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Treatment Effects

Throughout the course we will focus on the “Treatment Effect
Model”

For now take that to be

Yi = αTi + X ′i β + ui

α measures the causal effect of Ti on Yi .

We don’t want to just run OLS because we are worried that Ti
is not randomly assigned, that is that Ti and ui are correlated.

There are a number of different reasons that might be true-I
think the main thing that we are worried about in the treatment
effects literature is omitted variables.

In this course we are going to think about a lot of different ways
of dealing with this potential problem and estimating α.



Instrumental Variables

Lets start with instrumental variables

I want to think about three completely different approaches for
estimating α

The first is the GMM approach and the second two will come
from a Simultaneous Equations framework



To justify OLS we would need

E (Tiui) = 0
E(Xiui) = 0

The focus of IV is to try to relax the first assumption

(There is much less concern about the second)



Lets suppose that we have an instrument Zi for which

E (Ziui) = 0

and we continue to assume that

E(Xiui) = 0

We also will stick with the exactly identified case (1 dimensional
Zi )

Define

Z ∗i =

[
Zi
Xi

]
,X ∗i =

[
Ti
Xi

]
,B =

[
α
β

]
Then we know

E
[
Z ∗i
(

Yi − X ∗
′

i B
)]

= 0



Turning this into a GMM estimator we get

0 =
1
N

N∑
i=1

Z ∗i
(

Yi − X ∗
′

i B̂IV

)

=
1
N

N∑
i=1

Z ∗i Yi −

(
1
N

N∑
i=1

Z ∗i X ∗
′

i

)
B̂IV

which we can solve as

B̂IV ≡

(
1
N

N∑
i=1

Z ∗i X ∗
′

i

)−1
1
N

N∑
i=1

Z ∗i Yi

And that is IV.



Consistency Notation

I will use ≈ to mean asymptotically equivalent. Typically the
phrase

An ≈ Bn

means that
(An − Bn)

p→ 0

So I want to be formal in this sense

However I will not be completely formal as this could also mean
almost sure convergence, convergence in distribution or some
sort of uniform convergence. The differences between these
are not relevant for anything we will do in class.



Consistency of IV

B̂IV =

(
1
N

N∑
i=1

Z ∗i X ∗
′

i

)−1
1
N

N∑
i=1

Z ∗i Yi

=

(
1
N

N∑
i=1

Z ∗i X ∗
′

i

)−1
1
N

N∑
i=1

(
Z ∗i X ∗

′

i B + Z ∗i ui

)

=B +

(
1
N

N∑
i=1

Z ∗i X ∗
′

i

)−1
1
N

N∑
i=1

Z ∗i ui

≈B



since
1
N

N∑
i=1

Z ∗i ui ≈ 0

So (assuming iid sampling) this only took two assumptions.
The moment conditions and the fact that you can invert

E
(

Z ∗i X ∗
′

i

)
As we will discuss this assumption is typically a bigger deal
than in OLS



Furthermore we get (Huber-White) standard errors from

√
N
(

B̂IV − B
)

=

(
1
N

N∑
i=1

Z ∗i X ∗
′

i

)−1 [
1√
N

N∑
i=1

Z ∗i ui

]

Under standard conditions:

1√
N

N∑
i=1

Z ∗i ui ≈ N
(

0,E
(

u2
i Z ∗i Z ∗

′

i

))
so

√
N
(

B̂IV − B
)
≈ N

(
0,E

(
Z ∗i X ∗

′

i

)−1
E
(

u2
i Z ∗i Z ∗

′

i

)
E
(

X ∗i Z ∗
′

i

)−1
)



We approximate this by

E
(

Z ∗i X ∗
′

i

)
≈ 1

N

N∑
i=1

Z ∗i X ∗
′

i

E
(

u2
i Z ∗i Z ∗

′

i

)
≈

N∑
i=1

û2
i Z ∗i Z ∗

′

i



Biasedness of IV

It turns out it will be easiest to think of IV in terms of
consistency, it is generally biased.

I will first discuss why IV is biased, but then we will go to the
more important case of calculating the asymptotic bias of IV or
OLS



First lets think about why OLS is unbiased.

