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Survival analysis

This is especially useful for variables of interest measured in
lengths of time:

Length of life after a medical procedure
Unemployment spell
Life of a company
How long someone has health insurance



Let Ti be the dependent variable we are trying to explain (kind
of annoying notation in this class-it is not a treatment it is
typically an outcome)

There are a whole bunch of different-and equivalent ways to
characterize the distribution of Ti.

Distribution function

F(t) ≡Pr(Ti ≤ t)

Density function

f (t) ≡∂F(t)
∂t



Survivor function

S(t) ≡Pr(Ti > t) = 1− F(t)

Hazard Function

λ(t) ≡ lim
δ→0

Pr(Ti ≤ t + δ | Ti ≥ t)
δ

=
f (t)
S(t)

=
−dlogS(t)

dt

Integrated Hazard

Λ(t) ≡
ˆ t

0
λ(s)ds

=− log(S(t))



Hazard Function

In some ways it would be natural to just look at the data like we
typically do and analyze log(Ti)

It is nicer to think about the model in terms of the hazard
function

Reasons:

Right truncation
Time varying covariates
Just easier to think about



Specifying the model
The easiest place to start is just a constant hazard rate λ which
gives an exponential distribution

S(t) =e−λt

with pdf f (t) = λe−λt



We can easily add X′s into this model and the most common
specification is

λi = exp(X′iβ)

We can allow the X′s to change over time but lets not worry
about that yet



Cox Proportional Hazard

An issue here is that we have still restricted the model so that
the hazard rate has to be constant

We relax this by letting the hazard rate take the proportional
hazard form:

λi(t) =λ0(t) exp(X′iβ)

We would then typically specificy a parametric functional form
for λ0(t)



Weibull

The most common is the Weibull

λ0(t) =ptp−1

Weibull hazard
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Observed heterogeneity

Special case: the proportional hazard (PH) model

�(t; x) = �0(t) exp(x0�)

Log-linearity: each element in � is a “semielasticity” of the hazard with respect to the

corresponding element in x, and if that element in x is already in log form, then it is an

elasticity.

More complicated if x is time dependent (not covered)

There is no additional error (for excluded regressors), T is obtained from intrinsic random-

ness.

f(t), F (t) and S(t) in the proportional hazard model

Recall the general expression

F (t) = 1 � exp


�
Z t

0

�(s)ds

�
= 1 � exp [�⇤(t)]

2



This also has the nice property that we can write

log(Ti) =X′i

(−β
p

)
+
εi

p

where εi is extreme value

This makes parameters easy to interpret



To see why note that the integrated hazard is

Λ(t) = eX′i β
ˆ t

0
psp−1ds =eX′i βtp

so

S (t) =e−Λ(t)

=e−eX′i β tp

=e−eX′i β+p log(t)



The extreme value distribution is

Pr (εi < x) =1− e−ex

so if

log(Ti) =− X′iβ
p

+
εi

p

Then

Pr (Ti < t) =Pr
(
−X′iβ

p
+
εi

p
< log(t)

)

=Pr
(
εi < p log(t) + X′iβ

)

=1− e−ep log(t)+X′i β



Estimation

Estimate the model by maximum likelihood

When we see the end of the spell likelihood is

f (Ti | Xi; θ) = λ(Ti | Xi; θ)S(Ti | Xi; θ)

If data is right sensored at τ, likelihood is

Pr(Ti > τ | Xi; θ) = S(τ | Xi; θ)

Note that we have allowed observed heterogeneity across
individuals, but no unobserved heterogeneity



Unobserved Heterogeneity

We can write the mixed proportional hazard model as

λi(t) =λ0(t) exp(X′iβ + vi)

=λ0(t) exp(X′iβ)Vi



For example hazard out of unemployment falls with t this can be
due to:

Duration dependence λ0(t) falls with t

Unobserved heterogeneity



Identification

Seems subtle, but as long as Vi is independent of Xi the model

λi(t) = λ0(t)φ(x)Vi

is identified

To see why define the integrated baseline hazard as

Λ0(t) ≡
ˆ t

0
λ0(t)dt.

Pr(Ti > t | Xi,Vi) = e−Λ0(t)φ(Xi)Vi .



Let FV to be the distribution of Vi and define g(·) = − log(φ(·))

Then generalizing what we did before with the Weibull

Pr(Ti ≤ t | Xi = x) =

ˆ
1− e−Λ0(t)φ(x)VdFv

=

ˆ
1− exp(−exp(log(Λ0(t))− g(x) + log(V))dFv

≡ Fv∗(log(Λ0(t))− g(x))

where Fv∗ is defined implicitly by this relationship.

