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So far in this course we have focused on the homogeneous
treatment case:

Yi = αTi + εi

In allowing for heterogeneous treatment effects, we focus on
the case in which Ti is binary

Let

Y1i denote the value of Yi for individual i when Ti = 1
Y0i denote the value of Yi for individual i when Ti = 0

It is useful to define the treatment effect as

αi = Y1i − Y0i



Note that in the case we have been thinking about so far

αi = α+ εi − εi

= α

and thus we have imposed that it can not vary over the
population

This seems pretty unreasonable for almost everything we have
thought about in this class

A relatively recent literature has tried to study heterogeneous
treatment effects in which these things vary across individuals

A clear problem is that even if we have estimated the full
distribution what do we present in the paper?

We must focus on a feature of the distribution



The most common:

Average Treatment Effect (ATE)

E(αi)

Treatment on the Treated (TT)

E(αi | Ti = 1)

Treatment on the Untreated (TUT)

E(αi | Ti = 0)

(Heckman and Vytlacil discuss Policy Relevant Treatment
effects, but I need more notation than I currently have to define
those)

These each answer very different questions

I will ignore TUT for the rest of these lecture notes because it is
symmetric with TT



All we can directly identify from the data is :

E(Y1i | Ti = 1),E(Y0i | Ti = 0),Pr(Ti = 1)

There are two key missing pieces:

E(Y1i | Ti = 0),E(Y0i | Ti = 1)

Knowledge of these would be sufficient to identify the two
parameters:

TT =E(αi | Ti = 1)
=E(Y1i | Ti = 1)− E(Y0i | Ti = 1)

ATE =E(αi)

= [E(Y1i | Ti = 1)− E(Y0i | Ti = 1)]Pr(Ti = 1)
+ [E(Y1i | Ti = 0)− E(Y0i | Ti = 0)] [1− Pr(Ti = 1)]

How do we estimate these?



Selection only on Observables
I next want to consider the case in which we only have selection
only on observables by which I mean:

Assumption 1

For all x in the support of Xi and t ∈ {0,1},

E(Y1i | Xi = x ,Ti = t) =E(Y1i | Xi = x)
E(Y0i | Xi = x ,Ti = t) =E(Y0i | Xi = x)

A “slightly” stronger version of this is random assignment of Ti
conditional on Xi

This is often also called unconfoundedness

A very strong assumption



Interestingly this is still not enough

If there are values of the observables for which
Pr(Ti = 1 | Xi ∈ χ) = 1 or Pr(Ti = 0 | Xi ∈ χ) = 0 then the full
distribution of treatment effects is not identified.

For example suppose Ti is being pregnant, we could never
hope to identify

E(Income | Pregnant, Male)

This is perhaps not a relevant counterfactual , but if you want to
measure the average treatment effect you can’t.



Consider a more interesting case:

the treatment is free preschool
the outcome is the kids cognitive test score
the conditioning variable is family income

In that case the elements of the treatment effect make sense
for all income levels:

E(Yi | Ti = 1,Xi = x),E (Yi | Ti = 0,Xi = x)

(as opposed to E(Income | Pregnant, Male) which doesn’t make
sense)

However suppose that the program is means tested so that you
are only eligible if your family income is below x∗, then for any
value Xi > x∗ the effect of the program is not identified

Thus the ATE is not identified without further assumptions



We need additional assumptions

Assumption 2

For almost all x in the support of Xi ,

Pr(Ti = 0 | Xi = x) > 0

Assumption 3

For almost all x in the support of Xi ,

Pr(Ti = 1 | Xi = x) > 0



Theorem 1

Under assumptions 1 and 2 the TT is identified. Under
assumptions 1, 2, and 3 the ATE is identified.



It is pretty clear to see why this holds

Consider the treatment on the treated.

Note that E(Y1i | Ti = 1) is identified directly from the data so
all we need to get is E(Y0i | Ti = 0).

Under the first assumption above

E(Y0i | Ti = 1) =
∑

j

E(Y0i | Xi = xj)Pr(Xi = xj | Ti = 1)

As long as assumption 2 holds, E(Y0i | Xi = x) is identified so
E(Y0i | Ti = 1) is identified and thus the TT is identified



Under Assumption 3, you can also get

E(Y1i | Ti = 0) =
∑

k

E(Y1i | Xi = xj)Pr(Xi = xj | Ti = 0)

and use this to identify the ATE



Estimation

There are a number of different ways to estimate this model

The most common is to just use OLS defining

Yi =αTi + X ′i β + ui

and run a regression

However this is assuming that the treatment effect is
homogeneous



Allowing for heterogeneous treatment effects is straight forward

Y0i = X ′i β0 + u0i

Y1i = X ′i β1 + u1i

Then one could estimate

ÂTE =
1
N

N∑
i=1

X ′i
(
β̂1 − β̂0

)
or alternatively:

ÂTE =
1
N

N∑
i=1

Ti

[
Y1i − X ′i β̂0

]
+ (1− Ti)

[
X ′i β̂1 − Y0i

]

TT is analogous (although second method might be more
natural)



Matching

Even though regression can be very flexible, many authors
argue that matching is better than regression in practice

If you are interested in TT, but the support of Xi conditional on
Ti = 1 is very different than the unconditional support of Xi than
the regression approach can work poorly

Heckman and coauthors made this argument in the context of
JTPA where only low income people are eligible for treatment



The idea behind matching can be seen most clearly when Xi
has discrete support

Lets focus on the TT case

Let N0 be the the number of respondents with Ti = 0 and let N1
be the number of respondents with Ti = 1



Step 1

Notation is really messy-I don’t know of a super clean way to do
this

For each observation i with Ti = 1 find another observation with
exactly the same value of X but for which T = 0

You can think of drawing at random from the potential people.
Let I0 (i) denote this choice so that for every value of i with
Ti = 1,

XI0(i) =Xi

TI0(i) =0



Example

i Ti Xi
1 0 3
2 0 0
3 1 0
4 0 2
5 1 3
6 0 4
7 1 2

Then

I0(3) = 2
I0(5) = 1
I0(7) = 4



Step 2

Estimate the Treatment on the treated using

T̂T =
1

N1

∑
{i:Ti=1}

Yi − YI0(i)



To see why this works note that

E
(

T̂T
)
= E (Y1i | Ti = 1)− E

(
YI0(i) | Ti = 1

)
and

E
(
YI0(i) | Ti = 1

)
=

J∑
j=1

E
(
YI0(i) | Ti = 1,Xi = xj

)
Pr
(
Xi = xj | Ti = 1

)
=

J∑
j=1

E
(
Y0` | T` = 0,X` = xj

)
Pr
(
Xi = xj | Ti = 1

)
=

J∑
j=1

E
(
Y0` | X` = xj

)
Pr
(
Xi = xj | Ti = 1

)
=

J∑
j=1

E
(
Y0` | T` = 1,X` = xj

)
Pr
(
X` = xj | T` = 1

)
=E (Y0i | Ti = 1)



This is difficult to do in practice for two reasons:

1 If Xi is continuous we can’t match exactly
2 If Xi is very high dimensional, even with discrete data we

probably couldn’t match directly because there might be no
controls with the same value for every single covariate



Propensity Score Matching

Propensity score matching is a way of getting around the
second problem.

Rather than matching on the high dimensional Xi it turns out
that we can match on the lower dimensional

P(x) ≡ Pr(Ti = 1 | Xi = x)



The reason why comes from Bayes Theorem

For any x ,

F (x | P(Xi) = ρ,Ti = 1)
= Pr(Xi ≤ x | P(Xi) = ρ,Ti = 1)

=
Pr(Ti = 1 | Xi ≤ x ,P(Xi) = ρ)Pr(Xi ≤ x | P(Xi) = ρ)

Pr(Ti = 1 | P(Xi) = ρ)

=
ρPr(Xi ≤ x | P(Xi) = ρ)

ρ

= Pr(Xi ≤ x | P(Xi) = ρ)

= F (x | P(Xi) = ρ)



and analogously,

F (x | P(Xi) = ρ,Ti = 0)
= Pr(Xi ≤ x | P(Xi) = ρ,Ti = 0)

=
Pr(Ti = 0 | Xi ≤ x ,P(Xi) = ρ)Pr(Xi ≤ x | P(Xi) = ρ)

Pr(Ti = 0 | P(Xi) = ρ)

=
(1− ρ)Pr(Xi ≤ x | P(Xi) = ρ)

1− ρ
= Pr(Xi ≤ x | P(Xi) = ρ)

= F (x | P(Xi) = ρ)

thus

F (x | P(Xi) = ρ,Ti = 0) =F (x | P(Xi) = ρ,Ti = 1)



Thus if we condition on the propensity score, the distribution of
Xi is identical for the controls and the treatments.

But since we have selection on observables only:

E(Y0i | Ti = 1,P(Xi) = ρ)

=

∫
E(Y0i | Xi = x)dF (x | Ti = 1,P(Xi) = ρ)

=

∫
E(Y0i | Xi = x)dF (x | Ti = 0,P(Xi) = ρ)

= E(Y0i | Ti = 0,P(Xi) = ρ)



Consider matching on propensity scores rather than Xi

We do something similar to before. For each observation i with
Ti = 1 we find another observation with the same propensity
score but Ti = 0.

