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Treatment Effects

Throughout the course we will focus on the “Treatment Effect
Model”

For now take that to be
Yi=aTi+ XiB+u
o measures the causal effect of T; on Y.

We don’t want to just run OLS because we are worried that T;
is not randomly assigned, that is that T; and u; are correlated.

There are a number of different reasons that might be true-I
think the main thing that we are worried about in the treatment
effects literature is omitted variables.

In this course we are going to think about a lot of different ways
of dealing with this potential problem and estimating «.



Instrumental Variables

Lets start with instrumental variables

| want to think about three completely different approaches for
estimating «

The first is the GMM approach and the second two will come
from a Simultaneous Equations framework



To justify OLS we would need

E(Tiu) =

0
E(Xju)) =0

The focus of IV is to try to relax the first assumption

(There is much less concern about the second)



Lets suppose that we have an instrument Z; for which
E(Zu)=0
and we continue to assume that
E(X,‘U,‘) =0
We also will stick with the exactly identified case (1 dimensional
Zj)

Define

Then we know



Turning this into a GMM estimator we get
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0=x>Z (Y,- - X B,V>
1 x 1T ) 2
N i (NZZM*) B
i=1 '

i=1

which we can solve as
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And that is IV.



Consistency Notation

| will use =~ to mean asymptotically equivalent. Typically the
phrase
An~ Bp

means that
(An—B)) 20
So | want to be formal in this sense

However | will not be completely formal as this could also mean
almost sure convergence, convergence in distribution or some
sort of uniform convergence. The differences between these
are not relevant for anything we will do in class.



Consistency of IV



since

1 N
NZZ/*U,'%O

i=1

So (assuming iid sampling) this only took two assumptions.
The moment conditions and the fact that you can invert

£ (Z,X,)

As we will discuss this assumption is typically a bigger deal
than in OLS



Furthermore we get (Huber-White) standard errors from
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We approximate this by

1
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Biasedness of |V

It turns out it will be easiest to think of IV in terms of
consistency, it is generally biased.

| will first discuss why IV is biased, but then we will go to the
more important case of calculating the asymptotic bias of IV or
OLS



First lets think about why OLS is unbiased.

Assume that

Then
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The same trick does not work for IV because in general
1 1
E| = -
(%) #2009
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E(X)

even though

i =

This is neither deep nor important-just a fact you should
probably be aware of



So now we write the assumption as
E(ui| Z")=0

It turns out that an analogous conditional expectation argument
does not work. What do we condition on Z* or (Z*, X*)?

First consider Z*

Can’t bring the expectation inside so we are stuck here




and conditioning on (Z*, X*)
R 1N -1 ;N
E(B,V):B+E (NZX"*Z"*> Sz
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but E [u; | Z*, X*] # 0 (in general)



So that didn’t work so well, we will need to think more about the
asymptotic bias

Before that | want to take a detour and discuss partitioned
regression which will turn out to be really useful for this and we
will use it many times in this course



Partitioned Regression

Think about the standard regression model (in large matrix
notation)
Y =XiB1+XoB2+ U

We will define
Mo =1—Xo (XoX0) ™" Xy

Two facts about M,



Fact 1: M is idempotent

Moo= (1- X% (X320) ™' X) (1= X (X6X0) ™" ;)
—1—2X (XXe) ' X+ Xo (X3X2) T XaXo (X5Xa) T Xy

—1— X (X3X2) " X,



Fact 2: MbY is the Residuals from Regression

For any potential dependent variable (say Y), MY is the
residuals | would get if | regressed Y on Xs

To see that let the regression coefficients be be g and
generically let Y be residuals from a regression of Y on X5 so
that

Y=Y- X0
—Y — Xo (X5X) T X3 Y
- [/ — Xo (X5 X) xg] %
=M,Y.