Assume that
E(ui | Xi) = 0

Then

E
(

B̂OLS

)
= B + E

( 1
N

N∑
i=1

XiX
′

i

)−1
1
N

N∑
i=1

Xiui


= B + E

E

( 1
N

N∑
i=1

XiX
′

i

)−1
1
N

N∑
i=1

Xiui

∣∣∣∣∣∣X1, ...,XN


= B + E

( 1
N

N∑
i=1

XiX
′

i

)−1
1
N

N∑
i=1

XiE [ui | X1, ...,XN ]


= B



The same trick does not work for IV because in general

E
(

1
X̄

)
6= 1

E(X )

even though
1
X̄
≈ 1

E(X )

This is neither deep nor important-just a fact you should
probably be aware of



So now we write the assumption as

E(ui | Z ∗i ) = 0

It turns out that an analogous conditional expectation argument
does not work. What do we condition on Z ∗ or (Z ∗,X ∗)?

First consider Z ∗

E
(

B̂IV

)
= B + E

( 1
N

N∑
i=1

X ∗i Z ∗
′

i

)−1
1
N

N∑
i=1

Z ∗i ui


= B + E

E

( 1
N

N∑
i=1

X ∗i Z ∗
′

i

)−1
1
N

N∑
i=1

Z ∗i ui

∣∣∣∣∣∣Z ∗1 , ...,Z ∗N


Can’t bring the expectation inside so we are stuck here



and conditioning on (Z ∗,X ∗)

E
(

B̂IV

)
= B + E

( 1
N

N∑
i=1

X ∗i Z ∗
′

i

)−1
1
N

N∑
i=1

Z ∗i ui


= B + E

E

( 1
N

N∑
i=1

X ∗i Z ∗
′

i

)−1
1
N

N∑
i=1

Z ∗i ui

∣∣∣∣∣∣Z ∗,X ∗


= B + E

( 1
N

N∑
i=1

X ∗i Z ∗
′

i

)−1
1
N

N∑
i=1

Z ∗i E [ui | Z ∗,X ∗]


but E [ui | Z ∗,X ∗] 6= 0 (in general)



So that didn’t work so well, we will need to think more about the
asymptotic bias

Before that I want to take a detour and discuss partitioned
regression which will turn out to be really useful for this and we
will use it many times in this course



Partitioned Regression

Think about the standard regression model (in large matrix
notation)

Y = X1β1 + X2β2 + u

We will define
M2 ≡ I − X2

(
X ′2X2

)−1 X
′

2.

Two facts about M2



Fact 1: M2 is idempotent

M2M2=
(

I − X2
(
X ′2X2

)−1 X
′

2

)(
I − X2

(
X ′2X2

)−1 X
′

2

)
=I − 2X2

(
X ′2X2

)−1 X
′

2 + X2
(
X ′2X2

)−1 X
′

2X2
(
X ′2X2

)−1 X
′

2

=I − X2
(
X ′2X2

)−1 X
′

2

=M2



Fact 2: M2Y is the Residuals from Regression

For any potential dependent variable (say Y ), M2Y is the
residuals I would get if I regressed Y on X2

To see that let the regression coefficients be be ĝ and
generically let Ỹ be residuals from a regression of Y on X2 so
that

Ỹ ≡Y − X2ĝ

=Y − X2
(
X ′2X2

)−1 X ′2Y

=
[
I − X2

(
X ′2X2

)−1 X
′

2

]
Y

=M2Y .



