Heterogeneous Treatment Effects

Christopher Taber

University of Wisconsin
October 30, 2016

So far in this course we have focused on the homogeneous treatment case:

$$
Y_{i}=\alpha T_{i}+\varepsilon_{i}
$$

In allowing for heterogeneous treatment effects, we focus on the case in which T_{i} is binary

Let

- $Y_{1 i}$ denote the value of Y_{i} for individual i when $T_{i}=1$
- $Y_{0 i}$ denote the value of Y_{i} for individual i when $T_{i}=0$

It is useful to define the treatment effect as

$$
\alpha_{i}=Y_{1 i}-Y_{0 i}
$$

Note that in the case we have been thinking about so far

$$
\begin{aligned}
\alpha_{i} & =\alpha+\varepsilon_{i}-\varepsilon_{i} \\
& =\alpha
\end{aligned}
$$

and thus we have imposed that it can not vary over the population

This seems pretty unreasonable for almost everything we have thought about in this class

A relatively recent literature has tried to study heterogeneous treatment effects in which these things vary across individuals

A clear problem is that even if we have estimated the full distribution what do we present in the paper?

We must focus on a feature of the distribution

The most common:

- Average Treatment Effect (ATE)

$$
E\left(\alpha_{i}\right)
$$

- Treatment on the Treated (TT)

$$
E\left(\alpha_{i} \mid T_{i}=1\right)
$$

- Treatment on the Untreated (TUT)

$$
E\left(\alpha_{i} \mid T_{i}=0\right)
$$

(Heckman and Vytlacil discuss Policy Relevant Treatment effects, but I need more notation than I currently have to define those)

These each answer very different questions
I will ignore TUT for the rest of these lecture notes because it is symmetric with TT

All we can directly identify from the data is :

$$
E\left(Y_{1 i} \mid T_{i}=1\right), E\left(Y_{0 i} \mid T_{i}=0\right), \operatorname{Pr}\left(T_{i}=1\right)
$$

There are two key missing pieces:

$$
E\left(Y_{1 i} \mid T_{i}=0\right), E\left(Y_{0 i} \mid T_{i}=1\right)
$$

Knowledge of these would be sufficient to identify the two parameters:

$$
\begin{aligned}
T T= & E\left(\alpha_{i} \mid T_{i}=1\right) \\
= & E\left(Y_{1 i} \mid T_{i}=1\right)-E\left(Y_{0 i} \mid T_{i}=1\right) \\
A T E= & E\left(\alpha_{i}\right) \\
= & {\left[E\left(Y_{1 i} \mid T_{i}=1\right)-E\left(Y_{0 i} \mid T_{i}=1\right)\right] \operatorname{Pr}\left(T_{i}=1\right) } \\
& +\left[E\left(Y_{1 i} \mid T_{i}=0\right)-E\left(Y_{0 i} \mid T_{i}=0\right)\right]\left[1-\operatorname{Pr}\left(T_{i}=1\right)\right]
\end{aligned}
$$

How do we estimate these?

Selection only on Observables

I next want to consider the case in which we only have selection only on observables by which I mean:

Assumption 1

For all x in the support of X_{i} and $t \in\{0,1\}$,

$$
\begin{aligned}
& E\left(Y_{1 i} \mid X_{i}=x, T_{i}=t\right)=E\left(Y_{1 i} \mid X_{i}=x\right) \\
& E\left(Y_{0 i} \mid X_{i}=x, T_{i}=t\right)=E\left(Y_{0 i} \mid X_{i}=x\right)
\end{aligned}
$$

A "slightly" stronger version of this is random assignment of T_{i} conditional on X_{i}

This is often also called unconfoundedness
A very strong assumption

Interestingly this is still not enough
If there are values of the observables for which
$\operatorname{Pr}\left(T_{i}=1 \mid X_{i} \in \chi\right)=1$ or $\operatorname{Pr}\left(T_{i}=0 \mid X_{i} \in \chi\right)=0$ then the full distribution of treatment effects is not identified.

For example suppose T_{i} is being pregnant, we could never hope to identify

$$
E(\text { Income | Pregnant, Male) }
$$

This is perhaps not a relevant counterfactual, but if you want to measure the average treatment effect you can't.