An important special case of this is that if | regress something
on itself, the residuals are all zero

That is

Mo Xo = Xo — Xo(X5X2) "1 X5 X
=0



If | think of the GMM moment equations for least squares | get
the “two equations”

0=Xj <Y— X151 — Xsz)
0=X; (Y* X3y — Xsz)
We can solve for 32 in the second as
-~ / 1 / ~
Bo = (XoXo) X3 (Y - X151)
Now plug this into the first
0=X] (Y— XiB1 — X252>

= X1/ <Y— X1,/8\1 — X2 (XéXg)idl Xé (Y_ X1B\1>>
= X{MpY — X{ Mo Xy 3y



Or
By = (X{MoXy) ™" X{MpY
~ ~\N—1 < <
:(x1’x1) X'Y

Thatis if |

@ Run a regression of X; on X, and form its residuals )~(1
@ Run a regression of Y on X, and form its residuals Y
@ Run a regression of Y on X;

Since | derived this from the sample analogue of the GMM
moment equations (or the normal equations), this gives me
exactly the same result as if | had run the full regression of Y
on X; and X»



It turns out the same idea works for IV.

Put everything we had before into large Matrix notation and we
can write GMM as:

0=2 <Y — Tay - XB,V)
0=X' (Y- Taw - XBy)
The second can be solved as
B = (X'X)_1 X' (Y - Tay)
Now plug this into the first
0=2 (Y . T XB,V)
4 (Y — Tay - X (X'X) "X (Y - Ta/v))
— Z'MyY — Z'MyTayy



SO

ay = (ZMxT)™' ZMxY
_zy
- ZT
_ cov(Z, )

cov(Z;, T)

(This last expression assumes that there is an intercept in the
model. If not it would be expected values rather than
covariances, but covariances make things easier to interpret-at
least to me)



To see consistency from this perspective note that
Y =MyY
=aMxT + Mx X3 + Mxu
=aT +u
SO
S cov(Z;,Y))
cov(Z;, T)
_cov(Z,aT; + )

~ —

cov(Z, T)




This formula is helpful. In order for the model to be consistent
you need

° cov(f ~):0
o cov(Z,T) #0

But more generally for the asymptotic bias to be small you want

o cov(Z,Uj) to be small
o |cov(Z, T;)| to be large

This means that in practice there is some tradeoff between
them.

If your instrument is not very powerful, a little bit of correlation
in cov(Z;, u;) could lead to a large asymptotic bias.



As a concrete example lets compare IV to OLS.
OLS is really just a special case of IV with Z; = T;

Then we get

If cov(Z;, ;) = 0 and cov(T}, ;) # O then IV is consistent and
OLS is not

However, cov(Z,, uj) < cov(T,, u,) does not guarantee less bias
because it also depends on cov(Z;, T;) = 0 and cov(T;, T;) # 0



Assumptions

Lets think about the assumptions
Lets ignore the first stage thing and assume that isn’t a problem

we looked at two different things

o GMM
E(Ziuj) =0, E(Xju;) =0

o My derivation B
cov(Z,uj) =0

Are these the same?



Well ...

© We know that GMM gives consistent estimates and if
cov(Z;, u;) # 0 then @ is consistent. So the first
assumptions better imply the second

o However, it doesn't have to be the other way around. We
need cov(Z;, u;) = 0 to get consistent estimates of «, but
we haven’t required consistent estimates of 3.

Lets explore



First lets show that E(Zju;) = 0, E(Xju;) = 0 implies
cov(Z;, u;) =0

2 :Zi - X//rzx
U =u;j — lerux

E(X;u;) = 0 implies that I'yx ~ 0 so u; ~ u;
but then

cov(Z, uj) =cov(Z; — XiT 1, Uj)
=cov(Z;, u;) — cov(X(T , Uj)
=0



To see it doesn’t go the other way, suppose that | can write
up = X,-,5 + &
with E(Xj,e;) = 0, E(Zj, i) =0

Then u; ~ ¢ S0

cov(Z;, Uj) =cov(Z; — XT o, €i)
=cov(Z;,e;) — cov(X(T x, €/)
=0



We can also see that we can write

Yi =aT; + X;B + u;
aTi+ X/(B+6)+e¢i

So IV gives a consistent estimate of « but not g



Simultaneous equations

The second and third way to see IV comes from the
simultaneous equations framework

Yi=aTi+ X8+
Ti=pYi+Xiv+Zd+v

Thee are called the “structural equations”

Note the difference between X; and Z; in that we restrict what
can affect what.

