj(Mij | Xi ;GK )

The GK represents a two stage process:

1 First the micro data generation process is determined
2 Given the Data generation process GK , the data is

generated

Conditional on GK∗
(which is what we would observe in a

particular data set) the variance of elements of Wij will differ.



Assumptions

Ỹi = αT̃i +
1√
K ∗

K∗∑
j=1

W̃ijΓj + ξi

We need 4 basic assumptions which are essentially

1 variance of 1√
K∗

∑K∗

j=1 W̃ijΓj doesn’t blow up as K ∗ gets
large

2 cov(Z̃i , Ỹi) is well behaved as K ∗ gets large
3 Sj is i.i.d.
4 ξi is independent of everything else



Theorem

Define φ and φu such that

Proj

Z̃i |
1√
K ∗

K∗∑
j=1

SjW̃ijΓj ,
1√
K ∗

K∗∑
j=1

(
1− Sj

)
W̃ijΓj + ξi ;GK∗


= φ

 1√
K ∗

K∗∑
j=1

SjW̃ijΓj

+ φu

 1√
K ∗

K∗∑
j=1

(
1− Sj

)
W̃ijΓj + ξi

 .

Then under our assumptions , if the probability limit of φ is
nonzero, then

φu

φ

p−→
K∗→∞

(1− Ps) A
(1− Ps) A + σ2

ξ

where

A ≡ lim
K∗ →∞

E

 1
K ∗

K∗∑
j=1

σK∗

j,j
(
Γj
)2

 .



We can write this as:

Corollary

When 0 < Ps < 1 and σ2
ξ > 0,

either
0 < plim(φu) < plim(φ),

plim(φ) < plim(φu) < 0,

or
0 = plim(φu) = plim(φ).

Lets not lose the forest for the trees-φ tells us the
relationship between the instrument and the observables
so the closer is φ to zero the smaller is the possible range
of φu (with φu = 0 when φ = 0 which corresponds to
random assignment of Zi )

This means that when φ is small the bounds will be tight



Intuition:

Think about the linear projection:

Z̃i = φ0 + φ∗
K∗∑
j=1

W̃ijΓj + εi

Then

Z̃i = φ0 + φ∗
K∗∑
j=1

SjW̃ijΓj + φ∗
K∗∑
j=1

(1− Sj)W̃ijΓj + εi

Since
∑K∗

j=1 W̃ijΓj is orthogonal to εi ,
∑K∗

j=1 SjW̃ijΓj and∑K∗

j=1(1− Sj)W̃ijΓj will be as well.



Estimation of the Effects of Catholic Schools

Goal: Measure Average Effect of Catholic High Schools on
Test Scores, HS Graduation, College Attendance
Why?

Assess merits of private schooling
Lessons for public schools?
Consequences of expansion of school choice, vouchers



Previous Literature:Very large.

Coleman, Hoffer and Kilgore (1982) and Coleman and Hoffer
(1987) find positive effects on HS GRAD, College, test scores

They essentially just regress these variables on a dummy
variable for attendance of a Catholic school

Result is highly controversial. Selection problem

Cain and Goldberger point out that Catholic school is not
randomly assigned.

In particular, parents who send their children to Catholic school
have shown an interest in their children by not picking standard
option

They may be different in a lot of other important ways.

Is positive relationship causal? A couple papers have tried IV
approaches.



Evans and Scwab and Neal

These guys want to estimate the effect of Catholic school on
outcomes

Ideally one would like to have instrumental variables

They use two:

Catholic religion
Proximity of a Catholic school

Both are presumably closely related to whether a students
attends a Catholic school or not

Neither should obviously be correlated with outcomes otherwise

(probably hard to believe that either are randomly assigned)



Both Evans and Schwab and Neal focus on high school
graduation and college attendance because that is where
effects seem strongest (not much with test scores)

Since dependent variable is binary they don’t want to use 2SLS

Problem with linear probability model is that

E(Yi | Xi) = X ′i β

but if Yi is binary

E(Yi | Xi) = 1 Pr(Yi = 1 | Xi) + 0 Pr(Yi = 0 | Xi)

= Pr(Yi = 1 | Xi)

so
Pr(Yi = 1 | Xi) = X ′i β

But this is kind of weird



The probability has to be between 0 and 1, but this isn’t
guaranteed for a linear model

Instead use bivariate model

CHi = 1(g(Xi) + ui > 0)

Yi = 1(αCHi + f (Zi) + ei > 0)

This nonlinear/nonparametric model is identified if there is an
exclusion restriction: i.e. something in Xi that isn’t in Zi

This is analogous to instrumental variables/selection



Evans and Schwab

Evans and Schwab focus on “Catholic” as an instrument

It is certainly correlated with whether one goes to Catholic
school

No obvious reason for it to be correlated with outcomes

They play around with some other instruments as well.









Neal

Neal noticed that effects on high school graduation are larger
for urban students

He focuses on number of Catholics or density of Catholic
schools in county

Should be closely related to Catholic school attendance

No reason to expect it to be related to outcome







Evaluation of Instrumental Variable Strategies

by Altonji, Elder, and Taber

Explore the validity of Catholic, Proximity, and the
interaction in three ways

Face plausibility of validity of exclusion restrictions based
on observable factors
Reduced-form estimates in the sample of those who attend
public grammar schools (8th graders)
Altonji, Elder, and Taber methodology applied to
instrumental variables



Outline

Data and differences in means of outcomes and
observables by Catholic religion.
Single-equation and IV estimates of Catholic schooling
effects
The effect of Catholic religion for students from public
eighth grades
Using the observables to assess the bias from
unobservables
Repeat for distance and the interaction Ci × Di .



Data
NELS:88, restricted use file (eighth graders in 1988)
NLS-72 public use file (seniors in HS in 1972)
Dependent Variables:

High School graduation by 1994 (GED’s considered
dropouts)
College Attendance: Enrolled in 4-year college at 1994
survey
College Attendance: Enrolled in 4-year college by 1976
survey (NLS-72)
12th grade math and reading test scores in both datasets

Catholic high school (CHi ): 1 if current or last high school
attended was Catholic, 0 otherwise
Instruments:

Catholic religion (Ci ): 1 if parents report being Catholic
church members, 0 otherwise
Distance (Di ): Set of indicators for distance to closest
Catholic high school
Ci × Di [Can put in main effects and use interactions as
instrument]



Using Religion

Model:
Yi = αCHi + X ′i γ + εi ,

where Xi is uncorrelated with εi .