Given the separability between log(Λ0(t)) and g(x) one can
show that with sufficient scale/location normalizations the
model is identified



Likelihood

The likelihood function is analogous we just need to integrate
across the distribution of V:ˆ

λ0(Ti)φ(Xi)Ve−Λ0(Ti)φ(Xi)VdFv

For data right truncated at τ
ˆ

e−Λ0(τ)φ(Xi)VdFv



Left truncation

We have showed that right truncation (ongoing spells at the end
of the sample) is not a problem

However left truncation or ongoing spells at the beginning of the
sample are a big deal

The problem is that even if I know the length of the ongoing
spells, I don’t observe spells that began at the same time

The distribution of V here is selected: we are going to
oversample small values of V for any length of ongoing spell

You either need to throw out ongoing spells or somehow model
the initial state.

(this is a case where Indirect Inference might be easier to
compute then maximum likelihood)



Time Varying X’s
In principle its easy, in practice it could be a pain

Let Xi(t) denote X over time

Let the integrated hazard (apart from V) be

Λi(t) ≡
ˆ t

0
λ0(s)φ(Xi(s))ds

Then the likelihood function is:ˆ
λ0(Ti)φ(Xi(Ti))Ve−Λi(Ti)VdFv

For data right truncated at τ
ˆ

e−Λi(τ)VdFv



Competing Risk Model

Sometimes can leave a spell for more than two reasons (other
than data ending):

Can die of cancer or something else
Can leave unemployment to OLF rather than employment
Can die before you become married



This is easy to deal with, just define two different hazards:

λ1
i (t)

λ2
i (t)

We get to see the minimum of T1
i ,T

2
i

A lot like a straight Roy model

Lets think about this with non time varying X’s but allow for
unobserved heterogeneity

λ1
i (t) =λ01(t)φ1(Xi1)Vi1

λ2
i (t) =λ02(t)φ2(Xi1)Vi2

with Λ01(t) and Λ02(t) the corresponding integrated hazard



So we can write the likelihood as

if leave because of risk 1ˆ
λ01(Ti1)φ1(Xi1)V1e−Λ01(Ti1)φ1(Xi1)V1e−Λ02(Ti1)φ(Xi2)V2dFv

if leave because of risk 2ˆ
λ02(Ti2)φ2(Xi2)V2e−Λ01(Ti2)φ1(Xi1)V1e−Λ02(Ti2)φ(Xi2)V2dFv

if right truncated at τ
ˆ

e−Λ01(τ)φ1(Xi1)V1e−Λ02(τ)φ(Xi2)V2dFv



Example 1: Gibbons and Katz

Gibbons and Katz, “Layoffs and Lemons", Journal of Labor
Economics, Oct. 1991

They write down a model of Asymmetric Information in the
labor market

They compare displaced workers who lost their job either due
to layoffs or plant closings

Idea is that layoff is a bad signal relative to plant closing



Layoffs and Lemons 373 

Table 6 
Effects of Selected Variables on the Duration of the First Spell 
of Joblessness following Displacement from January 1986 CPS 
Displaced Workers Survey, Males with Only One Spell of 
Joblessness since Displacement 
Dependent Variable = Log (Weeks of Joblessness) 
Weibull Duration Model Specification 

Variable (1) (2) (3) (4) 

Layoff 1 .248 .244 .352 .323 
(.086) (.108) (.106) (.126) 

Layoff x white collar ... -.049 ... ... 
(.168) 

Layoff X high union ... ... -.299 ... 
(.147) 

Layoff x fraction union ... ... ... -.358 
(.345) 

Fraction union . . . 1.173 1.363 1.326 
(.266) (.294) (.033) 

Previous tenure in years .037 .034 .034 .033 
(.007) (.007) (.007) (.007) 

Log of previous real weekly earnings -.301 -.339 -.331 -.333 
(.100) (.099) (.099) (.099) 

Weibull scale parameter (a) 1.146 1.139 1.137 1.139 
(.033) (.032) (.032) (.032) 

Log likelihood -1,831.3 -1,822.2 -1,820.2 -1,821.7 

NOTE.-The reported models were estimated by maximum likelihood with left censoring explicitly 
treated using the LIFEREG procedure in SAS. The sample size is 1,228. The reported specifications include 
education, a dummy for advance notification of displacement, year-of-displacenment dummies, seven previous- 
industry dummies, eight previous-occupation dummies, experience (age - education - 6) and its square, 
a marriage dummy, a nonwhite dummy, and three region dummies. Fraction union is the 1983 fraction 
unionized of the worker's predisplacement industry-occupation cell. High union equals one for workers 
displaced from industry-occupation cells where the fraction unionized was greater than 25.5% in 1983; it 
equals zero otherwise. Earnings are deflated by the GNP deflator. The numbers in parentheses are asymptotic 
standard errors. 