Analogous to before we let I0 (i) denote this choice so that for
every value of i with Ti = 1,

p
(
XI0(i)

)
=p(Xi)

TI0(i) =0



Then

E
(
Yi − YI0(i) | Ti = 1

)
=

∫
E
(
Yi − YI0(i) | Ti = 1,P(Xi) = ρ

)
f (ρ | Ti = 1)dρ

=

∫
E (Yi | Ti = 1,P(Xi) = ρ) f (ρ | Ti = 1)dρ

−
∫

E
(
YI0(i) | Ti = 1,P(Xi) = ρ

)
f (ρ | Ti = 1)dρ

=

∫
E (Y1i | Ti = 1,P(Xi) = ρ) f (ρ | Ti = 1)dρ

−
∫

E (Y0` | T` = 0,P(X`) = ρ) f (ρ | T` = 1)dρ

=E (Y1i − Y0i | Ti = 1)



This makes the problem much simpler, but

You still need to estimate the propensity score which is a
high dimensional non-parametric problem. People typically
just use a logit
You still have the first problem above that for a continuous
propensity score you are not going to be able to get an
exact match.



There are essentially 3 ways to deal with this second problem:

Just take nearest neighbor (or perhaps caliper which
throws out observations without a close neighbor)
Use all of the observations that are sufficiently close
Estimate E(Y0j | Tj = 0,P(Xj) = P(Xi)) directly with some
semiparametric method

Lets look at two papers that use this approach



How Robust is the Evidence on the Effects of College
Quality? Evidence from Matching

by Dan Black and Jeff Smith, Journal of Econometrics, 2004

They want to look at the effects of college quality in the U.S. on
wages

They use the National Longitudinal Survey of Youth, 1979

A representative panel data that looks at kids 14-21 in 1979
and is still following them



Table 1: NLSY Descriptive Statistics, 1998

Full sample Men Women

age 36.7 36.8
black 0.239 0.280
Hispanic 0.166 0.167
years of education 14.91 14.79
Associate degree 0.116 0.156
Bachelor’s degree 0.411 0.363
Master’s degree 0.148 0.157

N 1504 1695

Representative sample Men Women

Age 36.7 36.8
Black 0.083 0.106
Hispanic 0.057 0.070
years of education 15.15 14.92
Associate degree 0.101 0.149
Bachelor’s degree 0.481 0.413
Master’s degree 0.175 0.182

N 1012 1136

Notes:  Authors’ calculations using unweighted NLSY data.  The full sample includes all respondents while the representative sample excludes
the minority and military over-samples.  Both samples include only those respondents who attend college before the 1998 interview.



They rank colleges using SAT scores, faculty salary and the
freshman retention rate

You can see there is substantial selection



Table 2:  Variables for Propensity Score and Wage Equations

log wage Log of average real wage (1982 dollars) on
all jobs held during the year

Basic Characteristics:
region of birth a vector of 10 dummy variables indicating

region in which respondent was born
age respondent's age at the interview, quadratic

in age is used
years of education highest grade or year of school the

respondent completed as of the 1998
interview.  Only those who attended a
college are in the sample

black dummy variable indicating the respondent
is black

Hispanic dummy variable indicating the respondent
is Hispanic  (black & Hispanic are
mutually exclusive)

ASVAB test scores Scores on the ten components of the
Armed Services Vocational Aptitude
Battery, administered in 1980.  We use the
first two principal components of the age-
adjusted scores.

Home Characteristics:
magazine “When you were about 14 years old, did

you or anyone else living with you get
magazines regularly?”

newspaper “When you were about 14 years old, did
you or anyone else living with you get a
newspaper regularly?”

library card “When you were about 14 years old, did
you or anyone else living with you have a
library card?”

mom education Highest grade or year of school completed
by respondent’s mother.

mom living Was the respondent’s mother living at the
1979 interview (when respondents were
between 14 and 22 years old)?

mom age At the 1987 interview.
dad education Highest grade or year of school completed

by respondent’s father
dad living Was the respondent’s father living at the

1979 interview?
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Table 2:  Continued

dad age At the 1987 interview
living together Indicator for whether the respondent’s

mother and father lived in the same
household at the 1979 interview

mom occupation Occupation of job held longest by mother
or stepmother in 1978, represented by
dummy variables for each Census 1-digit
occupation

dad occupation Occupation of job held longest by father or
stepfather in 1978, represented by dummy
variables for each Census 1-digit
occupation.

High School Characteristics:
size of high school Asked of respondents’ high schools:  “As

of 10/1/79 [or nearest date] what was
[your] total enrollment?”

books Asked of respondents’ high schools:
“What is the approximate number of
catalogued volumes in the school library
(enter 0 if your school has no library).” [in
1979]

teacher salary Asked of respondents’ high schools:
“What is the first step on an annual salary
contract schedule for a beginning certified
teacher with a bachelor’s degree?” [in
1979]

disadvantaged Asked of respondents’ high schools:
“What percentage of the students in [the
respondent’s high school] are classified as
disadvantaged according to ESEA [or
other] guidelines?” [in 1979]



Table 4: Bivariate Distribution of Ability and College Quality
Measures, NLSY 1998