The problem is that CHi and potentially Ci may be correlated
with the error term.



Table 1

Probit, Bivariate Probit, OLS, and 2SLS Estimates of Catholic Schooling Effects
NELS:88 and NLS-72

Weighted, Marginal Effects of Nonlinear Models Reported, (Huber-White Standard Errors in Parentheses)
Excluded Instruments

(1) (2) (3)
Catholic ( ) Distance ( ) Catholic×Distance ( × )

HS Graduation (NELS:88)
Probit (controls 0.065 0.047 0.052
exclude “instrument”) (0.025) (0.025) (0.026)

Bivariate Probit 0.128 -0.007 -0.022
(0.032) (0.085) (0.119)

OLS 0.041 0.021 0.023
(0.014) (0.014) (0.015)

2SLS 0.34 -0.04 0.09
(0.08) (0.10) (0.11)

College in 1994 (NELS:88)
Probit (controls 0.094 0.085 0.077
exclude “instrument”) (0.022) (0.022) (0.022)

Bivariate Probit 0.170 0.103 -0.043
(0.055) (0.062) (0.070)

OLS 0.128 0.119 0.111
(0.026) (0.026) (0.026)

2SLS 0.40 0.31 -0.11
(0.10) (0.11) (0.12)

College in 1976 (NLS-72)
Probit (controls 0.068 0.070 0.067
exclude “instrument”) (0.016) (0.016) (0.016)

Bivariate Probit -0.002 -0.052 -0.080
(0.028) (0.035) (0.035)

OLS 0.071 0.075 0.072
(0.015) (0.016) (0.016)

2SLS 0.06 0.44 -0.25
(0.04) (0.20) (0.11)

Notes:
(1) All d l h h i i bi i f C h li i h S h l d ( )



Table 2

OLS and 2SLS estimates of Catholic Schooling Effects
NELS:88 and NLS-72

Weighted, (Huber-White Standard Errors in Parentheses)
Excluded Instruments

(1) (2) (3)
Catholic ( ) Distance ( ) Catholic×Distance ( × )

12th Grade Reading Score (NELS:88)
OLS 1.16 (0.37) 1.03 (0.37) 1.14 (0.38)
2SLS 1.40 (1.54) -1.09 (1.84) 1.24 (1.82)

12th Grade Math Score (NELS:88)
OLS 1.03 (0.31) 1.00 (0.31) 0.92 (0.32)
2SLS 2.64 (1.21) 2.43 (1.45) -2.63 (1.57)

12th Grade Reading Score (NLS-72)
OLS 2.06 (0.34) 2.54 (0.37) 2.50 (0.36)
2SLS -1.34 (0.99) 8.69 (4.53) 0.50 (2.32)

12th Grade Math Score (NLS-72)
OLS 1.52 (0.33) 1.77 (0.35) 1.71 (0.36)
2SLS -0.07 (0.96) 11.05 (4.47) -3.94 (2.27)

Notes:
( ) ll d l i f h li i h h l d ( )



OLS: Find positive effect of CHi on HS graduation (0.04),
college attendance (0.13 and 0.07) and test scores
In NELS:88, IV estimates for HS grad and college are
implausibly large. Test scores also show “negative
selection”
In NLS-72, IV estimates for college are roughly the same
as OLS, and test scores are negative
Key question: Do IV estimates bolster probit and OLS
evidence? Is the true effect substantial?



Table 3a

Comparison of Means of Key Variables
by Value of Distance, Catholic, and their Interaction

NELS:88
(1) (2) (3) (4)

Overall Mean Difference by Difference by Difference by ×
Demographics
Female 0.50 0.01 0.00 0.00
Asian 0.04 0.01 0.04 -0.02
Hispanic 0.10 0.19 0.08 0.03
Black 0.13 -0.15 0.08 -0.13
White 0.73 -0.05 -0.20 0.12

Family Background
Mother’s education 13.14 -0.26 0.17 -0.36
Father’s education 13.42 -0.07 0.17 -0.31
Log of family income 10.20 0.11 0.12 -0.02
Mother only in house 0.15 -0.04 0.02 -0.03
Parent married 0.78 0.06 -0.02 0.03

Geography
Rural 0.32 -0.15 -0.44 0.05
Suburban 0.44 0.06 0.08 0.00
Urban 0.24 0.09 0.36 -0.05

Expectations
Schooling expectation 15.17 0.15 0.31 -0.06
Very sure to graduate high school 0.83 -0.01 0.00 -0.01
Parents expect some college 0.88 0.04 0.05 -0.02
Parents expect college grad 0.78 0.03 0.06 -0.04
Expect white collar job 0.46 0.03 0.06 -0.01

8th Grade Variables
Delinquency Index 0.69 -0.05 0.03 -0.04
Got into fight 0.27 -0.01 0.01 0.05
Rarely completes homework 0.21 -0.05 0.00 0.00
Frequently disruptive 0.13 -0.02 -0.01 0.00
Repeated grade 4-8 0.08 -0.03 0.01 -0.03
Risk Index 0.72 -0.07 -0.01 0.01
Grades Composite 2.89 0.04 0.00 0.07
Unpreparedness Index 10.82 0.00 0.08 -0.09
8th Grade reading score 50.32 0.40 0.03 1.15
8th Grade math score 50.33 0.55 0.45 0.06

Outcomes



Table 3b

Comparison of Means of Key Variables
by Value of Distance, Catholic, and their Interaction

NLS-72
(1) (2) (3) (4)

Overall Mean Difference by Difference by Difference by ×
Demographics
Female 0.50 -0.01 0.03 0.03
Hispanic 0.04 0.11 0.01 -0.07
Black 0.15 -0.15 0.04 -0.08