An important special case of this is that if I regress something
on itself, the residuals are all zero

That is

M2X2 = X2 − X2(X ′2X2)−1X ′2X2

= 0



If I think of the GMM moment equations for least squares I get
the “two equations”

0 = X ′1
(

Y − X1β̂1 − X2β̂2

)
0 = X ′2

(
Y − X1β̂1 − X2β̂2

)
We can solve for β̂2 in the second as

β̂2 =
(
X ′2X2

)−1 X ′2
(

Y − X1β̂1

)
Now plug this into the first

0 = X ′1
(

Y − X1β̂1 − X2β̂2

)
= X ′1

(
Y − X1β̂1 − X2

(
X ′2X2

)−1 X ′2
(

Y − X1β̂1

))
= X ′1M2Y − X ′1M2X1β̂1



Or

β̂1 =
(
X ′1M2X1

)−1 X ′1M2Y

=
(

X̃ ′1X̃1

)−1
X̃ ′Ỹ

That is if I

1 Run a regression of X1 on X2 and form its residuals X̃1

2 Run a regression of Y on X2 and form its residuals Ỹ
3 Run a regression of Ỹ on X̃1

Since I derived this from the sample analogue of the GMM
moment equations (or the normal equations), this gives me
exactly the same result as if I had run the full regression of Y
on X1 and X2



It turns out the same idea works for IV.

Put everything we had before into large Matrix notation and we
can write GMM as:

0 = Z ′
(

Y − T α̂IV − X β̂IV

)
0 = X ′

(
Y − T α̂IV − X β̂IV

)
The second can be solved as

β̂IV =
(
X ′X

)−1 X ′ (Y − T α̂IV )

Now plug this into the first

0 = Z ′
(

Y − T α̂IV − X β̂IV

)
= Z ′

(
Y − T α̂IV − X

(
X ′X

)−1 X ′ (Y − T α̂IV )
)

= Z ′MX Y − Z ′MX T α̂IV



so

α̂IV =
(
Z ′MX T

)−1 Z ′MX Y

=
Z̃ ′Ỹ

Z̃ ′T̃

≈ cov(Z̃i , Ỹi)

cov(Z̃i , T̃i)

(This last expression assumes that there is an intercept in the
model. If not it would be expected values rather than
covariances, but covariances make things easier to interpret-at
least to me)



To see consistency from this perspective note that

Ỹ =MX Y
=αMX T + MX Xβ + MX u

=αT̃ + ũ

so

α̂IV ≈
cov(Z̃i , Ỹi)

cov(Z̃i , T̃i)

≈ cov(Z̃i , αT̃i + ũi)

cov(Z̃i , T̃i)

= α +
cov(Z̃i , ũi)

cov(Z̃i , T̃i)



This formula is helpful. In order for the model to be consistent
you need

cov(Z̃i , ũi) = 0

cov(Z̃i , T̃i) 6= 0

But more generally for the asymptotic bias to be small you want

cov(Z̃i , ũi) to be small

|cov(Z̃i , T̃i)| to be large

This means that in practice there is some tradeoff between
them.

If your instrument is not very powerful, a little bit of correlation
in cov(Z̃i , ũi) could lead to a large asymptotic bias.



As a concrete example lets compare IV to OLS.

OLS is really just a special case of IV with Zi = Ti

Then we get

α̂IV ≈ α +
cov(Z̃i , ũi)

cov(Z̃i , T̃i)

α̂OLS ≈ α +
cov(T̃i , ũi)

cov(T̃i , T̃i)

If cov(Z̃i , ũi) = 0 and cov(T̃i , ũi) 6= 0 then IV is consistent and
OLS is not

However, cov(Z̃i , ũi) < cov(T̃i , ũi) does not guarantee less bias
because it also depends on cov(Z̃i , T̃i) = 0 and cov(T̃i , T̃i) 6= 0



Assumptions

Lets think about the assumptions

Lets ignore the first stage thing and assume that isn’t a problem

we looked at two different things

GMM
E(Ziui) = 0,E(Xiui) = 0

My derivation
cov(Z̃i , ũi) = 0

Are these the same?



Well ...

We know that GMM gives consistent estimates and if
cov(Z̃i , ũi) 6= 0 then α̂ is consistent. So the first
assumptions better imply the second
However, it doesn’t have to be the other way around. We
need cov(Z̃i , ũi) = 0 to get consistent estimates of α, but
we haven’t required consistent estimates of β.