We could also have stuff that affects Y; but not not T; but lets
not worry about that (we are still allowing this as a possibility as
some of the v coefficients could be zero)

The model with p = 0 simplifies things, but lets focus on what
happens when it isn’t



We assume that

E(ui| X;,Z)=0
E(vi| Xi,Z)=0

but notice that if p ## 0, then almost for sure T; is correlated with
u; because u; influences T; through Y;



It is useful to calculate the “reduced form” for T;, namely
Ti=pYj+ Xiy+ Zid + v

=plaTi+ X8+ uj] + X{v+ Zi6 + v
= paTi+ Xj [pB + 7] + Z/d + (pu; + 1)

:Xi,pﬁ_Jrv +Z 0 pU; + vj
1— pa 1—pa  1-—pa
= XiB3 + 205 + v}

where

«_ PB+
Bng i
— pa

1)

9y =

1 — pa
X Pui“‘Vl

7/,' = 1 —
pa

Note that E(v} | X;, Z;) = 0, so one can obtain a consistent
estimate of 35 and 65 by regressing T; on X; and Z;.



This is called the “reduced form” equation for T;

Note that the parameters here are not the fundamental
structural parameters themselves, but the are a known function
of these parameters

To me this is the classic definition of reduced form (you need to
have a structural model)



We can obtain a consistent estimate of « as long as we have
an exclusion restriction

That is we need some Z; that affects T; but not Y; directly

| want to show this in two different ways



Method 1

We can also solve for the reduced form for Y;

Yi=aTi+ X8+ u
:Xl_a”y—&-B+Zi ad +()41/,-—i-u,-
1—ap 1—ap 1—-ap

= XiB; + Zi6 + U]

with

L_ay+p

b 1—a
P

)

5= —

1—ap
u*:oa/,-+u,
"T1—ap

Like the other reduced form, we can get a consistent estimate
of 37 and &7 by regressing Y; on X; and Z;.



Notice then that
ﬁ
03
So we can get a consistent estimate of « simply by taking the
ratio of the reduced form coefficients

=«

It also gives another interpretation of 1V:

o 45 is the causal effect of Z; on T;
o 47 is the causal effect of Z; on Yi-it only operates through T;



If we increase Z; by one unit this leads 7; to increase by 65 units
which causes Y; to increase by d;a units

Thus the causal effect of Z; on Y; is d5a units



This illustrates another important way to think about an
instrument: the key assumption is that T; is the only channel
through which Z; influences Y;



Suppose there was another

Then the causal effect of Z; on Y; would be §5a + da and IV
would be

dsa + da
03



In the exactly identified case (i.e. one Z;), this is numerically
identical to IV.

To see why, note that in a regression of Y; and T; on (X;, Z;)
yields

5= 4Y
2z
5= 40
7z,
SO
2
b ZIT
=ay

This is just math-it does not require that the “Structural
equation" determining T; be correct



Method 2

Define
T/ = X{Bs + Z/63

and suppose that T,f were known to the econometrician
Now notice that
Yi=aTi+Xif+u
a7+t 4 x5+
= aT + X!z + (v} + uy)

One could get a consistent estimate of « by regressing Y; on X;
and T/.