Family Background
Mother’s education 12.19 -0.13 0.16 -0.33
Father’s education 12.43 0.06 0.40 -0.32
Log of family income 8.93 0.07 0.11 -0.03
Father Blue Collar 0.24 0.01 -0.03 -0.01
Low SES Indicator 0.29 -0.05 -0.06 0.00
English Primary Language 0.92 -0.06 -0.02 0.03
Family Receives Daily Newspaper 0.88 0.04 0.06 0.01
Mother Works 0.50 -0.06 0.03 0.01

Geography
Rural 0.23 -0.14 -0.30 0.05
Suburban 0.48 0.06 0.02 -0.04
Urban 0.29 0.08 0.28 -0.01

Expectations
Decided to go to college pre-HS 0.41 -0.01 0.04 -0.06

Outcomes
Enrolled in college by 1976 0.38 0.01 0.05 -0.06
Reading Score 50.01 0.30 0.46 0.55
Math Score 49.98 0.58 0.40 -0.10
Years of Academic PSE, 1979 1.61 0.03 0.22 -0.23

Attended Catholic HS 0.06 0.19 0.07 0.15



Means by Catholic religious affiliation

Differences by Ci appear in variables measured prior to 8th
grade enrollment

Overall picture: use of Ci as an IV will likely positively bias
estimates in NELS:88, and perhaps in NLS-72



Effect of Catholic Religion for Public Eighth Graders

Starting point: identify a sample of persons for whom
Catholic high school is not a serious option.

Only 0.3% of public school 8th graders attend Catholic
high school

Interpret the coefficient on Ci in a single equation model as
an estimate of the direct effect of Catholic religion on the
outcome



Bias Formula

To figure out bias you can use partitioned regression.

That is if
Y = X ′1β1 + X ′2β2 + v

then running Y on X is equivalent to running X1 on X2 taking
residuals and then running Y on those residuals (that is β̂1 is
identical)

Suppose

Proj (CHi | Xi ,Ci) = X ′i β + λCi

C̃H i = Proj (CHi | Xi ,Ci)− X ′i β − λCi

Proj (Ci | Xi) = X ′i π

C̃i = Ci − X ′i π

Then think about regression Yi on X ′i β + λCi and Xi .



First think of regressing X ′i β + λCi on Xi and taking residual

X ′i β + λCi − Proj
(
X ′i β + λCi | Xi

)
= X ′i β + λCi − X ′i β − λX ′i π

= λC̃i

Now use the fact that for a simple regression model, the
coefficient on the slope coefficient is Cov(Y ,X )/Var(X ).

So regression of Yi on λC̃i can be written as

α̂ → Cov(λC̃i ,Yi)

Var(λC̃i)

=
Cov(C̃i , α

[
X ′i β + λX ′i π + λC̃i + C̃H i

]
+ X ′i γ + εi)

λVar(C̃i)

= α +
Cov(C̃i , εi)

λVar(C̃i)



How do we estimate the bias?

Suppose there is an event pi for which
Pr(CHi = 1 | pi) = 0.

In our application this event is attendance of a public eighth
grade by individual i .

Consider a regression of Yi on Xi and Ci conditional on pi .
Coefficient on Ci in this regression will converge to
Cov(C̃i ,εi )

Var(C̃i )
.

Obtain a consistent estimate of the bias ψ by taking the

ratio Cov(C̃i ,εi )

Var(C̃i )
/λ or by estimating the parameter ψ in the

regression model

Yi = X ′i γ + [Ci λ̂]ψ + ωi

on the public eighth grade sample.
This isn’t perfect. There is still a problem of Selection bias,
public school eigth graders are a selected sample–
however, positive selection into Catholic 8th grades among
Catholic students Will bias ψ downward



Table 4

Comparison of 2SLS Estimates1 and Bias Implied by OLS Estimation of = 0 + [ 0
b] +

on the Public Eighth Grade Subsample2; Various Outcomes and instruments; NELS:88 Sample
Weighted, (Huber-White Standard Errors in Parentheses)

OUTCOME ( ) INSTRUMENTS ( )

(1) (2) (3)
Catholic Distance Catholic×Distance

High School Graduation
Implied Bias in 2SLS ( ) 0.34 (0.08) -0.05 (0.12) 0.15 (0.12)
2SLS Coefficient 0.34 (0.08) -0.04 (0.10) 0.09 (0.11)

College Attendance
Implied Bias in 2SLS ( ) 0.29 (0.11) 0.37 (0.12) -0.23 (0.13)
2SLS Coefficient 0.40 (0.10) 0.31 (0.11) -0.11 (0.12)

12th Grade Reading Score
Implied Bias in 2SLS ( ) 0.54 (1.68) -0.51 (2.08) -0.50 (1.99)
2SLS Coefficient 1.40 (1.54) -1.09 (1.84) 1.24 (1.82)

12th Grade Math Score
Implied Bias in 2SLS ( ) 1.85 (1.41) 1.83 (1.69) -4.37 (2.06)
2SLS Coefficient 2.64 (1.21) 2.43 (1.45) -2.63 (1.57)



Using observables to assess bias due to
unobservables:

As I talked about before we derived an alternative to the
assumption that

cov(C̃i , εi) = 0.

In this case we can write it as

cov(C̃i , εi)

var(εi)
=

cov(X ′i π,X
′
i γ)

var(X ′i γ)



For an indicator variable such as Ci , This condition can be
rewritten as

E(εi | Ci = 1)− E(εi | Ci = 0)

Var(εi)

=
E(X ′i γ | Ci = 1)− E(X ′i γ | Ci = 0)

Var(X ′i γ)
.



Use this assumption to approximate bias in 2SLS estimates:

plim(α̂− α)

=
cov(C̃i , εi)

λvar
(

C̃i

)
=

var (Ci)

λvar
(

C̃i

) [E(εi | Ci = 1)− E(εi | Ci = 0)]

=
var (Ci)

λvar
(

C̃i

) Var(εi)

Var(X ′i γ)

[
E(X ′i γ | Ci = 1)− E(X ′i γ | Ci = 0)

]
.



g
Using AETMethodology, NELS:88

Weighted, (Huber-White Standard Errors in Parentheses)
Excluded Instruments

(1) (2) (3)
Catholic Distance Catholic×Distance

HS Graduation
2SLS Coefficient 0.34 (0.08) -0.04 (0.10) 0.09 (0.11)
Bias 1 0.52 (0.23) 0.15 (0.16) 0.14 (0.24)
Bias 2 0.84 (0.26) 0.06 (0.14) ...