Consider a more interesting case:

- the treatment is free preschool
- the outcome is the kids cognitive test score
- the conditioning variable is family income

In that case the elements of the treatment effect make sense for all income levels:

$$
E\left(Y_{i} \mid T_{i}=1, X_{i}=x\right), E\left(Y_{i} \mid T_{i}=0, X_{i}=x\right)
$$

(as opposed to E (Income | Pregnant, Male) which doesn't make sense)

However suppose that the program is means tested so that you are only eligible if your family income is below x^{*}, then for any value $X_{i}>x^{*}$ the effect of the program is not identified

Thus the ATE is not identified without further assumptions

We need additional assumptions

Assumption 2

For almost all x in the support of X_{i},

$$
\operatorname{Pr}\left(T_{i}=0 \mid X_{i}=x\right)>0
$$

Assumption 3

For almost all x in the support of X_{i},

$$
\operatorname{Pr}\left(T_{i}=1 \mid X_{i}=x\right)>0
$$

Theorem 1

Under assumptions 1 and 2 the TT is identified. Under assumptions 1, 2, and 3 the ATE is identified.

It is pretty clear to see why this holds
Consider the treatment on the treated.
Note that $E\left(Y_{1 i} \mid T_{i}=1\right)$ is identified directly from the data so all we need to get is $E\left(Y_{0 i} \mid T_{i}=0\right)$.

Under the first assumption above

$$
E\left(Y_{0 i} \mid T_{i}=1\right)=\sum_{j} E\left(Y_{0 i} \mid X_{i}=x_{j}\right) \operatorname{Pr}\left(X_{i}=x_{j} \mid T_{i}=1\right)
$$

As long as assumption 2 holds, $E\left(Y_{0 i} \mid X_{i}=x\right)$ is identified so $E\left(Y_{0 i} \mid T_{i}=1\right)$ is identified and thus the TT is identified

Under Assumption 3, you can also get

$$
E\left(Y_{1 i} \mid T_{i}=0\right)=\sum_{k} E\left(Y_{1 i} \mid X_{i}=x_{j}\right) \operatorname{Pr}\left(X_{i}=x_{j} \mid T_{i}=0\right)
$$

and use this to identify the ATE

Estimation

There are a number of different ways to estimate this model
The most common is to just use OLS defining

$$
Y_{i}=\alpha T_{i}+X_{i}^{\prime} \beta+u_{i}
$$

and run a regression
However this is assuming that the treatment effect is homogeneous

Allowing for heterogeneous treatment effects is straight forward

$$
\begin{aligned}
& Y_{0 i}=X_{i}^{\prime} \beta_{0}+u_{0 i} \\
& Y_{1 i}=X_{i}^{\prime} \beta_{1}+u_{1 i}
\end{aligned}
$$

Then one could estimate

$$
\widehat{A T E}=\frac{1}{N} \sum_{i=1}^{N} X_{i}^{\prime}\left(\widehat{\beta}_{1}-\widehat{\beta}_{0}\right)
$$

or alternatively:

$$
\widehat{A T E}=\frac{1}{N} \sum_{i=1}^{N} T_{i}\left[Y_{1 i}-X_{i}^{\prime} \widehat{\beta}_{0}\right]+\left(1-T_{i}\right)\left[X_{i}^{\prime} \widehat{\beta}_{1}-Y_{0 i}\right]
$$

TT is analogous (although second method might be more natural)

Matching

Even though regression can be very flexible, many authors argue that matching is better than regression in practice

If you are interested in TT , but the support of X_{i} conditional on $T_{i}=1$ is very different than the unconditional support of X_{i} than the regression approach can work poorly

Heckman and coauthors made this argument in the context of JTPA where only low income people are eligible for treatment

The idea behind matching can be seen most clearly when X_{i} has discrete support

Lets focus on the TT case
Let N_{0} be the the number of respondents with $T_{i}=0$ and let N_{1} be the number of respondents with $T_{i}=1$

Step 1

Notation is really messy-I don't know of a super clean way to do this

For each observation i with $T_{i}=1$ find another observation with exactly the same value of X but for which $T=0$

You can think of drawing at random from the potential people. Let $I_{0}(i)$ denote this choice so that for every value of i with $T_{i}=1$,

$$
\begin{gathered}
X_{l_{0}(i)}=X_{i} \\
T_{l_{0}(i)}=0
\end{gathered}
$$

Example

$$
\begin{array}{ccc}
i & T_{i} & X_{i} \\
\hline 1 & 0 & 3 \\
2 & 0 & 0 \\
3 & 1 & 0 \\
4 & 0 & 2 \\
5 & 1 & 3 \\
6 & 0 & 4 \\
7 & 1 & 2
\end{array}
$$

Then

$$
\begin{aligned}
& I_{0}(3)=2 \\
& I_{0}(5)=1 \\
& I_{0}(7)=4
\end{aligned}
$$

Step 2

Estimate the Treatment on the treated using

$$
\widehat{T T}=\frac{1}{N_{1}} \sum_{\left\{:: T_{i}=1\right\}} Y_{i}-Y_{l_{0}(i)}
$$