Two Stage Least Squares

In practice we don’t know T/ but can get a consistent estimate
of it from the fitted values of a reduced form regression call this
T; (it is crucial that the reduced form gives us consistent
estimates of 35 and 45)

That is:

@ Regress T; on X; and Z;, form the predicted value 7’,
@ Regress Y on X; and T,

To run the second regression one needs to be able to vary Ti
separately from X; which can only be done if there is a Z;



It turns out that 2SLS is also is numerically identical to IV (with
1 instrument)

Note that ]
T-z (z*/z*)f z'T

SO ) , » ,
BQSLS_<[? || 7 XD (T x|y
However, note that we can write
X=2z (z*’z*)_1 z74 X

That is projecting X on (X, Z) and using it to predict X will be a
perfect fit.



That means that(using notation from earlier) that
= / -1 ’
(T x|=2z(z'2) z'x

Then (in the exactly identified case) we can write

Bosis = <x*’z* (z*’z*) s (Z*’z*) - z*’x*> o

X* Z* (z*’z*) 2y

_ (x*’z* (z7z)" z*’x*> T xz (z7z") 'z

() ) er) ) e

zx) ( +
:(z x*) 'y
=By

I
/N



3 Interpretations

Thus with 1 instrument we have 3 equivalent ways to derive 1V:

@ GMM estimator or (Z'T)~'Z'Y

@ Ratio of reduced form estimates-rescaling the reduced
form

@ 2SLS-direct effect of fitted model

With more than one instrument only one of these procedures
works-we’ll worry about that later



Examples

There are three main reasons people use IV

@ Simultaneity bias: p # 0

@ Omitted Variable bias : There are unobservables that
contribute to u; that are correlated with T;

@ Measurement Error: We do not observe T; perfectly

While the first is the original reason for 1V, in practice omitted
variable bias is typically the biggest concern

A classic (perhaps the classic) example is the returns to
schooling.



Returns to Schooling

This comes from the Card’s chapter in the 1999 Handbook of
Labor Economics

Lets assume that
log(W;) = aS; + X,/B + €&
where W, is wages, S; is schooling, and X; is other stuff

The biggest problem is unobserved ability



We are worried about ability bias we want to use instrumental
variables

A good instrument should have two qualities:

o It should be correlated with schooling

o It should be uncorrelated with unobserved ability (and
other unobservables)

Many different things have been tried. Lets go through some of
them



Family Background

If my parents earn quite a bit of money it should be easier for
me to borrow for college

Also they might put more value on education
This should make me more likely to go

This has no direct effect on my income-Wisconsin did not ask
how much education my Father had when they made my offer

But is family background likely to be uncorrelated with
unobserved ability?



Closeness of College

If I have a college in my town it should be much easier to attend
college

o | can live at home
o If I live on campus

o | can travel to college easily
o | can come home for meals and to get my clothes washed

o | can hang out with my friends from High school

But is this uncorrelated with unobserved ability?



Quarter of Birth
This is the most creative

Consider the following two aspects of the U.S. education
system (this actually varies from state to state and across time
but ignore that for now),

o People begin Kindergarten in the calendar year in which
they turn 5

@ You must stay in school until you are 16
Now consider kids who:

o Can’t stand school and will leave as soon as possible
o Obey truancy law and school age starting law
@ Are born on either December 31,1972 or January 1,1973



Those born on December 31 will

o turn 5 in the calendar year 1977 and will start school then
(at age 4)

o will stop school on their 16th birthday which will be on Dec.
31, 1988

o thus they will stop school during the winter break of 11th
grade

Those born on January 1 will

o turn 5 in the calendar year 1978 and will start school then
(at age 5)

o will stop school on their 16th birthday which will be on Jan.
1, 1989

o thus they will stop school during the winter break of 10th
grade



The instrument is a dummy variable for whether you are born
on Dec. 31 or Jan 1

This is pretty cool:

o For reasons above it will be correlated with education

o No reason at all to believe that it is correlated with
unobserved ability

The Fact that not everyone obeys perfectly is not problematic:

An instrument just needs to be correlated with schooling, it
does not have to be perfectly correlated

In practice we can’t just use the day as an instrument, use
“quarter of birth” instead



Policy Changes

Another possibility is to use institutional features that affect
schooling

Here often institutional features affect one group or one cohort
rather than others



OLS AND IV ESTIMATES OF THE RETURN TO EDUCATION WITH INSTRUMENTS BASED ON FEATURES OF THE SCHOOL SYSTEM

TABLE II

Schooling Coefficients

Author Sample and Instrument oLs v

1. Angrist and 1970 and 1980 Census Data, Men. 1920-29 cohort in 1970 0.070 0.101

Krueger (1991) Instruments are quarter of birth (0.000) (0.033)
interacted with year of birth. Controls
include quadratic in age and indicators for 1930-39 cohort in 1980 0.063 0.060
race, marital status, urban residence. (0.000) (0.030)
1940-49 cohort in 1980 0.052 0.078
(0.000) (0.030)
2. Staiger and 1980 Census, Men. Instruments are quarter 1930-39 cohort in 1980 0.063 0.098
Stock (1997) of birth interacted with state and year (0.000) (0.015)
of birth. Controls are same as in Angrist
and Krueger, plus indicators for state of 1940-49 cohort in 1980 0.052 0.088
birth. LIML estimates. 0.000) (0.018)
3. Kane and NLS Class of 1972, Women. Instruments Models without test score 0.080 0.091
Rouse (1993) are tuition at 2 and 4-year state colleges or parental education (0.005) (0.033)
and distance to nearest college. Controls
include race, part-time status, experience. Models with test scores 0.063 0.094
Note: Schooling measured in units and parental education (0.005) 0.042)
of college credit equivalents.

4. Card (1995b) NLS Young Men (1966 Cohort) Instrument Models that use college 0.073 0.132
is an indicator for a nearby 4-year college proximity as instrument (0.004) (0.049)
in 1966, or the interaction of this with (1976 earnings)
parental education. Controls include Models that use college — 0.097
race, experience (treated as endogenous), proximity X family back- (0.048)

region, and parental education

ground as instrument



w
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©

school system at age 13. Other controls include
cohort, father’s education, and county dummies.
Models for IS data also include test scores

at ace 13.

of college relative to
minimum schooling)

. Conneely and Finnish men who served in the army in 1982, and Models that exclude parental 0.085 0.110
Uusitalo (1997) were working full time in civilian jobs in 1994. education and earnings 0.001) (0.024)
Administrative earnings and education data.
Instrument is living in university town in 1980. Models that include parental 0.083 0.098
Controls include quadratic in experience and education and earnings (0.001) (0.035)
parental education and earnings.
. Harmon and British Family Expenditure Survey 1978-86 (men). 0.061 0.153
Walker (1995) Instruments are indicators for changes in the (0.001) (0.015)
minimum school Jeaving age in 1947 and 1973.
Controls include quadratic in age, survey year,
and region.
Ichino and Austria: 1983 Census, men born before 1946. Austrian Men 0.518 0.947
Winter-Ebmer Germany: 1986 GSOEP for adult men. Instrument (0.015) (0.343)
(1998) is indicator for 1930-35 cohort. (Second German
IV also uses dummy for father’s veteran status). German Men 0.289 0.590,/0.708
Controls include age, unemployment rate at (0.031) (0.844) (0.279)
age 14, and father’s education (Germany only).
Education measure is dummy for high school or more.
Lemieux and Canadian Census, 1971 and 1981: French-speaking 1971 Census: 0.070 0.164
Card (1998) men in Quebec and English-speaking in Ontario. (0.002) (0.053)
Instrument is dummy for Ontario men age 19-22
in 1946. Controls include full set of experience 1981 Census: 0.062 0.076
dummies and Quebec-specific cubic experience 0.001) 0.022)
profile.
. Meghir and Palme Swedish Level of Living Survey (SLLS) data SLLS Data (Years of 0.028 0.036
(1999) for men born 1945-55, with earnings in 1991, education) (0.007) (0.021)
and Individual Statistics (IS) sample of men
born in 1948 and 1953, with earnings in 1993. IS Data 0.222 0.245
Instrument is dummy for attending “reformed” (Dummy for 1-2 years (0.020) (0.082)