Lets explore



First lets show that E(Ziui) = 0,E(Xiui) = 0 implies
cov(Z̃i , ũi) = 0

Z̃i =Zi − X ′i Γzx

ũi =ui − X ′i Γux

E(Xiui) = 0 implies that Γux ≈ 0 so ũi ≈ ui

but then

cov(Z̃i , ũi) =cov(Zi − X ′i Γzx ,ui)

=cov(Zi ,ui)− cov(X ′i Γzx ,ui)

=0



To see it doesn’t go the other way, suppose that I can write

ui = X ′i δ + εi

with E(Xi , εi) = 0,E(Zi , εi) = 0

Then ũi ≈ εi so

cov(Z̃i , ũi) =cov(Zi − X ′i Γzx , εi)

=cov(Zi , εi)− cov(X ′i Γzx , εi)

=0



We can also see that we can write

Yi =αTi + X ′i β + ui

αTi + X ′i (β + δ) + εi

So IV gives a consistent estimate of α but not β



Simultaneous equations

The second and third way to see IV comes from the
simultaneous equations framework

Yi = αTi + X ′i β + ui

Ti = ρYi + X ′i γ + Ziδ + νi

Thee are called the “structural equations”

Note the difference between Xi and Zi in that we restrict what
can affect what.

We could also have stuff that affects Yi but not not Ti but lets
not worry about that (we are still allowing this as a possibility as
some of the γ coefficients could be zero)

The model with ρ = 0 simplifies things, but lets focus on what
happens when it isn’t



We assume that

E(ui | Xi ,Zi) = 0
E(vi | Xi ,Zi) = 0

but notice that if ρ 6= 0, then almost for sure Ti is correlated with
ui because ui influences Ti through Yi



It is useful to calculate the “reduced form” for Ti , namely

Ti = ρYi + X ′i γ + Ziδ + νi

= ρ
[
αTi + X ′i β + ui

]
+ X ′i γ + Ziδ + νi

= ραTi + X ′i [ρβ + γ] + Z ′i δ + (ρui + νi)

= X ′i
ρβ + γ

1− ρα
+ Z ′i

δ

1− ρα
+
ρui + νi

1− ρα
= X ′i β

∗
2 + Z ′i δ

∗
2 + ν∗i

where

β∗2 ≡
ρβ + γ

1− ρα

δ∗2 ≡
δ

1− ρα

ν∗i ≡
ρui + νi

1− ρα

Note that E(ν∗i | Xi ,Zi) = 0, so one can obtain a consistent
estimate of β∗2 and δ∗2 by regressing Ti on Xi and Zi .



This is called the “reduced form” equation for Ti

Note that the parameters here are not the fundamental
structural parameters themselves, but the are a known function
of these parameters

To me this is the classic definition of reduced form (you need to
have a structural model)



We can obtain a consistent estimate of α as long as we have
an exclusion restriction

That is we need some Zi that affects Ti but not Yi directly

I want to show this in two different ways



Method 1
We can also solve for the reduced form for Yi

Yi = αTi + X ′i β + ui

= Xi
αγ + β

1− αρ
+ Zi

αδ

1− αρ
+
ανi + ui

1− αρ
= Xiβ

∗
1 + Ziδ

∗
1 + u∗i

with

β∗1 ≡
αγ + β

1− αρ

δ∗1 ≡
αδ

1− αρ

u∗i ≡
ανi + ui

1− αρ

Like the other reduced form, we can get a consistent estimate
of β∗1 and δ∗1 by regressing Yi on Xi and Zi .



Notice then that
δ∗1
δ∗2

= α

So we can get a consistent estimate of α simply by taking the
ratio of the reduced form coefficients

It also gives another interpretation of IV:

δ∗2 is the causal effect of Zi on Ti

δ∗1 is the causal effect of Zi on Yi -it only operates through Ti



If we increase Zi by one unit this leads Ti to increase by δ∗2 units
which causes Yi to increase by δ∗2α units

Thus the causal effect of Zi on Yi is δ∗2α units



This illustrates another important way to think about an
instrument: the key assumption is that Ti is the only channel
through which Zi influences Yi



Suppose there was another

Then the causal effect of Zi on Yi would be δ∗2α + da and IV
would be

δ∗2α + da
δ∗2



In the exactly identified case (i.e. one Zi ), this is numerically
identical to IV.