To see why this works note that

$$
E(\widehat{T T})=E\left(Y_{1 i} \mid T_{i}=1\right)-E\left(Y_{l_{0}(i)} \mid T_{i}=1\right)
$$

and

$$
\begin{aligned}
E\left(Y_{0(i)} \mid T_{i}=1\right) & =\sum_{j=1}^{J} E\left(Y_{0_{0}(i)} \mid T_{i}=1, X_{i}=x_{j}\right) \operatorname{Pr}\left(X_{i}=x_{j} \mid T_{i}=1\right) \\
& =\sum_{j=1}^{J} E\left(Y_{0 \ell} \mid T_{\ell}=0, X_{\ell}=x_{j}\right) \operatorname{Pr}\left(X_{i}=x_{j} \mid T_{i}=1\right) \\
& =\sum_{j=1}^{J} E\left(Y_{0 \ell} \mid X_{\ell}=x_{j}\right) \operatorname{Pr}\left(X_{i}=x_{j} \mid T_{i}=1\right) \\
& =\sum_{j=1}^{J} E\left(Y_{0 \ell} \mid T_{\ell}=1, X_{\ell}=x_{j}\right) \operatorname{Pr}\left(X_{\ell}=x_{j} \mid T_{\ell}=1\right) \\
& =E\left(Y_{0 i} \mid T_{i}=1\right)
\end{aligned}
$$

This is difficult to do in practice for two reasons:
(1) If X_{i} is continuous we can't match exactly
(2) If X_{i} is very high dimensional, even with discrete data we probably couldn't match directly because there might be no controls with the same value for every single covariate

Propensity Score Matching

Propensity score matching is a way of getting around the second problem.

Rather than matching on the high dimensional X_{i} it turns out that we can match on the lower dimensional

$$
P(x) \equiv \operatorname{Pr}\left(T_{i}=1 \mid X_{i}=x\right)
$$

The reason why comes from Bayes Theorem

For any x,

$$
\begin{aligned}
& F\left(x \mid P\left(X_{i}\right)=\rho, T_{i}=1\right) \\
& =\operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho, T_{i}=1\right) \\
& =\frac{\operatorname{Pr}\left(T_{i}=1 \mid X_{i} \leq x, P\left(X_{i}\right)=\rho\right) \operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right)}{\operatorname{Pr}\left(T_{i}=1 \mid P\left(X_{i}\right)=\rho\right)} \\
& =\frac{\rho \operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right)}{\rho} \\
& =\operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right) \\
& =F\left(x \mid P\left(X_{i}\right)=\rho\right)
\end{aligned}
$$

and analogously,

$$
\begin{aligned}
& F\left(x \mid P\left(X_{i}\right)=\rho, T_{i}=0\right) \\
& =\operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho, T_{i}=0\right) \\
& =\frac{\operatorname{Pr}\left(T_{i}=0 \mid X_{i} \leq x, P\left(X_{i}\right)=\rho\right) \operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right)}{\operatorname{Pr}\left(T_{i}=0 \mid P\left(X_{i}\right)=\rho\right)} \\
& =\frac{(1-\rho) \operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right)}{1-\rho} \\
& =\operatorname{Pr}\left(X_{i} \leq x \mid P\left(X_{i}\right)=\rho\right) \\
& =F\left(x \mid P\left(X_{i}\right)=\rho\right)
\end{aligned}
$$

thus

$$
F\left(x \mid P\left(X_{i}\right)=\rho, T_{i}=0\right)=F\left(x \mid P\left(X_{i}\right)=\rho, T_{i}=1\right)
$$

Thus if we condition on the propensity score, the distribution of X_{i} is identical for the controls and the treatments.

But since we have selection on observables only:

$$
\begin{aligned}
E\left(Y_{0 i}\right. & \left.\mid T_{i}=1, P\left(X_{i}\right)=\rho\right) \\
& =\int E\left(Y_{0 i} \mid X_{i}=x\right) d F\left(x \mid T_{i}=1, P\left(X_{i}\right)=\rho\right) \\
& =\int E\left(Y_{0 i} \mid X_{i}=x\right) d F\left(x \mid T_{i}=0, P\left(X_{i}\right)=\rho\right) \\
& =E\left(Y_{0 i} \mid T_{i}=0, P\left(X_{i}\right)=\rho\right)
\end{aligned}
$$

Consider matching on propensity scores rather than X_{i}
We do something similar to before. For each observation i with $T_{i}=1$ we find another observation with the same propensity score but $T_{i}=0$.

