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Survival analysis

This is especially useful for variables of interest measured in
lengths of time:

Length of life after a medical procedure
Unemployment spell

Life of a company

How long someone has health insurance
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Let T; be the dependent variable we are trying to explain (kind
of annoying notation in this class-it is not a treatment it is
typically an outcome)

There are a whole bunch of different-and equivalent ways to
characterize the distribution of T;.

o Distribution function
F(t) =Pr(T; <1)

o Density function




o Survivor function
S(t) =Pr(T; >t) =1—F(t)

o Hazard Function

PI'(T,'SZ‘"F&‘T,‘ZI)

) = lim 5
_ [ _ —dlogS(1)
S(1) dt

o Integrated Hazard



Hazard Function

In some ways it would be natural to just look at the data like we
typically do and analyze log(T;)

It is nicer to think about the model in terms of the hazard
function

Reasons:

o Right truncation
o Time varying covariates
o Just easier to think about



Specifying the model
The easiest place to start is just a constant hazard rate A which
gives an exponential distribution

S(1) =e=N
with pdf £(£) = Ae™
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We can easily add X’s into this model and the most common
specification is

Ai =exp(X;f3)

We can allow the X’s to change over time but lets not worry
about that yet



Cox Proportional Hazard

An issue here is that we have still restricted the model so that
the hazard rate has to be constant

We relax this by letting the hazard rate take the proportional
hazard form:

Ai(t) =Xo(t) exp(X;B)

We would then typically specificy a parametric functional form
for \o(7)



Weibull

The most common is the Weibull
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This also has the nice property that we can write

log(T;) =X| <_ﬁ> +2
p p

where ¢; is extreme value

This makes parameters easy to interpret



To see why note that the integrated hazard is
t
A(r) = & / ps"Lds =e5iP
0
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The extreme value distribution is

x

Pr(e;<x)=l—e¢

so if
X(ﬁ Ei
log(T;) = — L
g(T:) > 7
Then
X! ;
Pr(T; <t) =Pr <—f + % < log(t)>

=Pr (g; < plog(t) + X{3)

_ e log()+X]
=1—e



Estimation

Estimate the model by maximum likelihood
o When we see the end of the spell likelihood is
F(Ti [ Xi30) = X(T; | X3 0)S(T; | X33 0)
o If data is right sensored at 7, likelihood is
Pr(T; > 7| X;;0) = S(7 | X;;0)

Note that we have allowed observed heterogeneity across
individuals, but no unobserved heterogeneity



Unobserved Heterogeneity

We can write the mixed proportional hazard model as

Ai(2) =Xo(t) exp(X; 3 + v;)
—olt) exp(X.B)V,



For example hazard out of unemployment falls with ¢ this can be
due to:

o Duration dependence \(¢) falls with ¢
@ Unobserved heterogeneity



Identification

Seems subtle, but as long as V; is independent of X; the model

is identified

To see why define the integrated baseline hazard as

Ao(r) = /Ot Ao(7)dt.

PF(T,' >t ‘ Xi, V,‘) = e_AO([)¢(Xi)Vi.



Let Fy to be the distribution of V; and define g(-) = —log(¢(+))

Then generalizing what we did before with the Weibull
Pr(T; <t|Xi=x) = / 1 — e MoV,

= [ 1= eml-expliog(t(1) - x) + log(V)dF,
= Fy(log(Ao (7)) — g(x))
where F,- is defined implicitly by this relationship.

Given the separability between log(Ao(7)) and g(x) one can
show that with sufficient scale/location normalizations the
model is identified



Likelihood

The likelihood function is analogous we just need to integrate
across the distribution of V:

/ Ao(T3)p(X;) Ve Mo TEX)Y g,
For data right truncated at 7

/ e o ("')¢(Xi)VdFv



Left truncation

We have showed that right truncation (ongoing spells at the end
of the sample) is not a problem

However left truncation or ongoing spells at the beginning of the
sample are a big deal

The problem is that even if | know the length of the ongoing
spells, | don’t observe spells that began at the same time

The distribution of V here is selected: we are going to
oversample small values of V for any length of ongoing spell

You either need to throw out ongoing spells or somehow model
the initial state.