College in 1994
2SLS Coefficient 0.40 (0.10) 0.31 (0.11) -0.11 (0.12)
Bias 1 0.45 (0.21) 0.46 (0.22) 0.15 (0.26)
Bias 2 0.45 (0.21) 0.40 (0.20) ...

12th Reading Score
2SLS Coefficient 1.40 (1.54) -1.09 (1.84) 1.24 (1.82)
Bias 1 1.18 (1.06) 2.49 (1.59) 2.59 (1.14)
Bias 2 1.42 (1.07) 2.11 (1.40) ...

12th Math Score
2SLS Coefficient 2.64 (1.21) 2.43 (1.45) -2.63 (1.57)
Bias 1 2.02 (0.75) 1.76 (1.03) 1.42 (0.88)
Bias 2 1.87 (0.74) 1.72 (0.98) ...



Comparison between Bivariate Probits and 2SLS

Evans and Schwab (1995) and Neal (1997) use bivariate
probits with exclusion restrictions, with sensible results.

Identification in BP model:

CHi = 1(g(Xi) + ui > 0)

Yi = 1(αCHi + f (Zi) + ei > 0)



Identification of α requires two assumptions:

1 Either parametric assumptions on the distribution of ui and
ei , or support conditions on g(·)

2 Either an exclusion restriction or parametric restrictions on
f (·) and g(·)

So, an exclusion restriction is not necessary to identify BP
models in practice.

Procedure: loose replication on urban minority subsamples

Coefficients are not very sensitive to exclusion restrictions
in BP models
More importantly, standard errors also insensitive



Comparison of Linear and Non-Linear Models of College Attendance in NLS-72
(Standard Errors in Parentheses)

[Marginal Effects of Non-Linear Models in Brackets]

Sample
Non-whites in cities (N=1532) Whites in cities (N=5326)

Nonlinear Nonlinear
Nonlinear Linear Models Nonlinear Linear Models
Models Models Holding Models Models Holding
(Probits) (OLS/2SLS) Constant4 (Probits) (OLS/2SLS) Constant4
(1) (2) (3) (4) (5) (6)

Single Equation Model 0.640 0.239 0.253 0.093
(OLS/Probit) (0.198) (0.070) (0.062) (0.022)

[0.239] [0.093]
Two Equation Models:
Excluded Instruments:
% and 1.471 1.375 5.541 0.048 0.115 0.084

(0.442) (0.583) (2.082) (0.250) (0.158) (0.783)
[0.517] [0.706] [0.018] [0.031]

and% 0.879 0.054 0.012 -0.090 -0.036 -0.084
(0.523) (0.309) (1.443) (0.121) (0.050) (0.148)
[0.329] [0.004] [-0.033] [-0.031]

% and 1.106 0.331 1.302 -0.085 -0.034 -0.069
(0.460) (0.254) (0.706) (0.118) (0.048) (0.125)
[0.409] [0.471] [-0.031] [-0.025]

only 0.761 -0.093 -0.505 -0.133 -0.056 -0.149
(0.543) (0.324) (1.638) (0.130) (0.054) (0.151)
[0.285] [-0.148] [-0.049] [-0.054]

× 1.333 2.572 1.409 -0.121 -0.395 2.624
(0.516) (2.442) (1.276) (0.262) (0.169) (5.173)
[0.478] [0.497] [-0.044] [0.559]

None 1.224 ... -0.094 ...
(0.542) ... (0.301) ...



Conclusions

Unfortunately, none of the candidate instruments appears
to be valid in this situation

It appears important to isolate effects of exclusion
restrictions from effects of functional form in identification

We are forced to try to use some other approach



Altonji, Elder, Taber Approach

Few students from Public 8th grade attend Catholic high
schools
Many students from Catholic 8th grade go on to Public
High School
Among Catholic 8th Grade students:

On the basis of observables doesn’t look like much
selection (at least in comparison with the full sample).
However, there is a huge difference in high school
dropouts: 2% versus 10%
Selection on unobservables would have to be huge to
explain this finding.

We formalized the idea that using degree of selection on
observables can provide a guide to bias from selection on
unobservable variables in this paper



Outline

Data and Comparison of Catholic 8th graders and full
sample by High School Sector
Probit and regression results for Catholic 8th graders
What do observables say about selection bias for Catholic
Schools?
Conclusions.



Table 1
Comparison of Means of Key Variables by Sector

Catholic 8th Grade
Variable Public 10th Cath 10th Difference Public 10th Cath 10th Difference

Demographics (N=11,167) (N=672) (N=366) (N=640)
FEMALE 0.52 0.45 -0.07 0.61 0.50 -0.11
ASIAN 0.03 0.04 0.01 0.05 0.05 0.00
HISPANIC 0.09 0.09 0.00 0.08 0.09 0.01
BLACK 0.10 0.09 -0.01 0.07 0.11 0.04
WHITE 0.78 0.78 0.00 0.80 0.74 -0.06

Family Background
MOTHER'S EDUCATION IN YEARS 13.21 13.96 0.75 13.34 13.88 0.54
FATHER'S EDUCATION IN YEARS 13.49 14.51 1.01 13.39 14.38 0.99
LOG OF FAMILY INCOME 10.23 10.72 0.49 10.47 10.66 0.19
MOTHER ONLY IN HOUSE 0.14 0.09 -0.05 0.07 0.09 0.02
PARENT MARRIED 0.79 0.89 0.10 0.90 0.88 -0.02
PARENTS CATHOLIC 0.28 0.82 0.54 0.84 0.84 0.00

Geography
RURAL 0.36 0.03 -0.33 0.13 0.01 -0.12
SUBURBAN 0.45 0.51 0.06 0.40 0.48 0.08
URBAN 0.19 0.46 0.27 0.47 0.51 0.04
DISTANCE TO CLOSEST CATHOLIC HS, MILES 22.16 2.97 -19.19 6.91 2.37 -4.53