Analogous to before we let $I_{0}(i)$ denote this choice so that for every value of i with $T_{i}=1$,

$$
\begin{gathered}
p\left(X_{l_{0}(i)}\right)=p\left(X_{i}\right) \\
T_{l_{0}(i)}=0
\end{gathered}
$$

Then

$$
\begin{aligned}
& E\left(Y_{i}-Y_{l_{0}(i)} \mid T_{i}=1\right) \\
= & \int E\left(Y_{i}-Y_{l_{0}(i)} \mid T_{i}=1, P\left(X_{i}\right)=\rho\right) f\left(\rho \mid T_{i}=1\right) d \rho \\
= & \int E\left(Y_{i} \mid T_{i}=1, P\left(X_{i}\right)=\rho\right) f\left(\rho \mid T_{i}=1\right) d \rho \\
& -\int E\left(Y_{l_{0}(i)} \mid T_{i}=1, P\left(X_{i}\right)=\rho\right) f\left(\rho \mid T_{i}=1\right) d \rho \\
= & \int E\left(Y_{1 i} \mid T_{i}=1, P\left(X_{i}\right)=\rho\right) f\left(\rho \mid T_{i}=1\right) d \rho \\
& -\int E\left(Y_{0 \ell} \mid T_{\ell}=0, P\left(X_{\ell}\right)=\rho\right) f\left(\rho \mid T_{\ell}=1\right) d \rho \\
= & E\left(Y_{1 i}-Y_{0 i} \mid T_{i}=1\right)
\end{aligned}
$$

This makes the problem much simpler, but

- You still need to estimate the propensity score which is a high dimensional non-parametric problem. People typically just use a logit
- You still have the first problem above that for a continuous propensity score you are not going to be able to get an exact match.

There are essentially 3 ways to deal with this second problem:

- Just take nearest neighbor (or perhaps caliper which throws out observations without a close neighbor)
- Use all of the observations that are sufficiently close
- Estimate $E\left(Y_{0 j} \mid T_{j}=0, P\left(X_{j}\right)=P\left(X_{i}\right)\right)$ directly with some semiparametric method

Lets look at two papers that use this approach

How Robust is the Evidence on the Effects of College Quality? Evidence from Matching

by Dan Black and Jeff Smith, Journal of Econometrics, 2004
They want to look at the effects of college quality in the U.S. on wages

They use the National Longitudinal Survey of Youth, 1979
A representative panel data that looks at kids 14-21 in 1979 and is still following them

Table 1: NLSY Descriptive Statistics, 1998

Full sample	Men	Women
age	36.7	36.8
black	0.239	0.280
Hispanic	0.166	0.167
years of education	14.91	14.79
Associate degree	0.116	0.156
Bachelor's degree	0.411	0.363
Master's degree	0.148	0.157
N	1504	1695
Representative sample	Men	Women
Age	36.7	36.8
Black	0.083	0.106
Hispanic	0.057	0.070
years of education	15.15	14.92
Associate degree	0.101	0.149
Bachelor's degree	0.481	0.413
Master's degree	0.175	0.182
N	1012	1136

They rank colleges using SAT scores, faculty salary and the freshman retention rate

You can see there is substantial selection

Table 2: Variables for Propensity Score and Wage Equations

log wage

Basic Characteristics: region of birth
age
years of education
black
Hispanic

ASVAB test scores

Log of average real wage (1982 dollars) on all jobs held during the year
a vector of 10 dummy variables indicating region in which respondent was born respondent's age at the interview, quadratic in age is used
highest grade or year of school the respondent completed as of the 1998 interview. Only those who attended a college are in the sample dummy variable indicating the respondent is black
dummy variable indicating the respondent is Hispanic (black \& Hispanic are mutually exclusive)
Scores on the ten components of the Armed Services Vocational Aptitude Battery, administered in 1980. We use the first two principal components of the ageadjusted scores.

```
Home Characteristics:
magazine
newspaper
library card
mom education
mom living
mom age
dad education
dad living
```

"When you were about 14 years old, did you or anyone else living with you get magazines regularly?"
"When you were about 14 years old, did you or anyone else living with you get a newspaper regularly?"
"When you were about 14 years old, did you or anyone else living with you have a library card?"
Highest grade or year of school completed by respondent's mother.
Was the respondent's mother living at the 1979 interview (when respondents were between 14 and 22 years old)?
At the 1987 interview.
Highest grade or year of school completed by respondent's father
Was the respondent's father living at the 1979 interview?
\(\left.$$
\begin{array}{ll}\text { dad age } & \begin{array}{l}\text { At the 1987 interview } \\
\text { Indicator for whether the respondent's } \\
\text { mother and father lived in the same }\end{array}
$$

household at the 1979 interview\end{array}\right]\)| Occupation of job held longest by mother |
| :--- |
| or stepmother in 1978, represented by |
| dummy variables for each Census 1-digit |
| occupation |
| Occupation of job held longest by father or |
| stepfather in 1978, represented by dummy |
| variables for each Census 1-digit |
| occupation. |