Panel A: Men Ability quintiles

Quality index quintiles First
quintile

Second
quintile

Third
quintile

Fourth
quintile

Fifth
quintile

Total

First quintile (32.38)
[32.38]
 6.48

(21.90)
[21.90]
 4.38

(16.19)
[16.19]
 3.24

(14.29 )
[14.29 ]

 2.86

(15.24)
[15.24]
 3.05

(100.0)
(N=105)

Second quintile (23.81)
[23.81]
 4.76

(20.95)
[20.95]
 4.19

(20.95)
[20.95]
 4.19

(20.95)
[20.95]
 4.19

(13.33)
[13.33]
 2.67

(100.0)
(N=105)

Third quintile (24.76)
[24.76]
 4.95

(15.24)
[15.24]
 3.05

(21.90)
[21.90]
 4.38

(17.14)
[17.14]
 3.43

(20.95)
[20.95]
 4.19

(100.0)
(N=105)

Fourth quintile (11.54)
[11.43]
 2.29

(18.27)
[18.10]
 3.62

(27.88)
[27.62]
 5.52

(20.19)
[20.00]
 4.00

(22.12)
[21.90]
 4.38

(100.0)
(N=104)

Fifth quintile (7.55)
[7.62]
1.52

(23.58)
[23.81]
 4.76

(13.21)
[13.33]
 2.67

(27.36)
[27.62]
 5.52

(28.30)
[28.57]
 5.71

(100.0)
(N=106)

Total [100.0]
[N = 105]

[100.0]
[N = 105]

[100.0]
[N =105]

[100.0]
[N = 105]

[100.0]
[N = 105]

100.0
N = 525

Panel B: Women Ability quintiles

Quality index quintiles First
quintile

Second
quintile

Third
quintile

Fourth
quintile

Fifth
quintile

Total

First quintile (31.07)
[31.07]
 6.21

(19.42)
[19.42]
 3.88

(20.39)
[20.39]
 4.08

(15.53)
[15.53]
 3.11

(13.59)
[13.59]
 2.72

(100.0)
(N=103)

Second quintile (22.22)
[21.36]
 4.27

(25.25)
[24.27]
 4.85

(26.26)
[25.24]
 5.05

(10.10)
 [9.71]
 1.94

(16.16)
[15.53]
 3.11

(100.0)
(N=99)

Third quintile (25.71)
[26.21]
 5.24

(19.05)
[19.42]
 3.88

(20.95)
[21.36]
 4.27

(19.05)
[19.42]
 3.88

(15.24)
[15.53]
 3.11

(100.0)
(N=105)

Fourth quintile (14.85)
[14.56]
 2.91

(21.78)
[21.36]
 4.27

(17.82)
[17.48]
 3.50

(24.75)
[24.27]
 4.85

(20.790
[20.39]
 4.08

(100.0)
(N=101)

Fifth quintile (6.54)
[6.80 ]
1.36

(14.95)
[15.53]
 3.11

(14.95)
[15.53]
 3.11

(29.91)
[31.07]
 6.21

(33.64)
[34.95]
 6.99

(100.0)
(N=107)

Total [100.0]
[N = 103]

[100.0]
[N = 103]

[100.0]
[N =103]

[100.0]
[N = 103]

[100.0]
[N = 103]

100.0
N = 515

Notes:  Authors’ calculations using unweighted NLSY data, US News and World Report’s Directory of Colleges and Universities data, and
IPEDS data.  The college quality measure is for the last college attended as an undergraduate as of the 1998 interview.  The ability measure is
the first principal component of the age-adjusted ASVAB scores.  Samples include only respondents who attend colleges for which we can
construct our college quality index.
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0; P(X )), but if there is any residual selection bias after conditioning on P(X ) and we
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They then do propensity score estimation-what they do is
somewhat complicated-more than I think is worth getting into
here
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Table 7
Propensity score estimates of the e!ects of college quality: fourth and "rst quartiles, NLSY 1998

#41 = Yi4 − Yi1 Men Women

Using years of Not using Using years of Not using
education in years of education in years of
propensity education in propensity education in
score propensity score score propensity score
estimation estimation estimation estimation

Epanechnikov kernel, 0.120 0.139 0.067 0.078
bandwidth 0.40 for men (0.0867) (0.0767) (0.0862) (0.0830)
and 0.30 for women [n = 158] [n = 152] [n = 145] [n = 155]

OLS estimates 0.122 0.159 0.112 0.155
(0.0584) (0.0584) (0.0557) (0.0552)

Thick support region 0.199 0.250 0.124 0.157
(0.1357) (0.1181) (0.1407) (0.1418)
[n = 44] [n = 44] [n = 39] [n = 39]

OLS estimates, thick 0.121 0.156 0.144 0.184
support region (0.0639) (0.0653) (0.0724) (0.0720)