To see why, note that in a regression of Yi and Ti on (Xi ,Zi)
yields

δ̂1 =
Z̃ ′i Ỹi

Z̃ ′i Z̃i

δ̂2 =
Z̃ ′i T̃i

Z̃ ′i Z̃i

so

δ̂1

δ̂2
=

Z̃ ′i Ỹi

Z̃ ′i T̃i

= α̂IV

This is just math-it does not require that the “Structural
equation" determining Ti be correct



Method 2

Define
T f

i ≡ X ′i β
∗
2 + Z ′i δ

∗
2

and suppose that T f
i were known to the econometrician

Now notice that

Yi = αTi + X ′i β + ui

= α
[
T f

i + ν∗i

]
+ X ′i β + ui

= αT f
i + X ′i β2 + (αν∗i + ui)

One could get a consistent estimate of α by regressing Yi on Xi
and T f

i .



Two Stage Least Squares

In practice we don’t know T f
i but can get a consistent estimate

of it from the fitted values of a reduced form regression call this
T̂i (it is crucial that the reduced form gives us consistent
estimates of β∗2 and δ∗2)

That is:

1 Regress Ti on Xi and Zi , form the predicted value T̂i

2 Regress Y on Xi and T̂i

To run the second regression one needs to be able to vary T̂i
separately from Xi which can only be done if there is a Zi



It turns out that 2SLS is also is numerically identical to IV (with
1 instrument)

Note that
T̂ = Z ∗

(
Z ∗

′
Z ∗
)−1

Z ∗
′
T

so

B̂2SLS =

([
T̂ X

]′ [
T̂ X

])−1 [
T̂ X

]′
Y

However, note that we can write

X = Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
X

That is projecting X on (X ,Z ) and using it to predict X will be a
perfect fit.



That means that(using notation from earlier) that[
T̂ X

]
= Z ∗

(
Z ∗

′
Z ∗
)−1

Z ∗
′
X ∗

Then (in the exactly identified case) we can write

B̂2SLS =

(
X ∗

′
Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
X ∗
)−1

×

X ∗
′
Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
Y

=

(
X ∗

′
Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
X∗
)−1

X ∗
′
Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
Y

=
(

Z ∗
′
X ∗
)−1 (

Z ∗
′
Z ∗
)(

X ∗
′
Z ∗
)−1

X ∗
′
Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
Y

=
(

Z ∗
′
X ∗
)−1 (

Z ∗
′
Z ∗
)(

Z ∗
′
Z ∗
)−1

Z ∗
′
Y

=
(

Z ∗
′
X ∗
)−1

Z ∗
′
Y

=β̂IV



3 Interpretations

Thus with 1 instrument we have 3 equivalent ways to derive IV:

1 GMM estimator or (Z ′T )−1Z ′Y
2 Ratio of reduced form estimates-rescaling the reduced

form
3 2SLS-direct effect of fitted model

With more than one instrument only one of these procedures
works-we’ll worry about that later



Examples

There are three main reasons people use IV

1 Simultaneity bias: ρ 6= 0
2 Omitted Variable bias : There are unobservables that

contribute to ui that are correlated with Ti

3 Measurement Error: We do not observe Ti perfectly

While the first is the original reason for IV, in practice omitted
variable bias is typically the biggest concern

A classic (perhaps the classic) example is the returns to
schooling.



Returns to Schooling

This comes from the Card’s chapter in the 1999 Handbook of
Labor Economics

Lets assume that

log(Wi) = αSi + X ′i β + εi

where Wi is wages, Si is schooling, and Xi is other stuff

The biggest problem is unobserved ability



We are worried about ability bias we want to use instrumental
variables

A good instrument should have two qualities:

It should be correlated with schooling
It should be uncorrelated with unobserved ability (and
other unobservables)

Many different things have been tried. Lets go through some of
them



Family Background

If my parents earn quite a bit of money it should be easier for
me to borrow for college

Also they might put more value on education

This should make me more likely to go

This has no direct effect on my income-Wisconsin did not ask
how much education my Father had when they made my offer

But is family background likely to be uncorrelated with
unobserved ability?