TABLE II—Continued

Schooling Coefficients

Author Sample and Instrument oLS v

10. Maluccio (1997) Bicol Multipurpose Survey (rural Philippines): Models that do not control for 0.073 0.145
male and female wage earners age 20-44 in selection of employment 0.011) 0.041)
1994, whose families were interviewed in 1978. status or location
Instruments are distance to nearest high
school and indicator for local private high Models with selection 0.063 0.113
school. Controls include quadratic in age and correction for location (0.006) (0.033)
indicators for gender and residence in a and employment status
rural community.

11. Duflo (1999) 1995 Intercensal Survey of Indonesia: men born Model for hourly wage 0.078 0.064,/0.091
1950-72. Instruments are interactions of birth 0.001) 0.025) (0.023)
year and targeted level of school building
activity in region of birth. Other controls are Model for monthly wage with 0.057 0.064,/0.049
dummies for year and region of birth and imputation for self-employed. (0.003) 0.017) (0.013)

interactions of year of birth and child
population in region of birth. Second IV
adds controls for year of birth interacted
with regional enrollment rate and presence
of water and sanitation programs in region.

Notes: See text for sources and more information on individual studies.



Consistently 1V estimates are higher than OLS

Why?

Bad Instruments
Ability Bias
Measurement Error
Publication Bias
Discount Rate Bias

© 06 06 0 o



Measurement Error

Another way people use instruments is for measurement error

In the classic model lets get rid of X’s so we want to measure
the effectof T on Y.

Yi=Po+ali+u

and lets not worry about other issues so assume that
cov(T;,u;) =0.

The complication is that | don’t get to observe T;, | only get to
observe a noisy version of it:

mi=Ti+§

where &; is i.i.d measurement error with variance ag



What happens if | run the regression on 7y; instead of T;?

Cov (145, Y)
Var(r+;)
_ Cov(Ti+ &, fo + T + uj)
Var(T; + &)
Var (T;)
=
Var(T;) +a§

~
o~




Why is OLS biased?

Lets rewrite the model as

Yi=Po+ali+u
= Po+aTj+ o+ Ui — af;
= Bo + arj + (U — o).

You can see the problem with OLS: r; = T; + &; is correlated
with (u; — a&;)



Now suppose we have another measure of T;,

Toj = Ti +

where 5; is uncorrelated with everything else in the model.
Using this as an instrument gives us a solution.

Toi is correlated with ; (through T;),but uncorrelated with
(ui — a&j) so we can use 7o as an instrument for 7y;.



Twins

(Here we will think about both measurement error and fixed
effect approaches)

log(wir) = 0 + aSjs + Ujf
The problem is that ¢ is correlated with Sj
We can solve by differencing

Alog(wy) = aASy + Auy

if ASyis uncorrelated with Auy, then we can use this to get
consistent estimates of o



The problem here is that a little measurement error can screw
up things quite a bit because the variance of ASy is small.

A solution of this is to get two measures on schooling

o Ask me about my schooling
o Also ask my brother about my schooling
o do the same think for my brother’s schooling

This gives us two different measure of ASj.