Expectations 1

SCHOOLING EXPECTATIONS IN YEARS 15.25 15.97 0.72 15.52 15.92 0.40
VERY SURE TO GRADUATE HS 0.84 0.89 0.05 0.84 0.90 0.06
PARENTS EXPECT AT LEAST SOME COLLEGE 0.89 0.98 0.09 0.94 0.98 0.04
PARENTS EXPECT AT LEAST COLLEGE GRAD 0.79 0.92 0.13 0.88 0.91 0.03
STUDENT EXPECTS WHITE-COLLAR JOB 0.47 0.61 0.14 0.55 0.59 0.04

8th Grade Variables
DELINQUENCY INDEX, RANGE FROM 0 TO 4 0.64 0.53 -0.11 0.54 0.46 -0.08
STUDENT GOT INTO FIGHT 0.24 0.23 -0.02 0.20 0.19 -0.01
STUDENT RARELY COMPLETES HOMEWORK 0.19 0.08 -0.11 0.08 0.06 -0.01
STUDENT FREQUENTLY DISRUPTIVE 0.12 0.08 -0.05 0.08 0.08 0.00
STUDENT REPEATED GRADE 4-8 0.06 0.02 -0.05 0.03 0.02 -0.01
RISK INDEX, RANGE FROM 0 TO 4 0.69 0.35 -0.34 0.39 0.39 0.00
GRADES COMPOSITE 2.94 3.16 0.22 3.09 3.20 0.11
UNPREPAREDNESS INDEX, FROM 0 TO 25 10.77 11.08 0.31 10.84 11.02 0.17
8TH GRADE READING SCORE 51.19 55.05 3.86 54.12 55.59 1.47
8TH GRADE MATHEMATICS SCORE 51.13 54.57 3.44 52.89 53.98 1.09

Outcomes
10TH GRADE READING STANDARDIZED SCORE 51.02 54.69 3.66 54.63 54.62 -0.01
10TH GRADE MATH STANDARDIZED SCORE 51.12 55.03 3.91 53.40 54.52 1.12
12TH GRADE READING STANDARDIZED SCORE 51.20 54.60 3.40 53.25 54.70 1.45
12TH GRADE MATH STANDARDIZED SCORE 51.20 55.54 4.34 53.13 55.63 2.49
ENROLLED IN 4 YEAR COLLEGE IN 1994 0.31 0.59 0.28 0.38 0.61 0.23
HS GRADUATE 0.85 0.98 0.13 0.88 0.98 0.10

Notes:
(1) The Expectations variables are not included in our empirical models

Full Sample



Means of Controls and Outcomes by 8th Grade

Huge difference in HS grad rates, college attendance
smaller differences in test scores
8th grade outcomes more favorable for kids in Catholic
high schools.
Difference in observables is much smaller for Catholic 8th
grade sample.



Table 3
OLS and Probit Estimates of Catholic High School Effects1 2

in Subsamples of NELS:88
Weighted, (Huber-White Standard Errors in Parentheses)

[Marginal Effects in Brackets3]

Full Sample Catholic 8th Grade Attendees
Controls

(1) (2) (3) (4) (5) (6) (7) (8)
None Fam. BG, (2) plus (3) plus None Fam. BG, (2) plus (3) plus

city size, 8th grade other 8th city size, 8th grade other 8th
and region.4 tests grade and region.4 tests grade

measures5 measures5

HS Graduation
Probit 0.97 0.57 0.48 0.41 0.99 0.88 0.95 1.27

(0.17) (0.19) (0.22) (0.21) (0.24) (0.25) (0.27) (0.29)
[0.123] [0.081] [0.068] [0.052] [0.105] [0.084] [0.081] [0.088]

Pseudo R2 0.01 0.16 0.21 0.34 0.11 0.35 0.44 0.58

College in 1994
Probit 0.73 0.37 0.33 0.32 0.60 0.48 0.56 0.60

(0.08) (0.09) (0.09) (0.09) (0.13) (0.15) (0.15) (0.15)
[0.283] [0.106] [0.084] [0.074] [0.236] [0.154] [0.154] [0.149]

Pseudo R2 0.02 0.19 0.29 0.34 0.04 0.18 0.29 0.36

12th Grade Reading Score
OLS 4.28 2.08 1.18 1.14 1.92 0.17 0.37 0.33

(0.47) (0.54) (0.38) (0.38) (0.82) (0.98) (0.63) (0.62)
R2 0.01 0.19 0.60 0.60 0.01 0.19 0.59 0.62

12th Grade Math Score
OLS 4.86 1.98 1.07 0.92 2.79 1.10 1.46 1.14

(0.44) (0.54) (0.34) (0.32) (0.77) (1.00) (0.53) (0.46)
R2 0.01 0.26 0.72 0.74 0.02 0.26 0.73 0.77

Notes:
(1) NELS:88 third follow-up and 2nd follow-up panel weights used for the educational attainment and 12th grade models, respectively.
(2) Sample sizes for Full sample: N=8560 (HS Graduation), N=8315 (College Attendance), N=8116 (12th Reading), N=8119 (12th Math).
For Catholic 8th Grade sample, N=859 (HS Graduation), N=834 (College Attendance), N=739 (12th Reading), N=739 (12th Math).
(3) Marginal effects of probit models are computed as average derivatives of the probability of an outcome with respect to catholic
high school attendance.
(4) Control sets (2)-(4) include race (white/nonwhite), hispanic origin, gender, urbanicity (3 categories), region (8 categories), and distance to
the nearest Catholic high school (5 categories). Family background variables used as controls include log family income, mother’s and father’s
education, 5 dummy variables for marital status of the parents, and 8 dummy variables for household composition.
(5) ”Other 8th grade measures” include measures of attendance, attitudes toward school, academic track, achievement, and behavioral
problems (from teacher, parent, and student surveys). The NELS:88 variables used are bys55a, bys55e, bys55f, byt1_2, bys56e, byp50, byp57e
bylep, bys55b, bys55d byrisk, bygrads, byp51, and bys78a-c, and also teacher survey variables regarding whether a student performs below ability,
completes homework, is attentive or disruptive in class, or is frequently absent or tardy. See Appendix A for more details.
(6) The pseudo-R2 for probit models is defined as ( 0 )