Closeness of College

If I have a college in my town it should be much easier to attend
college

I can live at home
If I live on campus

I can travel to college easily
I can come home for meals and to get my clothes washed

I can hang out with my friends from High school

But is this uncorrelated with unobserved ability?



Quarter of Birth

This is the most creative

Consider the following two aspects of the U.S. education
system (this actually varies from state to state and across time
but ignore that for now),

People begin Kindergarten in the calendar year in which
they turn 5
You must stay in school until you are 16

Now consider kids who:

Can’t stand school and will leave as soon as possible
Obey truancy law and school age starting law
Are born on either December 31,1972 or January 1,1973



Those born on December 31 will

turn 5 in the calendar year 1977 and will start school then
(at age 4)
will stop school on their 16th birthday which will be on Dec.
31, 1988
thus they will stop school during the winter break of 11th
grade

Those born on January 1 will

turn 5 in the calendar year 1978 and will start school then
(at age 5)
will stop school on their 16th birthday which will be on Jan.
1, 1989
thus they will stop school during the winter break of 10th
grade



The instrument is a dummy variable for whether you are born
on Dec. 31 or Jan 1

This is pretty cool:

For reasons above it will be correlated with education
No reason at all to believe that it is correlated with
unobserved ability

The Fact that not everyone obeys perfectly is not problematic:

An instrument just needs to be correlated with schooling, it
does not have to be perfectly correlated

In practice we can’t just use the day as an instrument, use
“quarter of birth” instead



Policy Changes

Another possibility is to use institutional features that affect
schooling

Here often institutional features affect one group or one cohort
rather than others









Consistently IV estimates are higher than OLS

Why?

Bad Instruments
Ability Bias
Measurement Error
Publication Bias
Discount Rate Bias



Measurement Error

Another way people use instruments is for measurement error

In the classic model lets get rid of X ′s so we want to measure
the effect of T on Y .

Yi = β0 + αTi + ui

and lets not worry about other issues so assume that
cov(Ti ,ui) = 0.

The complication is that I don’t get to observe Ti , I only get to
observe a noisy version of it:

τ1i = Ti + ξi

where ξi is i.i.d measurement error with variance σ2
ξ



What happens if I run the regression on τ1i instead of Ti?

α̂ ≈ Cov (τ1i ,Yi)

Var(τ1i)

=
Cov (Ti + ξi , β0 + αTi + ui)

Var(Ti + ξi)

= α
Var (Ti)

Var(Ti) + σ2
ξ



Why is OLS biased?

Lets rewrite the model as

Yi = β0 + αTi + ui

= β0 + αTi + αξi + ui − αξi

= β0 + ατ1i + (ui − αξi).

You can see the problem with OLS: τ1i = Ti + ξi is correlated
with (ui − αξi)



Now suppose we have another measure of Ti ,

τ2i = Ti + ηi

where ηi is uncorrelated with everything else in the model.

Using this as an instrument gives us a solution.

τ2i is correlated with τ1i (through Ti),but uncorrelated with
(ui − αξi) so we can use τ2i as an instrument for τ1i .



Twins

(Here we will think about both measurement error and fixed
effect approaches)

log(wif ) = θf + αSif + uif

The problem is that θf is correlated with Sif

We can solve by differencing

∆ log(wf ) = α∆Sf + ∆uf

if ∆Sf is uncorrelated with ∆uf , then we can use this to get
consistent estimates of α



The problem here is that a little measurement error can screw
up things quite a bit because the variance of ∆Sf is small.

A solution of this is to get two measures on schooling

Ask me about my schooling
Also ask my brother about my schooling
do the same think for my brother’s schooling

This gives us two different measure of ∆Sif .

Use one as an instrument for the other





Overidentification

What happens when we have more than one instrument?

Lets think about a general case in which Zi is multidimensional

Let KZ be the dimension of Z ∗i
Let KX denote the dimension of X ∗i

Now we have more equations then parameters so we can no
longer solve for B̂ using

0 = Z ∗
′
(

Y − X ∗B̂
)

because this gives us KZ equations in KX unknowns.