Panel A: Men

Quality index quintiles	First quintile	Second quintile	Third quintile	Fourth quintile	Fifth quintile	Total
First quintile	(32.38)	(21.90)	(16.19)	(14.29)	(15.24)	(100.0)
	$[32.38]$	$[21.90]$	$[16.19]$	$[14.29]$	$[15.24]$	$(\mathrm{N}=105)$
Second quintile	6.48	4.38	3.24	2.86	3.05	(100.0)
	(23.81)	(20.95)	(20.95)	(20.95)	(13.33)	$(\mathrm{N}=105)$
	$[23.81]$	$[20.95]$	$[20.95]$	$[20.95]$	$[13.33]$	2.67
Third quintile	4.76	4.19	4.19	4.19	(20.95)	(100.0)
	(24.76)	(15.24)	(21.90)	(17.14)	$[20.95]$	$(\mathrm{N}=105)$
	$[24.76]$	$[15.24]$	$[21.90]$	$[17.14]$	3.43	4.19
Fourth quintile	4.95	3.05	4.38	(22.12)	(100.0)	
	(11.54)	(18.27)	(27.88)	(20.19)	$(21.90]$	$(\mathrm{N}=104)$
	$[11.43]$	$[18.10]$	$[27.62]$	$[20.00]$	4.38	
Fifth quintile	2.29	3.62	5.52	4.00	(28.30)	(100.0)
	(7.55)	(23.58)	(13.21)	(27.36)	$[27.62]$	$[28.57]$
	$[7.62]$	$[23.81]$	$[13.33]$	$[2.06)$		
	1.52	4.76	2.67	5.52	5.71	
Total					$[100.0]$	$[100.0]$
	$[100.0]$	$[100.0]$	$[100.0]$	$[100.0$		
	$[\mathrm{N}=105]$	$[\mathrm{N}=105]$	$[\mathrm{N}=105]$	$[\mathrm{N}=105]$	$[\mathrm{N}=105]$	$\mathrm{N}=525$

Panel B: Women

Quality index quintiles	First quintile	Second quintile	Third quintile	Fourth quintile	Fifth quintile	Total
First quintile	(31.07)	(19.42)	(20.39)	(15.53)	(13.59)	(100.0)
	$[31.07]$	$[19.42]$	$[20.39]$	$[15.53]$	$[13.59]$	$(\mathrm{N}=103)$
	6.21	3.88	4.08	3.11	2.72	(100.0)
Second quintile	(22.22)	(25.25)	(26.26)	(10.10)	(16.16)	$(\mathrm{N}=99)$
	$[21.36]$	$[24.27]$	$[25.24]$	$[9.71]$	$[15.53]$	3.11
Third quintile	4.27	4.85	5.05	1.94	(15.24)	(100.0)
	(25.71)	(19.05)	(20.95)	(19.05)	$[15.53]$	$(\mathrm{N}=105)$
	$[26.21]$	$[19.42]$	$[21.36]$	$[19.42]$	3.88	3.11
Fourth quintile	5.24	3.88	4.27	(24.75)	$(20.790$	(100.0)
	(14.85)	(21.78)	(17.82)	$[20.39]$	$(\mathrm{N}=101)$	
	$[14.56]$	$[21.36]$	$[17.48]$	$[24.27]$	4.85	4.08
	2.91	4.27	3.50	(29.91)	(33.64)	(100.0)
Fifth quintile	(6.54)	(14.95)	(14.95)	$[31.07]$	$[34.95]$	$(\mathrm{N}=107)$
	$[6.80]$	$[15.53]$	$[15.53]$	$[31.07]$		
	1.36	3.11	3.11	6.21	6.99	
Total						$[100.0]$
	$[100.0]$	$[100.0]$	$[100.0]$	$[100.0]$	100.0	
	$[\mathrm{~N}=103]$	$[\mathrm{N}=103]$	$[\mathrm{N}=103]$	$[\mathrm{N}=103]$	$[\mathrm{N}=103]$	$\mathrm{N}=515$

B. Women

Fig. 1. The distributions of the propensity scores.