(this is a case where Indirect Inference might be easier to
compute then maximum likelihood)



Time Varying X’s

In principle its easy, in practice it could be a pain
Let X;(¢) denote X over time

Let the integrated hazard (apart from V) be

ni= | hols) (X, (s))ds

Then the likelihood function is:
/ Xo(T)d(Xi(T;)) Ve NIV g,

For data right truncated at =

/ e NV aE,



Competing Risk Model

Sometimes can leave a spell for more than two reasons (other
than data ending):

o Can die of cancer or something else
o Can leave unemployment to OLF rather than employment
o Can die before you become married



This is easy to deal with, just define two different hazards:

We get to see the minimum of T}, 7

1971

A lot like a straight Roy model

Lets think about this with non time varying X’s but allow for
unobserved heterogeneity

with Ag;(7) and Ap(7) the corresponding integrated hazard



So we can write the likelihood as
o if leave because of risk 1
/)\Ol(Til)¢1(Xil)vle_AOI(Til)¢l(Xil)vle_AOZ(Til)¢(Xi2)V2dFV
o if leave because of risk 2
/)\OZ(TiZ)gbZ(XiZ)VZe_AOl(Tiz)d)l(Xil)vle_AOZ(TQ)d)(XiZ)VZdFV
o if right truncated at 7

/ e~ N (M)o1(Xi)Vi e—A02(7)¢(Xi2)V2dFV



Example 1: Gibbons and Katz

Gibbons and Katz, “Layoffs and Lemons", Journal of Labor
Economics, Oct. 1991

They write down a model of Asymmetric Information in the
labor market

They compare displaced workers who lost their job either due
to layoffs or plant closings

Idea is that layoff is a bad signal relative to plant closing



Table 6

Effects of Selected Variables on the Duration of the First Spell
of Joblessness following Displacement from January 1986 CPS
Disi)laced Workers Survey, Males with Only One Spell of
Joblessness since Displacement

Dependent Variable = Log (Weeks of Joblessness)

Weibull Duration Model Specification

Variable (1) 2 3) #)
Layoff = 1 .248 244 .352 323
(.086) (.108) (.106) (126)
Layoff X white collar ce —.049 . .
(168)
Layoff X high union . e —-.299
(.147)
Layoff X fraction union . —.358
(345)
Fraction union S 1.173 1.363 1.326
(266) (294) (033)
Previous tenure in years .037 .034 .034 .033
(.007) (007) (007) (.007)
Log of previous real weekly earnings —.301 —.339 —.331 —.333
(.100) (099) (.099) (099)
Weibull scale parameter (o) 1.146 1.139 1.137 1.139
(033) (032) (032) (.032)
Log likelihood —1,831.3 —1,822.2 —1,820.2 —1,821.7




Example 2: Meyer

Meyer, “Unemployment Insurance and Unemployment Spells,"
Econometrica, July, 1990

Meyer looks at unemployment spells right before benefits run
out

After a period of time benefits run out

He estimates baseline hazard flexibly



TABLE V

HazARD MODEL ESTIMATES®

Specification
Variable 0] @ ® @ [5)
Number of dependents —.0418 —.042: —.0416 —.0386 —.0386
(0.0169)  (0.0171)  (0.0168)  (0.0239)  (0.0242)
1 = married, spouse present 1302 1221 1315 1006 .1001
(0.0508)  (0.0515)  (0.0507)  (0.0722)  (0.0730)
1 = white 2097 2230 2171 2337 2364
(0.0572)  (0.0579)  (0.0568)  (0.0834)  (0.0841)
Years of schooling —.0276 —.0275 —.0272 -.0177 -.0176
(0.0083)  (0.0084)  (0.0083)  (0.0123)  (0.0124)
Log UI benefit level —.8782 —.8157 —.8478 —.8685 —.8757
(0.1091) ~ (0.1096)  (0.1088)  (0.2042) ~ (0.2065)
Log pre-UI after tax wage .5630 5651 5530 7289 7411
(0.0855)  (0.0860)  (0.0848)  (0.1415)  (0.1433)
Age 17-24 2596 2613 12636 2664 2670
(0.0855)  (0.0865)  (0.0855)  (0.1242)  (0.1256)
Age 25-34 .1545 1542 1529 .1080 1068
(0.0750)  (0.0759)  (0.0749)  (0.1066)  (0.1078)
Age 35-44 1642 1594 1621 .1466 1492
(0.0776)  (0.0787)  (0.0774)  (0.1110) ~ (0.1122)
Age 45-54 0473 0417 .0460 0234 0239
(0.0828)  (0.0837)  (0.0827)  (0.1156)  (0.1169)
State unemployment rate —.0237 .0019 —.0234 0967 0993
(0.0133)  (0.0126)  (0.0134)  (0.0216)  (0.0218)
Exhaustion spline:”
ur 6772 6473 5977 7379 6670
(0.2470)  (0.1996)  (0.2479)  (0.2499)  (0.2513)
ur 2-5 1288 1468 1665 1448 .1847
(0.0612)  (0.0519)  (0.0618)  (0.0625)  (0.0634)
Ul 6-10 .0054 0183 0012 0054 0052
(0.0317)  (0.0280) (0 0317)  (0.0334)  (0.0336)
Ur 11—25 —.0052 .0074 —.0067 —.0093 —.0102
(0.0068)  (0.0063)  (0.0068)  (0.0078) (0 0078)
UI 26-40 —.0018 .0016 —.0008 —.0001 0015
(0.0064)  (0.0063)  (0.0064)  (0.0074)  (0.0075)
UI 41-54 0211 0264 .0209 0291 0289
(0.0133)  (0.0133)  (0.0134)  (0.0152) (0 0152)
Benefits previously 1.4643 1.6280
expected to lapse® (0.1876) (0.2006)
State fixed effects no no no yes yes
Nonparametric baseline yesd no yes¢ yes yes¢
Heterogeneity variance e E ® 7560 7901
0.1943)  (0.1953)
Sample size 3365 3365 3365 3365 3365
Log-likelihood value —9038.07 —9085.06 —9015.68 —8927.80 —8901.94