1+ ( 0 )



Table 4
OLS, Fixed Effect, and Probit Estimates of Catholic High School Effects

by Race and Urban Residence. Full Set of Controls1 2
(Huber-White Standard Errors in Parentheses)

[Marginal Effects in Brackets3]
Sample

(1) (2) (3) (4)
Urban and Suburban Urban and Suburban Urban Urban

White Only Minorities Only White Only Minorities Only

HS Graduate (N=3799) (N=1308) (N=1002) (N=697)
Sample Mean 0.88 0.80 0.88 0.80

Probit 0.443 0.524 1.176 1.592
(0.279) (0.338) (0.417) (0.673)
[0.046] [0.085] [0.091] [0.191]

College in 1994 (N=3695) (N=1258) (N=981) (N=666)
Sample Mean 0.37 0.26 0.32 0.26

Probit 0.354 0.697 0.506 0.677
(0.107) (0.201) (0.167) (0.303)
[0.087] [0.158] [0.110] [0.144]

12th Grade Reading Score (N=3638) (N=1051) (N=978) (N=561)
Sample Mean 52.94 47.72 53.33 47.61

OLS 1.30 -0.72 1.59 -0.19
(0.44) (0.98) (0.67) (1.39)

12th Grade Math Score (N=3638) (N=1053) (N=979) (N=563)
Sample Mean 53.09 47.33 53.90 48.88

OLS 1.07 1.17 1.69 1.25
(0.35) (0.76) (0.52) (1.09)

Notes:
(1) All models include controls for hispanic origin, gender, region, citysize, distance to the nearest Catholic school (5 categories), family background,
8th grade tests, and other 8th grade measures. (from teacher, parent, and student surveys). See Table 3 notes 1 and 2.
(2) NELS:88 third follow-up and 2nd follow-up panel weights used for the educational attainment and 12th grade models, respectively.
(3) Marginal effects of probit models are computed as average derivatives of the probability of an outcome with respect to Catholic school attendance.



Probit and Regression Estimates for Catholic 8th
graders

Find a strong positive effect of Catholic High School on
high school graduation (.08) and college attendance (.15)
The effect on 10th grade test scores is small (standard
deviation of test score is around 10)
Key question: How much of the estimated high school
effect on educational attainment is real, and how much is
due to selection bias?



Consider the following “treatment effect” model without
exclusion restrictions,

CH∗i = g(Xi) + ui

CHi = 1(CH∗i ≥ 0)

Yi = αCHi + h(Xi) + εi ,

The econometrician observes (Xi ,CHi ,Yi), but not the
unobservables (ui , εi), or the latent variable CH∗i .

Assume the unobservables (ui , εi) are independent of the
observables Xi and consider identification of the parameter α.



We are essentially only one parameter (or one equation)
short of identification. In particular if α were known, the
system of equations would be identified.
Under normality and linear indices, model is identified, but
semiparametric identification requires such an excluded
variable.
We treat this model as if it were underidentified by one
parameter. In particular, we act as if ρ is not identified.
Relationship between observables can solve identification
problem.



Table 5

Sensitivity Analysis: Estimates of Catholic High School Effects Given
Different Assumptions on The Correlation of Disturbances in Bivariate Probit

Models in Subsamples of NELS:881. Modified Control Set2.
(Huber-White Standard Errors in Parentheses) [Marginal Effects in Brackets]

Correlation of Disturbances3

= 0 = 0 1 = 0 2 = 0 3 = 0 4 = 0 5

HS Graduation:
Full Sample 0.459 0.271 0.074 -0.132 -0.349 -0.581
(Raw difference=0.12) (0.150) (0.150) (0.150) (0.148) (0.145) (0.140)

[0.058] [0.037] [0.011] [-0.021] [-0.060] [-0.109]

Catholic 8th Graders 1.036 0.869 0.697 0.520 0.335 0.142
(Raw difference=0.08) (0.314) (0.313) (0.310) (0.306) (0.299) (0.290)

[0.078] [0.064] [0.050] [0.038] [0.025] [0.011]

Urban 1.095 0.905 0.706 0.499 0.282 0.053
Minorities (0.526) (0.538) (0.549) (0.560) (0.570) (0.578)
(Raw difference=0.22) [0.176] [0.157] [0.132] [0.101] [0.062] [0.013]

College Attendance:
Full Sample 0.331 0.157 -0.019 -0.196 -0.376 -0.558
(Raw difference=0.31) (0.070) (0.070) (0.070) (0.068) (0.067) (0.064)

[0.084] [0.039] [-0.005] [-0.047] [-0.087] [-0.125]

Catholic 8th Graders 0.505 0.336 0.165 -0.008 -0.184 -0.362
(Raw difference=0.23) (0.121) (0.120) (0.119) (0.117) (0.114) (0.110)

[0.140] [0.093] [0.045] [-0.002] [-0.050] [-0.099]

Urban 0.447 0.269 0.090 -0.091 -0.272 -0.455
Minorities (0.282) (0.282) (0.280) (0.276) (0.269) (0.259)
(Raw difference=0.30) [0.116] [0.062] [0.020] [-0.020] [-0.057] [-0.091]



Observed and Unobserved Variables
Now we will use the assumption that selection on observables
is similar to selection on unobservables

Does this make sense with Catholic Schools?

Data on a broad set of family background measures,
teacher evaluations, test scores, grades, and behavioral
outcomes in eighth grade
Measures have substantial explanatory power for the
outcomes that we examine, and a large number of the
variables play a role, particularly in the case of high school
graduation and college attendance.
The relatively large number and wide variety of
observables that enter into our problem suggests that
observables may provide a useful guide to the
unobservables.