They then do propensity score estimation-what they do is somewhat complicated-more than I think is worth getting into here

Table 7
Propensity score estimates of the effects of college quality: fourth and first quartiles, NLSY 1998

$\Delta_{41}=Y_{i 4}-Y_{i 1}$	Men		Women	
	Using years of education in propensity score estimation	Not using years of education in propensity score estimation	Using years of education in propensity score estimation	Not using years of education in propensity score estimation
Epanechnikov kernel, bandwidth 0.40 for men and 0.30 for women	$\begin{aligned} & 0.120 \\ & (0.0867) \\ & {[n=158]} \end{aligned}$	$\begin{aligned} & 0.139 \\ & (0.0767) \\ & {[n=152]} \end{aligned}$	$\begin{aligned} & 0.067 \\ & (0.0862) \\ & {[n=145]} \end{aligned}$	$\begin{aligned} & 0.078 \\ & (0.0830) \\ & {[n=155]} \end{aligned}$
OLS estimates	$\begin{aligned} & 0.122 \\ & (0.0584) \end{aligned}$	$\begin{aligned} & 0.159 \\ & (0.0584) \end{aligned}$	$\begin{aligned} & 0.112 \\ & (0.0557) \end{aligned}$	$\begin{aligned} & 0.155 \\ & (0.0552) \end{aligned}$
Thick support region	$\begin{aligned} & 0.199 \\ & (0.1357) \\ & {[n=44]} \end{aligned}$	0.250 (0.1181) [$n=44]$	0.124 (0.1407) $[n=39]$	$\begin{aligned} & 0.157 \\ & (0.1418) \\ & {[n=39]} \end{aligned}$
OLS estimates, thick support region	$\begin{aligned} & 0.121 \\ & (0.0639) \end{aligned}$	$\begin{aligned} & 0.156 \\ & (0.0653) \end{aligned}$	$\begin{aligned} & 0.144 \\ & (0.0724) \end{aligned}$	$\begin{aligned} & 0.184 \\ & (0.0720) \end{aligned}$

Table 8
Propensity score estimates of the effects of college quality, NLSY 1998

	Not using years of education in propensity score estimation	
	Men	Women
$\Delta_{41}=Y_{i 4}-Y_{i 1}$		
Epanechnikov kernel, bandwidth 0.40 for men and 0.30 for women	0.139	0.078
OLS estimates	(0.0767)	(0.0830)
	0.159	$[n=155]$
	(0.0584)	0.155
$\Delta_{31}=Y_{i 3}-Y_{i 1}$		(0.0552)
Epanechnikov kernel,	0.056	
bandwidth 0.30 men and	(0.0695)	0.118
0.50 women	$[n=166]$	(0.0561)
OLS estimates	0.082	$[n=133]$
	(0.0541)	0.104
		(0.0498)
$\Delta_{21}=Y_{i 3}-Y_{i 1}$	0.006	0.123
Epanechnikov kernel,	(0.0863)	(0.506)
bandwidth 0.20 for men		
and 0.50 for women	$[n=147]$	$[n=159]$
OLS estimates	0.072	0.094
	(0.0584)	(0.0458)

Does Piped Water Reduce Diarrhea for Children in Rural India?

by Jalan and Ravallion, Journal of Econometrics, 2003
Unsafe drinking water is one of the biggest health risks in the world

This paper studies the effects of piped water on health in rural India using propensity scores
they use the closest five matches as long as they were close enough

Table 1
Access to piped water across the income distribution and by education

Income quintiles (stratified by household income per person)	Number of observations	Percentage of people with piped water		Households with piped water stratified by highest education of female members		
			Illiterate	At most primary	At most matriculation	Higher secondary or more
Bottom 20th percentile	6581	27.18		Full sample		