Note: Authors’ calculations using unweighted NLSY data, US News and World Report’s Directory of
Colleges and Universities data, and IPEDS data. College quality is for the last college attended. There are
177 observations in comparison group and 176 in the treatment group for men and 173 in both the treatment
group and the comparison group for women. The propensity scores are estimated using a logit model and
the speci"cation includes years of schooling (in columns 1 and 3 only), quadratics in the "rst two principal
components of the age-adjusted ASVAB scores, a black indicator, an Hispanic indicator, age, age squared,
region of birth indicators, and high school, parental, and home characteristics. The OLS estimates use only
the observations with college quality in the "rst or fourth quartile. For the OLS estimates, Huber–White
standard errors are reported in parentheses. Bandwidths are selected using a minimum root mean squared
error criterion from leave-one-out cross-validations. Bootstrap standard errors for the matching estimates are
based on 2000 replications.

estimates using the Epanechnikov kernel with leave-one-out cross-validated bandwidths.
In each case, we present two alternative estimates: one that uses education in the
estimation of the propensity score and one that excludes education from the propensity
score. We also indicate, for each estimate, the number of treated observations for
which an estimated counterfactual could be constructed using that particular estimator.
Bootstrap standard errors based on 2000 replications appear in parentheses below each
estimate. Each bootstrap includes re-estimation of the propensity scores used in the
matching on the bootstrap sample. In the second row, we present the OLS estimates
of the parameter of interest. These estimates di!er from those in Table 6 because the
sample includes only persons who attended a college in the "rst or fourth quartile
of the quality distribution. This sample corresponds to that used for the matching
estimates. The di!erences in the estimates that result from changing the sample signal
the potential importance of relaxing the linear functional form assumption through
matching.
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Table 8
Propensity score estimates of the e!ects of college quality, NLSY 1998

Not using years of education in propensity score estimation

Men Women

"41 = Yi4 − Yi1
Epanechnikov kernel, 0.139 0.078
bandwidth 0.40 for men (0.0767) (0.0830)
and 0.30 for women [n = 152] [n = 155]

OLS estimates 0.159 0.155
(0.0584) (0.0552)

"31 = Yi3 − Yi1
Epanechnikov kernel, 0.056 0.118
bandwidth 0.30 men and (0.0695) (0.0561)
0.50 women [n = 166] [n = 133]

OLS estimates 0.082 0.104
(0.0541) (0.0498)

"21 = Yi3 − Yi1
Epanechnikov kernel, 0.006 0.123
bandwidth 0.20 for men (0.0863) (0.506)
and 0.50 for women [n = 147] [n = 159]

OLS estimates 0.072 0.094
(0.0584) (0.0458)

Note: Authors’ calculations using unweighted NLSY data, US News and World Report’s Directory of
Colleges and Universities data, and IPEDS data. College quality is for the last college attended. There are
177 observations in the comparison group for men and 173 in the comparison group for women. In the
fourth quartile, there are 176 in the treatment group for men and 173 in the treatment group for women. In
the third quartile, there are 179 men and 171 women in the treatment group. In the second quartile there
are 178 men and 175 women in the treatment group. The propensity scores are estimated using a logit
model and the speci#cation includes quadratics in the #rst two principal components of the age-adjusted
ASVAB scores, a black indicator, an Hispanic indicator, age, age squared, region of birth indicators, and
high school, parental, and home characteristics. OLS models are estimated separately for each quartile. For
the OLS estimates, Huber–White standard errors are reported in parentheses. Bandwidths are selected using
a minimum root mean squared error criterion from leave-one-out cross-validations. Bootstrap standard errors
for the matching estimates are based on 2000 replications.

bias in the OLS estimates, they do tell an important story about the support problem
in this context. The support condition does not fail here, but it holds so weakly that
the matching estimates end up having high variances.
Taken together, the estimates in Tables 7 and 8, along with the frequency of use

analysis for the comparison group observations in Table 5, teach two related lessons.
First, substantively, our point estimates provide some reason for concern about college
quality e!ect estimates based on OLS regressions that control only linearly for covari-
ates. Second, in commonly used data sets similar in sample size to the NLSY, and



Does Piped Water Reduce Diarrhea for Children in
Rural India?

by Jalan and Ravallion, Journal of Econometrics, 2003

Unsafe drinking water is one of the biggest health risks in the
world

This paper studies the effects of piped water on health in rural
India using propensity scores

they use the closest five matches as long as they were close
enough
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Table 1
Access to piped water across the income distribution and by education

Income quintiles Number of Percentage of Households with piped water strati!ed by highest education
(strati!ed by household observations people with of female members
income per person) piped water

Illiterate At most At most Higher secondary Full sample
primary matriculation or more