Relationship among the unobservables likely to be weaker
than the relationship among the observables because
shocks that occur after eighth grade are excluded from X .
These will influence high school outcomes but not the
probability of starting a Catholic high school.
Consequently,

cov(g(Xi),h(Xi))

var(h(Xi))
>

cov(ui , εi)

var(εi)

We think of our estimates of α that impose the conditions
as an informal lower bound for α.



Using the Condition to identify Model

Estimate

CHi = 1(X ′i β + ui > 0)

Yi = 1(X ′i γ + αCHi + ε > 0)

(ui , εi) ∼ N
([

0
0

]
,

[
1 ρ
ρ 1

])
.

subject to the restriction

ρ =
cov(ui , εi)

var(εi)
=

Cov(X ′i β,X
′
i γ)

Var(X ′i γ)



Table 6

Sensitivity of Estimates of Catholic Schooling Effects on College Attendance and HS Graduation to
Assumptions about Selection Bias in NELS:88, Catholic 8th Grade Subsample1 2, Modified Control Set3

(Huber-White Standard Errors in Parentheses) [Marginal Effects in Brackets]

Model:

= 1( 0 + 0)

= 1( 0 + + 0)

Estimation Method 1: and estimated simultaneously as a constrained bivariate probit model:

Model Constraint on HS Graduation Coefficients College Attendance Coefficients

b b b b

(1) =
( )
( )

0.24 0.59 0.24 0.11

(0.13) (0.33) (0.06) (0.16)

[0.05] [0.03]

(2) = 0 0 1.04 0 0.51

(0.31) (0.12)

[0.08] [0.14]

Estimation Method 2: 2-step, with obtained from a univariate probit, from a univariate probit using the public 8th
grade subsample. Next, is computed from a bivariate probit with fixed at this initial value and fixed up to 6
proportionality factors.4

Model Constraint on HS Graduation Coefficients College Attendance Coefficients

b b b b

(3) =
( )
( )

0.09 0.94 0.27 0.06

(0.08) (0.30) (0.05) (0.10)

[0.07] [0.02]

Estimation Method 3: and estimated simultaneously as a constrained semiparametric model5:

= 1( 0 + + 0)

= 1( 0 + + + 0)

Model Constraint on HS Graduation Coefficients College Attendance Coefficients
where =

( )
1+ ( )

b b b b

(4) = ( )
( )

0.25 0.80 0.25 0.15

(0.16) (0.37) (0.09) (0.22)

[0.05] [0.04]
Notes:
(1) Estimation performed on a sample of Catholic 8th grade attendees from NELS:88. N=859 for the HS graduation sample, and N=834 for the
college attendance sample.
(2) NELS:88 3rd follow-up sampling weights used in the computations.
(3) Due to computational difficulties, several variables were excluded from the control sets in the bivariate probit models. See Table 5, note 2.
(4) The categories of proportionality factors are demographics/family background, test scores, behavioral problems, school attendance and attitudes
toward school, grades and achievement, and distance measures. The coefficients and (standard errors) of the proportionality factors for these
categories are 0.82 (0.19), 0.87 (0.22), 0.92 (0.03), 1.07 (0.04), 0.59 (0.08), and 0.90 (6.08) respectively, in the high school graduation case. For
college attendance, the coefficients and (standard errors) are 0.80 (0.01) , 1.01 (0.04), 0.95 ( 0.15), 0.43 ( 0.17), 1.44 (0.03), and 1.04 (1.59).
(5) Models estimated as univariate probits conditional on , the distribution of which is estimated nonparametrically.



Results:

We use two alternative methods to estimate γ.
For Method 1, in the case of High School graduation,

The estimate of

ρ =
cov(u, ε)

var(u)
=

Cov(X ′i β,X
′
i γ)

Var(X ′γ)
= 0.24

and the estimate of α falls to 0.59 (0.33)[0.05].



For method 2, ρ is only 0.09, and α is 0.94 (0.30)[0.07].
Consequently, even with the extreme assumption of equal
selection on observables and unobservables imposed,
there is evidence for a substantial positive effect of
attending Catholic high school on high school graduation.
The results for college attendance follow a similar pattern,
but with the extreme assumption imposed most of the
effect of Catholic High School is gone.



Summary of Empirical Work

Catholic High Schools:
Substantially raise the graduation rate
Probably increase college attendance.
Have little effect on math or reading scores. Perhaps a
small positive effect on 12th grade math.
We don’t provide precise point estimates of effect sizes.
“Lower bound” estimate is large.

Correlation between indices of the observed control
variables is useful in assessing the importance of selection
bias in both single equation



Problems Addressed in Work in Progress

There are two major problems with what we did before

(we were aware of both of them when we wrote the paper, but
we didn’t think they were driving the results and we didn’t want
to do everything in one paper)



First Issue

A key assumption of the model that K ∗ is increasing with
sample size

The standard errors did not account for this complication

In order to do that we must take the model more seriously



Second Issue

The argument is that the observables are like the
unobservables.

However in our empirical work we assumed that ui (the Wis we
don’t observe) is uncorrelated with the Wis we do observe

However, the Wis are pretty clearly correlated with each other,
so this is a really goofy assumption

Note that it is not the theorem that is wrong-that allowed for the
observables and the unobservables to be correlated

The problem is that the theorem applies to the actual Γ which
you will not be able to estimate without further assumptions



There is a natural solution to this

Write down a model for the relationship between covariates
Estimate the model using the observables
Use the model to get the relationship between the
observables and unobservables

This is what we do here, the most natural is the factor model



The factor model

We make use of a factor model:

W̃ij =
1√
K ∗

F̃ ′i Λj + vij

σ2
j ≡ Var(vij)

where all of these error terms are iid

Dividing by
√

K ∗ guarantees that the variance of Ỹi that is due
to the factor, F̃i is stable as K ∗ rises

This model satisfies the two technical assumptions above that
keep the variance and covariance finite.