Table 2
Logit regression for piped water

	Coefficient	t-statistic
Village variables		
Village size (log)	0.08212	4.269
Proportion of gross cropped area which is irrigated: >0.75	-0.04824	-1.185
Proportion of gross cropped area which is irrigated: $0.5-0.75$	0.19399	4.178
Whether village has a day care center	-0.07249	-2.225
Whether village has a primary school	-0.08136	-1.434
Whether village has a middle school	-0.09019	-2.578
Whether village has a high school	0.26460	7.405
Female to male students in the village	0.10637	3.010
Female to male students for minority groups	-0.07661	-2.111
Main approachable road to village: pucca road	0.19441	3.637
jeepable/kuchha road	-0.00163	-0.033
Whether bus-stoop is within the village	0.11423	2.951
Whether railway station is within the village	0.00920	0.179
Whether there is a post-office within the village	0.02193	0.550
Whether the village has a telephone facility	0.33059	9.655
Whether there is a community TV center in the village	0.09859	2.661
Whether there is a library in the village	-0.04153	-1.116
Whether there is a bank in the village	0.19084	4.655
Whether there is a market in the village	0.31690	6.092
Student teacher ratio in the village	0.00242	5.295
Household variables		
Whether household belongs to the Scheduled Tribe	-0.21288	-4.203
Whether household belongs to the Scheduled Caste	-0.01045	-0.288
Whether it is a Hindu household	-0.24195	-1.709
Whether it is a Muslim household	-0.21631	-1.427
Whether it is a Christian household	0.40367	2.426
Whether it is a Sikh household	-0.86645	-4.531
Household size	0.00337	0.571
Utilization of landholdings: used for cultivation?	0.17109	1.914
Whether the house belongs to the household	-0.18988	-2.854
Whether the household owns other property	0.00181	0.044
Whether the household has a bicycle	-0.26514	-8.243
Whether the household has a sewing machine	0.01183	0.252
Whether the household owns a thresher	-0.05790	-0.577
Whether the household owns a winnower	0.21842	1.820
Whether the household owns a bullock-cart	-0.25900	-5.430
Whether the household owns a radio	0.01036	0.251
Whether the household owns a TV	0.08095	1.335
Whether the household owns a fan	0.01336	0.321
Whether the household owns any livestock	-0.07780	-2.339
Nature of house: Kuchha	-0.10004	-2.775
Pucca	0.12039	2.709
Condition of house: Good	0.00230	0.036
Livable	0.09268	1.756

Table 2 (continued)

	Coefficient	t-statistic
Rooms in house: One	-0.10771	-1.371
Two	0.06822	0.952
Three to five	0.07514	1.112
Whether household has a separate kitchen	-0.01993	-0.533
Whether the kitchen is ventilated	0.08103	2.212
Whether the household has electricity	0.40641	11.217
Occupation of the head: Cultivator	-0.02425	-0.481
Agricultural wage labor	0.02432	0.429
Non-agricultural wage labor	0.14628	2.254
Self-employed	-0.06921	-0.955
Whether male members listen to radio	0.20089	3.484
Whether female members listen to radio	-0.12415	-2.177
Whether male members watch TV	0.09365	1.291
Whether female members watch TV	0.03863	0.493
Whether male members read newspapers	0.08950	1.813
Whether female members read newspapers	-0.04066	-0.631
Proportion of household members who are 60+	-0.11370	-1.067
Proportion of females among adults	0.04646	0.331
Proportion of males among children	0.08436	0.779
Proportion of females among children	0.05498	0.498
Whether household head is male	-0.18041	-2.321
Whether household head is single	-0.16659	-1.268
Whether household head is married	-0.02603	-0.422
Whether household head is illiterate	-0.13048	-1.454
Whether household head is primary school educated	-0.03694	-0.416
Whether household head is matriculation educated	-0.03364	-0.385
Whether household head is higher secondary	-0.05545	-0.475
Gross cropped area	-0.00020	-0.666
Gross irrigated area	-0.00050	-1.342
Landholding size: Landless	-0.32849	-3.996
Marginal	-0.31056	-3.987
Small	-0.22129	-2.916
Constant	-1.49531	-5.396
Log-likelihood function	-16236.565	
Number of observations	33216	

Propensity score for households with piped water

Propensity score for households without piped water

Table 3
Impacts of piped water on diarrhea prevalence and duration for children under five