Bottom 20th percentile 6581 27.18 768 655 251 33 1707
20–40th percentile 6508 25.40 674 590 274 29 1567
40–60th percentile 6543 26.96 667 560 371 60 1658
60–80th percentile 6694 29.62 660 602 462 90 1814
Top 20th percentile 6904 33.63 665 593 638 185 2081
Full sample 33230 28.62 3434 3000 1996 397 8827
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Table 2
Logit regression for piped water

Coe!cient t-statistic

Village variables
Village size (log) 0.08212 4.269
Proportion of gross cropped area which is irrigated: ¿ 0:75 −0.04824 −1.185
Proportion of gross cropped area which is irrigated: 0.5–0.75 0.19399 4.178
Whether village has a day care center −0.07249 −2.225
Whether village has a primary school −0.08136 −1.434
Whether village has a middle school −0.09019 −2.578
Whether village has a high school 0.26460 7.405
Female to male students in the village 0.10637 3.010
Female to male students for minority groups −0.07661 −2.111
Main approachable road to village: pucca road 0.19441 3.637

jeepable/kuchha road −0.00163 −0.033
Whether bus-stoop is within the village 0.11423 2.951
Whether railway station is within the village 0.00920 0.179
Whether there is a post-o!ce within the village 0.02193 0.550
Whether the village has a telephone facility 0.33059 9.655
Whether there is a community TV center in the village 0.09859 2.661
Whether there is a library in the village −0.04153 −1.116
Whether there is a bank in the village 0.19084 4.655
Whether there is a market in the village 0.31690 6.092
Student teacher ratio in the village 0.00242 5.295

Household variables
Whether household belongs to the Scheduled Tribe −0.21288 −4.203
Whether household belongs to the Scheduled Caste −0.01045 −0.288
Whether it is a Hindu household −0.24195 −1.709
Whether it is a Muslim household −0.21631 −1.427
Whether it is a Christian household 0.40367 2.426
Whether it is a Sikh household −0.86645 −4.531
Household size 0.00337 0.571
Utilization of landholdings: used for cultivation? 0.17109 1.914
Whether the house belongs to the household −0.18988 −2.854
Whether the household owns other property 0.00181 0.044
Whether the household has a bicycle −0.26514 −8.243
Whether the household has a sewing machine 0.01183 0.252
Whether the household owns a thresher −0.05790 −0.577
Whether the household owns a winnower 0.21842 1.820
Whether the household owns a bullock-cart −0.25900 −5.430
Whether the household owns a radio 0.01036 0.251
Whether the household owns a TV 0.08095 1.335
Whether the household owns a fan 0.01336 0.321
Whether the household owns any livestock −0.07780 −2.339
Nature of house: Kuchha −0.10004 −2.775

Pucca 0.12039 2.709
Condition of house: Good 0.00230 0.036

Livable 0.09268 1.756
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Table 2 (continued)

Coe!cient t-statistic

Rooms in house: One −0.10771 −1.371
Two 0.06822 0.952
Three to "ve 0.07514 1.112

Whether household has a separate kitchen −0.01993 −0.533
Whether the kitchen is ventilated 0.08103 2.212
Whether the household has electricity 0.40641 11.217
Occupation of the head: Cultivator −0.02425 −0.481

Agricultural wage labor 0.02432 0.429
Non-agricultural wage labor 0.14628 2.254
Self-employed -0.06921 −0.955

Whether male members listen to radio 0.20089 3.484
Whether female members listen to radio −0.12415 −2.177
Whether male members watch TV 0.09365 1.291
Whether female members watch TV 0.03863 0.493
Whether male members read newspapers 0.08950 1.813
Whether female members read newspapers −0.04066 −0.631
Proportion of household members who are 60+ −0.11370 −1.067
Proportion of females among adults 0.04646 0.331
Proportion of males among children 0.08436 0.779
Proportion of females among children 0.05498 0.498
Whether household head is male −0.18041 −2.321
Whether household head is single −0.16659 −1.268
Whether household head is married −0.02603 −0.422
Whether household head is illiterate −0.13048 −1.454
Whether household head is primary school educated −0.03694 −0.416
Whether household head is matriculation educated −0.03364 −0.385
Whether household head is higher secondary −0.05545 −0.475
Gross cropped area −0.00020 −0.666
Gross irrigated area −0.00050 −1.342
Landholding size: Landless −0.32849 −3.996

Marginal −0.31056 −3.987
Small −0.22129 −2.916

Constant −1.49531 −5.396

Log-likelihood function −16236.565
Number of observations 33216

Note: In addition to the above variables 15 dummies were included to control for state speci"c e#ects.

For example, diarrhea prevalence amongst infants in families with piped water is twice
as high for those in the poorest quintile than the richest.
The estimated mean impacts on the child-health indicators are also given in Table 3.