A simple solution is follow GMM and weight the moments by
some KZ × KZ weighting matrix Ω and then minimize[

Z ∗
′
(Y − X ∗B)

]′
Ω
[
Z ∗

′
(Y − X ∗B)

]
which gives

−2X ∗
′
Z ∗ΩZ ∗

′
(

Y − X ∗B̂
)

= 0

(notice that in the exactly identified case X ∗
′
Z ∗Ω drops out)

We can solve directly for our estimator

B̂GMM =
(

X ∗
′
Z ∗ΩZ ∗

′
X ∗
)−1

X ∗
′
Z ∗ΩZ ∗

′
Y



Two staged least squares is a special case of this:

B̂2SLS =

(
X ∗

′
Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
X ∗
)−1

X ∗
′
Z ∗
(

Z ∗
′
Z ∗
)−1

Z ∗
′
Y

Notice that this is the same as B̂GMM when

Ω =
(

Z ∗
′
Z ∗
)−1



Consistency

B̂GMM =

(
1
N

X ∗
′
Z ∗Ω

1
N

Z ∗
′
X ∗
)−1 1

N
X ∗

′
Z ∗Ω

1
N

Z ∗
′
(X ∗B + U)

=B +

(
1
N

X ∗
′
Z ∗Ω

1
N

Z ∗
′
X ∗
)−1 1

N
X ∗

′
Z ∗Ω

1
N

Z ∗
′
U

≈B +
(

E
(

X ∗i Z ∗
′

i

)
ΩE

(
Z ∗i X ∗

′

i

))−1
E
(

X ∗i Z ∗
′

i

)
ΩE(Z ∗i ui)

=B



Inference

√
N
(

B̂ − B
)

=

(
1
N

X ∗
′
Z ∗Ω

1
N

Z ∗
′
X ∗
)−1 1

N
X ∗

′
Z ∗Ω

1√
N

Z ∗
′
U

Using a standard central limit theorem with i.i.d. data

1√
N

Z ∗
′
U =

1√
N

N∑
i=1

Z ∗i ui

≈ N
(

0,E
(

u2
i Z ∗i Z ∗

′

i

))
Thus

√
N
(

B̂ − B
)
≈N

(
0,A′VA

)
with

V =E
(

X ∗i Z ∗
′

i

)
ΩE

(
u2

i Z ∗i Z ∗
′

i

)
ΩE

(
Z ∗i X ∗

′

i

)
A =

(
E
(

X ∗i Z ∗
′

i

)
ΩE

(
Z ∗i X ∗

′

i

))−1



From GMM results we know that the efficient weighting matrix is

Ω =E
(

u2
i Z ∗i Z ∗

′

i

)−1

in which case the Covariance matrix simplifies to(
E
(

X ∗i Z ∗
′

i

)
E
(

u2
i Z ∗i Z ∗

′

i

)−1
E
(

Z ∗i X ∗
′

i

))−1

This also means that under homoskedasticity two staged least
squares is efficient.



Overidentification Tests

Lets think about testing in the following way.

Suppose we have two instruments so that we have three sets of
moment conditions

0 = Z ′1
(

Y − T α̂− X β̂
)

0 = Z ′2
(

Y − T α̂− X β̂
)

0 = X ′
(

Y − T α̂− X β̂
)



As before we can use partitioned regression to deal with the X’s
and then write the first two moment equations as

0 = Z̃ ′1
(

Ỹ − T̃ α̂
)

0 = Z̃ ′2
(

Ỹ − T̃ α̂
)

The way I see the overidentification test is whether we can find
an α̂ that solves both equations.



That is let

α̂1 =
Z̃ ′1Ỹ

Z̃ ′2T̃

α̂2 =
Z̃ ′1Ỹ

Z̃ ′2T̃

If
α̂1 ≈ α̂2

then the test will not reject the model, otherwise it will

For this reason I am not a big fan of overidentification tests:

If you have two crappy instruments with roughly the same
bias you will fail to reject
Why not just estimate α̂1 and α̂2 and look at them? It
seems to me that you learn much more from that than a
simple F-statistic