The coefficient estimate for the layoff dummy in column 1 of table 6 
indicates that workers permanently displaced by layoffs have approximately 
25% longer initial unemployment spells than do those displaced in plant 
closings. This finding is consistent with our (extended) lemons model but 
of course also is consistent with a recall-expectations model. In columns 
2-4 of table 6 we attempt to isolate the effect due solely to the 
lemons model. 

The estimates in column 2 indicate that the effect observed in column 
1 for the whole sample also appears in both the white- and blue-collar 
subsamples of our data set: workers permanently displaced by layoffs ex- 
perience significantly longer initial unemployment spells than do workers 
displaced by plant closings, regardless of whether the displacement is from 
a white- or blue-collar job. (More precisely, the point estimates in col. 2 
suggest that the effect is slightly smaller for white-collar workers but far 
from statistically significantly so.) Since white-collar workers are much 



Example 2: Meyer

Meyer, “Unemployment Insurance and Unemployment Spells,"
Econometrica, July, 1990

Meyer looks at unemployment spells right before benefits run
out

After a period of time benefits run out

He estimates baseline hazard flexibly



BRUCE D. MEYER 

TABLE V 
HAZARDMODEL ESTIMATES" 

Soecification 

Number of dependents 

1 = married, spouse present 

Years of schooling 

Log UI benefit level 

Log pre-UI after tax wage 

Age 17-24 

Age 25-34 

Age 35-44 

Age 45-54 

State unemployment rate 

Exhaustion spline:b 
UI 1 

Benefits previously 
expected to lapseC 

State fixed effects 
Nonparametric baseline 
Heterogeneity variance 

Sample size 
Log-likelihood value 

Standard errors are shown in parentheses.  
b ~ h e  exhaustion spline variables are defined in the text. 
'If earlier in the spell benefits were expected to lapse in the current week. the variable equals 1: othenvlse it 

equals 0. 
b a s e l i n e  hazard parameters are reported in Table VII. 
'The unconstrained estimate of the variance is zero. 



Discrete Time Duration Models
An alternative way to model duration data is to treat time as
discrete

For some of us, this is a more intuitive way to understand these
models

Now Ti is an integer

We can do something analogous to the constant hazard with
X′s by modeling the discrete hazard with a logit (or a probit or
something else)

λit = Pr(Ti = t | Ti > t − 1,Xi)

=
1

1 + eX′i β



To make it like the proportional hazard model we could allow
the intercept to vary with t.

More generally we can easily see how to allow both Xi and β to
vary with t

λit = Pr(Ti = t | Ti > t − 1,Xit)

=
1

1 + eX′itβt

And then adding unobserved heterogeneity is also straight
forward

Pr(Ti = t | Ti > t − 1,Xit) =
1

1 + eX′itβt+vi



We can write the likelihood without censoring as

ˆ [Ti−1∏

t=1

eX′itβt+v

1 + eX′itβt+v

]
1

1 + eX′iTi
βTi +v

dFv(v)

and with censoring as

ˆ τ∏

t=1

eX′itβt+v

1 + eX′itβt+v
dFv(v)



Identification

Cameron and Heckman, “Lifecycle Schooling and Dynamic
Selection Bias: Models and Evidence for Five Cohorts of
American Males,” JPE April 1998

This is easiest to think about with two periods. Suppose Ti

takes on three values 0, 1, 2

Ti > 0⇐⇒1(g1(Xi1) + vi1 > 0)

Conditional on Ti > 0,

Ti = 2⇐⇒1(g2(Xi2) + vi2 > 0)

This is like the standard selection model



Can identify the model in the following way (assuming sufficient
normalizations):

1 From first period identify g1

2 Use identification at infinite to get g2

3 Given those construct joint distribution of (vi1, vi2)



Example: Cameron and Heckman

Same Cameron and Heckman Paper

They estimate a dynamic duration model for schooling
accounting for selection in a flexible way