The results for mean impact indicate that access to piped water signi"cantly reduces
diarrhea prevalence and duration. Disease prevalence amongst those with piped wa-
ter would be 21% higher without it. Illness duration would be 29% higher. The
regression-adjusted impact estimator (Eq. (12)) gave very similar results (using the
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Propensity score for households with piped water

Probability of having access to piped water
0.00969 0.943526

0

0.077951

Propensity score for households without piped water

Probability of having access to piped water
0.007527 0.904426

0

0.169717

Fig. 1. Histogram of propensity scores.

full set of regressors in Table 2 as the x vector). The impact estimator for diarrhea
prevalence was −0:0023 (with a standard error of 0.053) and for diarrhea duration it
was −0:1005 (standard error of 0.021).
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full set of regressors in Table 2 as the x vector). The impact estimator for diarrhea
prevalence was −0:0023 (with a standard error of 0.053) and for diarrhea duration it
was −0:1005 (standard error of 0.021).
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Table 3
Impacts of piped water on diarrhea prevalence and duration for children under !ve

Prevalence of diarrhea Duration of illness

Mean for those Impact of Mean for those Impact of
with piped piped water with piped piped water
water (st. error) water (st. error)
(st. dev.) (st. dev.)

Full sample 0.0108 −0.0023∗ 0.3254 −0.0957∗

(0.046) (0.001) (1.650) (0.021)

Strati!ed by household income per capita (quintiles)
1 (poorest) 0.0155 0.0032∗ 0.4805 0.0713

(0.055) (0.001) (2.030) (0.053)
2 0.0136 0.0007 0.4170 0.0312

(0.051) (0.001) (1.805) (0.051)
3 0.0083 −0.0039∗ 0.2636 −0.1258∗

(0.038) (0.001) (1.418) (0.042)
4 0.0100 −0.0036∗ 0.3195 −0.1392∗

(0.044) (0.001) (1.703) (0.048)
5 0.0076 −0.0068∗ 0.1848 −0.2682∗

(0.042) (0.001) (1.254) (0.036)

Strati!ed by highest education level of a female member
Illiterate 0.0131 −0.0000 0.3588 −0.0904∗

(0.053) (0.001) (1.710) (0.036)
At most primary 0.0112 −0.0015 0.3502 −0.0465
school educated (0.045) (0.001) 1.739) (0.036)
At most 0.0074 −0.0065∗ 0.2573 −0.1708∗

matriculation (0.038) (0.001) (1.476) (0.039)
educated
Higher secondary 0.0050 −0.0080∗ 0.1880 −0.2077∗

or more (0.027) (0.002) (1.158) (0.076)

∗Indicates signi!cance at the 5% level or lower.

Once we stratify the sample by quintiles based on income per capita, we !nd no
signi!cant child-health gains amongst the poorest two quintiles (roughly corresponding
to the poor in India, by widely used poverty lines). However, from the 40th quintile
onwards there are very signi!cant impacts on child health in households with piped
water. We see that the income gradient amongst those with piped water is almost
entirely attributable to piped water. For example, we can infer that without piped
water there would be no di"erence in infant diarrhea prevalence between the poorest
quintile and the richest. Health impacts from piped water tend to be larger and more
signi!cant in families with better educated women. We found a similar pattern when
we strati!ed instead by the highest education of the household head.
In Table 4 we report the joint e"ects of income and female education to test

the hypothesis that income and female education interact jointly with piped water
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Table 4
Child-health impacts of piped water by income and education

Illiterate At most primary At most matriculation Higher secondary or more

Prevalence of Duration of Prevalence of Duration of Prevalence of Duration of Prevalence of Duration of
diarrhea illness diarrhea illness diarrhea illness diarrhea illness

1 (poorest quintile) 0.0100∗ 0.1028 0.0010 0.0548 −0.0118∗ −0.1091 Small Sample
(0.002) (0.089) (0.002) (0.094) (0.003) (0.132)

2 0.0057∗ 0.0777 0.0013 0.1061 −0.0121∗ −0.2580∗ Small Sample
(0.003) (0.083) (0.002) (0.083) (0.002) (0.087)

3 −0.0038∗ −0.1503∗ −0.0008 0.0056 −0.0069∗ −0.1659∗ Small Sample
(0.002) (0.069) (0.002) (0.081) (0.002) (0.059)

4 −0.0062∗ −0.2224∗ −0.0041∗ −0.1691 0.0008 −0.0186 Small Sample
(0.002) (0.097) (0.002) (0.070) (0.003) (0.091)

5 −0.0075∗ −0.2932∗ −0.0051∗ −0.2435∗ −0.0063∗ −0.2578∗ −0.010∗ −0.2637∗

(0.000) (0.045) (0.002) (0.075) (0.002) (0.008) (0.003) (0.085)

Note: Figures in parentheses are the respective standard errors.
∗Indicates signi!cance at 5% or lower.



Propensity Score Matching vs Regression

When I think about this too hard I start to get a bit confused
about the fundamental difference.