Discrete Time Duration Models

An alternative way to model duration data is to treat time as
discrete

For some of us, this is a more intuitive way to understand these
models

Now T; is an integer

We can do something analogous to the constant hazard with
X’s by modeling the discrete hazard with a logit (or a probit or
something else)

Xie =Pr(Ti=1t|T; >t—1,X;)
- 1
R



To make it like the proportional hazard model we could allow
the intercept to vary with z.

More generally we can easily see how to allow both X; and 5 to
vary with ¢

Nie =Pr(Ti=t|T; >t—1,Xy)
- 1
B 1 + eXiPr

And then adding unobserved heterogeneity is also straight
forward

1

Pr(T;y=1t|T;>t—1,X;) :W



We can write the likelihood without censoring as

1

f[i 2

Pt
il A
and with censoring as

eX”ﬁ;+V
/H 1 + e‘XuﬁH‘V (V)

1+ &Pty

dF,(v)



Identification

Cameron and Heckman, “Lifecycle Schooling and Dynamic
Selection Bias: Models and Evidence for Five Cohorts of
American Males,” JPE April 1998

This is easiest to think about with two periods. Suppose T;
takes on three values 0, 1,2

T, >0 <:>1(g1(Xi1> +vi1 > 0)
Conditional on T; > 0,
T, =2 <=1(g2(Xin) +vio > 0)

This is like the standard selection model



Can identify the model in the following way (assuming sufficient
normalizations):

@ From first period identify g,
@ Use identification at infinite to get g,
@ Given those construct joint distribution of (v;1,vi2)



Example: Cameron and Heckman

Same Cameron and Heckman Paper

They estimate a dynamic duration model for schooling
accounting for selection in a flexible way



1ABLE 4

EpucaTioNAL TRANSITION PROBABILITIES FOR OCG WHITE MALES BORN 1937-46 (Aged 26-35 in 1973): ESTIMATED COEFFICIENTS
OF LOGISTIC PROBABILITY WITH A NONPARAMETRIC HETEROGENEITY CORRECTION

Complete Attend High Graduate Attend Graduate
Elementary School High School College College Attend 17+
1 (2) (3) () 5 (6)
1. Number of siblings —.101 (3.8) —.159 (5.1) —.175 (10.0) —.163 (8.5) —.175 (5.6) —.036  (.8)
2. Family income at age 16 201 (7.7) 156 (5.5) 075 (6.6) 082 (9.6) 054 (5.2) 024 (1.6)
3. HGC father 145 (4.6) 130 (3.8) 110 (6.3) 120 (7.7) .064 (3.1) 069 (2.4)
4. HGC mother 201 (5.9) 117 (8.2) 144 (7.3) 175 (9.2) 190 (7.0) 207 (5.5)
5. Broken home at age 16 —124  (5) —037 (1) —-304  (2.2) —.134 (1.0) —.309 (1.5) —.786 (2.7)
6. Farm residence at age 16 -.039 (2) —.089 (.4 432 (3.0) —.209 (1.6) —.109 (.6) —147 (5)
7. Southern birth —.055 (.3) -368 (1 8) 038 (4) 012 (1) —.235 (1L.9) —.762 (4.1)
Nort.—Family income is denominated in thousands of 1995 dollars. A two-point model was deemed sufficient w characterize the Variable

Family income at age 16 is the income of the individual's parents in the individual's sixteenth HGC £ mother are the highest grades atained by the m(l\\ldu al's
fa

+ and mother; broken home is a binary le indicating whether one or more of the individual's parents were absent from his houschold most of the time up to age m
residence is an indicator recording whether the individual lived on a farm at age 16; southern birth records whether or not the individual was born in the southern census rcgim\
txalues are in parentheses.