The rest of the model

Ỹi = α0T̃i +
1√
K ∗

K∗∑
j=1

SjW̃ijΓj +

 1√
K ∗

K∗∑
j=1

(
1− Sj

)
W̃ijΓj + ξi


Z̃i =

1√
K ∗

K∗∑
j=1

SjW̃ijβj +

 1√
K ∗

K∗∑
j=1

(
1− Sj

)
W̃ijβj + ψi


T̃i =

1√
K ∗

K∗∑
j=1

SjW̃ijδj +

 1√
K ∗

K∗∑
j=1

(
1− Sj

)
W̃ijδj + ωi


where all of these error terms are iid across i

Need

cov(ψi , ξi) = 0
cov(ψi , ωi) 6= 0



The Newest Part

Now we no longer assume that Sj is i.i.d. but allow the
distribution of (Γj , βj , σ

2
j , λj) to depend on Sj

Specifically we allow

E(ΛjΓj | Sj = 0) =ρλγE(ΛjΓj | Sj = 1)

E(Λjβj | Sj = 0) =ρλβE(Λjβj | Sj = 1)

E(σ2
j Γ2

j | Sj = 0) =ρσγE(σ2
j Γ2

j | Sj = 1)

E(σ2
j Γjβj | Sj = 0) =ρσγβE(σ2

j Γjβj | Sj = 1)

where the empirical researcher can explore the robustness of
the results to various choices of the ρs.

Note if these are all one, we are back in the observables like
the unobservables case.



We define
Ps0 ≡ Pr(Sj = 1) ≈ K

K ∗

where K is the observable number of covariates.



Now that we have a model it is just a matter of estimating it

It turns that for our estimator we need K ∗ grows at a slower rate
than N, so that in practice

K ∗

N
→ 0

We do asymptotics taking joint limits

I suspect that we could allow K ∗ and N to grow at the same
rate. We would have a few bias terms we would have to adjust
the estimator to account for.



In general the model is not point identified

Thus we do not obtain a point estimate but rather estimate a set
of which α0 will be an element

As a reminder in the case when the ρs are all 1:

φu

φ
≈ (1− Ps) A

(1− Ps) A + σ2
ξ

so

If σξ = 0, we would have φu ≈ φ
If Ps = 1 we would have φu ≈ 0
For the cases in between, because of attenuation bias it is
straight forward to show that one gets something in
between



In practice we estimate 3 parameters:

θ ≡
(
α,PS, σ

2
ξ

)
with two equations (explained below):

q1(θ0) = 0

q2(θ0) = 0

with the additional restrictions that

0 <Ps0 ≤ 1

σ2
ξ0 ≥0

Thus the identified set will be the set of α’s that are consistent
with these conditions.

Typically one end will occur when PS0 = 1 (IV) and the other
when σ2

ξ0 = 0 (obs. like uno.)



Let q(θ) =
[

q1(θ) q2(θ)
]′, then

Q(θ) = q(θ)′Ωq(θ),

is the objective function

We find the set of θ that minimize this objective function.

The process works in three steps:

Stage 1 Estimate factor structure-this part does not
depend on θ

Stage 2 Given θ, estimate slope coefficients Γ

Stage 3 Calculate Q(θ)



Stage 1: Factor model estimation

First we estimate the renormalized parameter λ ≡
√

PS0Λ as
well as σ2

vj .

It turns out we can get a closed form estimate of λ as

λ̂j =
K

K−1
∑
6̀=j

1
N
∑N

i=1 W̃ijW̃i`√
1

(K−1)
∑

`1

∑
`2

1
N
∑N

i=1 W̃i`1W̃i`2



For each σ2
j1

we only have one moment equation and use the
obvious estimator, for for each j = 1, ..,K ,

σ̂2
j =

1
N

N∑
i=1

(
W̃ij

)2
−
λ̂2

j

K
.



Stage 2

The estimator we will use is the following. We are estimating
the 3 parameters θ =

(
α,Ps, σ

2
ξ

)
with true values

θ0 =
(
α0,Ps0, σ

2
ξ0

)
.

Without getting into details it turns out that

γ̂ (θ) ≡
[

Ps + (1− Ps) ρλγ
KPs

λ̂λ̂′ + Σ̂

]−1 1
N

W̃ ′
(

Ỹ − αT̃
)

is a good estimator of Γ

(note that if there is no factor loading, λ = 0 or Ps = 1 this is
analogous to OLS)



Stage 3

We are estimating the 3 parameters θ =
(
α,Ps, σ

2
ξ

)
with true

values θo =
(
α0,Ps0, σ

2
ξ0

)
.

We show that there are only 2 moments that provide identifying
information about the three parameters Why?



We define our estimator based on the following system of equations.

q1
N,K∗ (θ) =

1
N

N∑
i=1

Z̃i

(
Ỹi − αT̃i

)
−

(
Ps + (1− Ps) ρλγ

Ps

γ̂ (θ)′ λ̂√
K

)(
Ps + (1− Ps) ρλβ

Ps

β̂′λ̂√
K

)

−
(

Ps + (1− Ps) ρσγβ
Ps

)
β̂′Σ̂γ̂ (θ)

q2
N,K∗ (θ) =

1
N

N∑
i=1

(
Ỹi − αT̃i

)2
−

(
Ps + (1− Ps) ρλγ

Ps

γ̂ (θ)′ λ̂√
K

)2

−
(

Ps + (1− Ps) ρσγ
Ps

)
γ̂ (θ) ′Σ̂γ̂ (θ)− σ2ξ

Note that the first expression is like the standard moment condition you would
have in IV, and the second equation is basically the R2 of the regression

Our set estimate is
Θ̂ ≡ {θ : Q(θ) ≈ 0}



Consistency (In progress)

Theorem

Under our Assumptions, Θ̂ converges to the identified set



Asymptotic Distribution

We next show that the distribution of q is normal and derive the
variance covariance matrix

Theorem

Assuming our factor model for W , and the Assumptions above
and that K ∗3/N2 → 0,

√
K ∗qN,K∗ (θ0) is asymptotically normal

and we derive its complicated Var/Cov matrix



Concluding Thoughts

We think this approach will be useful in many applications

We also think of this as just the beginning. The basic idea of
using observables to say something about unobservables can
be extended to other models and one can try alternative
assumptions.

Note that it is not a panecea.

When there is little selection on the observables (as in the
Public 8th grade sample) it will give tight bounds
When there is a lot of selection on the observables (as is
the case for Catholic as an instrument) it will give wide
bounds
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