At some level when we do matching we do

T̂T =
1

N1

∑
{i:Ti=1}

Yi − Ŷ0i

where Ŷ0i is an unbiased estimate of E(Y0j | Xj = Xi)

We can get this estimate by taking one person with the same
value of the propensity score or by using the forecast from OLS
as above: X ′i β̂0

We can then think about nonparametric regression for our
estimate of Ŷ0i , but this is kind of a more flexible version of both



Reweighting

Another approach is reweighting

Let ft(x) be the density of Xi conditional on Ti = t .

Using Bayes theorem

f1(x) =
P(x)f (x)

Pr(Ti = 1)

f0(x) =
(1− P(x)) f (x)

Pr(Ti = 0)



so

E(Y0i | Ti = 1) =
∫

E(Y0i | Xi = x)f1(x)dx

=

∫
E(Y0i | Xi = x)

f1(x)
f0(x)

f0(x)dx

=E
(

Y0i
P(Xi)

1− P(Xi)
| Ti = 0

)
Pr(Ti = 0)
Pr(Ti = 1)

Putting this together we can use the estimator∑N1
i=1 Y1i

N1
−
∑N0

j=1 Y0j
P(Xj )

1−P(Xj )

N1

=

∑N1
i=1 Y1i

N1
−

1
N0

∑N0
j=1 Y0j

P(Xj )
1−P(Xj )

N1
N0

≈E(Y1i | Ti = 1)−
E(Y0i | Ti = 1)Pr(Ti=1)

Pr(Ti=0)
Pr(Ti=1)
Pr(Ti=0)

=TT



Instrumental Variables

What about selection on unobservables?

Lets first think about what IV does in this case

Define

Yi ≡ TiY1i + (1− Ti)Y0i

= Ti (Y1i − Y0i) + Y0i

= β0 + αiTi + εi

(where β0 = E(Y0i) and εi = Yi − β0)

Assume that we have an instrument Zi that is correlated with Ti
but not with αi or εi (or equivalently Y0i or Y1i)

Does IV estimate the ATE?



Lets abstract from other regressors

IV yields

plimβ̂1 =
Cov(Zi ,Yi)

Cov(Zi ,Ti)

=
Cov(Zi , εi + αiTi)

Cov(Zi ,Ti)

=
Cov(Zi , εi)

Cov(Zi ,Ti)
+

Cov(Zi , αiTi)

Cov(Zi ,Ti)

=
Cov(Zi , αiTi)

Cov(Zi ,Ti)
.



In the case in which treatment effects are constant so that
αi = α for everyone

plimβ̂1 =
Cov(Zi , αTi)

Cov(Zi ,Ti)

= α

However, more generally IV does not converge to the Average
treatment effect



Local Average Treatment Effects

Imbens and Angrist (1994) consider the case in which there are
not constant treatment effects

The consider a simple version of the model in which Zi takes on
2 values, call them 0 and 1 for simplicity and without loss of
generality assume that
Pr(Ti = 1 | Zi = 1) > Pr(Ti = 1 | Zi = 0)



There are 4 different types of people those for whom Ti = 1
when:

1 Zi = 1,Zi = 0
2 never
3 Zi = 1 only
4 Zi = 0 only

Imbens and Angrist’s monotonicity rules out 4 as a possibility

Let µ1, µ2, and µ3 represent the sample proportions of the three
groups

and Gi an indicator of the group



Note that

β̂1
p→Cov(Zi , αiTi)

Cov(Zi ,Ti)

=
E(αiTiZi)− E (αiTi)E (Zi)

E(TiZi)− E (Ti)E (Zi)

Let ρ denote the probability that Zi = 1. Lets look at the pieces



first the numerator

E(αiTiZi)− E (αiTi)E (Zi)

=ρE(αiTi | Zi = 1)− E (αiTi) ρ

=ρE(αiTi | Zi = 1)
− [ρE(αiTi | Zi = 1) + (1− ρ)E(αiTi | Zi = 0)] ρ

=ρ(1− ρ) [E(αiTi | Zi = 1)− E(αiTi | Zi = 0)]
=ρ(1− ρ) [E(αi | Gi = 1)µ1 + E(αi | Gi = 3)µ3 − E(αi | Gi = 1)µ1]

=ρ(1− ρ)E(αi | Gi = 3)µ3



Next consider the denominator

E(TiZi)− E (Ti)E (Zi)

=ρE(Ti | Zi = 1)− E (Ti) ρ

=ρE(Ti | Zi = 1)
− [ρE(Ti | Zi = 1) + (1− ρ)E(Ti | Zi = 0)] ρ

=ρ(1− ρ) [E(Ti | Zi = 1)− E(Ti | Zi = 0)]
=ρ(1− ρ) [µ1 + µ3 − µ1]

=ρ(1− ρ)µ3



Thus

β̂1
p→ρ(1− ρ)E(αi | Gi = 3)µ3

ρ(1− ρ)µ3

=E(αi | Gi = 3)

They call this the local average treatment effect