Use one as an instrument for the other



Table 6

Cross-sectional and

family di estimates of the return to education for twins®

Author Sample and specification Cross-sectional OLS Differenced
OLS v
1. Ashenfelter 1991-1993 Princeton Twins Survey. Basic 0.110 0.07¢ 0.088
and Rouse Identical male and female twins. Controls (0.010) (0.019) (0.025)
(1998) Basic controls include quadratic
in age, gender and race. Added Basic + 0.113 0.078 0.100
controls include tenure, marital added (0.010) (0.018) (0.023)
status and union status. controls
2. Rouse (1997) 1991-1995 Princeton Twins Survey. 0.105 0.075 0.110
Identical male and female twins. (0.008) (0.017) {0.023)
Basic controls as above.
3. Miller et al. Australian Twins Register. Identical 0.064 0.025 0.048
(1995) Identical and fraternal twins. twins (0.002) (0.005) (0.010)
Controls include quadratic in
age, gender, marital status. Fraternal 0.066 0.045 0.074
Tncomes imputed from occupation twins (0.002) 0.005) (0.008)
4. Behrman et al. NAS-NRC white male twins born Identical 0.07¢ 0.035 0.056
(1994) 1917-1927, plus male twins born twins (0.002) (0.003) -
19361955 from Minnesota Twins
Registry. Controls include Fraternal 0.073 0.057 0.071
quadratic in age” twins 0.003) 0.005)
5. Tsacsson Swedish same-sex twins with Tdentical 0.049 0.023 0.024
(1997) both administrative and twins (0.002) (0.004) {0.008)
survey measures of schooling.
Controls include sex, marital Fraternal 0.051 0.040 0.054
status, quadratic in age, and (wins (0.002) (0.003) (0.006)

residence in a large city®



Overidentification

What happens when we have more than one instrument?

Lets think about a general case in which Z; is multidimensional

o Let Kz be the dimension of Z*
o Let Kx denote the dimension of X

Now we have more equations then parameters so we can no
longer solve for B using

0=2" (Y—x*é)

because this gives us K> equations in Kx unknowns.



A simple solution is follow GMM and weight the moments by
some Kz x Kz weighting matrix Q and then minimize

z7 (v - X*B)}'Q 27 (v - x°B)|
which gives
~2x"'z°z" (Y - X*B) =0
(notice that in the exactly identified case X* Z*Q drops out)

We can solve directly for our estimator

~ , , -1 , ,
By = (x* 7:QZ7" x*) X 2°Qz"y



Two staged least squares is a special case of this:
o / / -1 ! -1 / i -1 /
Brg s = (x* z* (z* z*) z* x*) X+ 7* (z* z*) 77y
Notice that this is the same as EGMM when

Q= (z*’z*)f1



Consistency
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Inference

~ 1 ool oo N 1 oo 1
\W(B_B):(Nx 72 x) X ZQWZU

Using a standard central limit theorem with i.i.d. data

N
ﬁz*’u = & ;Z,-*u,-
~N(0.E(vZZ"))
Thus
VN (B~ B) ~N (0, A'VA)
with
V=E (X,z,) QF (u,?’z,.*z,.*’) QF (z,x,)
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From GMM results we know that the efficient weighting matrix is
N —1
Q-£(v#zZ")

in which case the Covariance matrix simplifies to

(e(xz)e(ezz) "E(zx"))

This also means that under homoskedasticity two staged least
squares is efficient.

—1



Overidentification Tests

Lets think about testing in the following way.

Suppose we have two instruments so that we have three sets of
moment conditions

0=2 (Y- Ta-Xp)
ozzg(y—ra—xﬁ)
ozx’(Y—Ta—xB)



As before we can use partitioned regression to deal with the X’s
and then write the first two moment equations as

0-2Z (¥ -Ta)
0225(»7—?&)

The way | see the overidentification test is whether we can find
an « that solves both equations.



That is let

. zy
Qq :,vlifv

ZT
A
a2 = = =

ZT

If

a1 %ag

then the test will not reject the model, otherwise it will

For this reason | am not a big fan of overidentification tests:

o If you have two crappy instruments with roughly the same
bias you will fail to reject

@ Why not just estimate @y and a, and look at them? It
seems to me that you learn much more from that than a
simple F-statistic