	Prevalence of diarrhea			Duration of illness

Table 4
Child-health impacts of piped water by income and education

	Illiterate		At most primary		At most matriculation		Higher secondary or more	
	Prevalence of diarrhea	Duration of illness						
1 (poorest quintile)	$\begin{gathered} 0.0100^{*} \\ (0.002) \end{gathered}$	$\begin{array}{r} 0.1028 \\ (0.089) \end{array}$	$\begin{array}{r} 0.0010 \\ (0.002) \end{array}$	$\begin{array}{r} 0.0548 \\ (0.094) \end{array}$	$\begin{gathered} -0.0118^{*} \\ (0.003) \end{gathered}$	$\begin{array}{r} -0.1091 \\ (0.132) \end{array}$	Small	Sample
2	$\begin{gathered} 0.0057^{*} \\ (0.003) \end{gathered}$	$\begin{aligned} & 0.0777 \\ & (0.083) \end{aligned}$	$\begin{aligned} & 0.0013 \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.1061 \\ & (0.083) \end{aligned}$	$\begin{gathered} -0.0121^{*} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.2580^{*} \\ (0.087) \end{gathered}$	Small	Sample
3	$\begin{gathered} -0.0038^{*} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.1503^{*} \\ (0.069) \end{gathered}$	$\begin{array}{r} -0.0008 \\ (0.002) \end{array}$	$\begin{array}{r} 0.0056 \\ (0.081) \end{array}$	$\begin{gathered} -0.0069^{*} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.1659^{*} \\ (0.059) \end{gathered}$	Small	Sample
4	$\begin{gathered} -0.0062^{*} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.2224^{*} \\ (0.097) \end{gathered}$	$\begin{gathered} -0.0041^{*} \\ (0.002) \end{gathered}$	$\begin{array}{r} -0.1691 \\ (0.070) \end{array}$	$\begin{aligned} & 0.0008 \\ & (0.003) \end{aligned}$	$\begin{array}{r} -0.0186 \\ (0.091) \end{array}$	Small	Sample
5	$\begin{gathered} -0.0075^{*} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.2932^{*} \\ (0.045) \end{gathered}$	$\begin{gathered} -0.0051^{*} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.2435^{*} \\ (0.075) \end{gathered}$	$\begin{gathered} -0.0063^{*} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.2578^{*} \\ (0.008) \end{gathered}$	$\begin{array}{r} -0.010^{*} \\ (0.003) \end{array}$	$\begin{gathered} -0.2637^{*} \\ (0.085) \end{gathered}$

Note: Figures in parentheses are the respective standard errors.
*Indicates significance at 5% or lower.

Propensity Score Matching vs Regression

When I think about this too hard I start to get a bit confused about the fundamental difference.

At some level when we do matching we do

$$
\widehat{\pi T}=\frac{1}{N_{1}} \sum_{\left\{:: T_{i}=1\right\}} Y_{i}-\widehat{Y}_{0 i}
$$

where $\widehat{Y}_{0 i}$ is an unbiased estimate of $E\left(Y_{0 j} \mid X_{j}=X_{i}\right)$
We can get this estimate by taking one person with the same value of the propensity score or by using the forecast from OLS as above: $X_{i}^{\prime} \widehat{\beta}_{0}$

We can then think about nonparametric regression for our estimate of \widehat{Y}_{0}, but this is kind of a more flexible version of both

Reweighting

Another approach is reweighting
Let $f_{t}(x)$ be the density of X_{i} conditional on $T_{i}=t$.
Using Bayes theorem

$$
\begin{aligned}
f_{1}(x) & =\frac{P(x) f(x)}{\operatorname{Pr}\left(T_{i}=1\right)} \\
f_{0}(x) & =\frac{(1-P(x)) f(x)}{\operatorname{Pr}\left(T_{i}=0\right)}
\end{aligned}
$$

so

$$
\begin{aligned}
E\left(Y_{0 i} \mid T_{i}=1\right) & =\int E\left(Y_{0 i} \mid X_{i}=x\right) f_{1}(x) d x \\
& =\int E\left(Y_{0 i} \mid X_{i}=x\right) \frac{f_{1}(x)}{f_{0}(x)} f_{0}(x) d x \\
& =E\left(\left.Y_{0 i} \frac{P\left(X_{i}\right)}{1-P\left(X_{i}\right)} \right\rvert\, T_{i}=0\right) \frac{\operatorname{Pr}\left(T_{i}=0\right)}{\operatorname{Pr}\left(T_{i}=1\right)}
\end{aligned}
$$

Putting this together we can use the estimator

$$
\begin{aligned}
& \frac{\sum_{i=1}^{N_{1}} Y_{1 i}}{N_{1}}-\frac{\sum_{j=1}^{N_{0}} Y_{0 j} \frac{P\left(X_{j}\right)}{1-P\left(X_{j}\right)}}{N_{1}} \\
= & \frac{\sum_{i=1}^{N_{1}} Y_{1 i}}{N_{1}}-\frac{\frac{1}{N_{0}} \sum_{j=1}^{N_{0}} Y_{0 j} \frac{P\left(X_{j}\right)}{1-P\left(X_{j}\right)}}{\frac{N_{1}}{N_{0}}} \\
\approx & E\left(Y_{1 i} \mid T_{i}=1\right)-\frac{E\left(Y_{0 i} \mid T_{i}=1\right) \frac{\operatorname{Pr}\left(T_{i=1}\right)}{\operatorname{Pr}\left(T_{i}=0\right)}}{\frac{\operatorname{Pr}\left(T_{i}=1\right)}{\operatorname{Pr}\left(T_{i}=0\right)}} \\
= & T T
\end{aligned}
$$

Instrumental Variables

What about selection on unobservables?
Lets first think about what IV does in this case
Define

$$
\begin{aligned}
Y_{i} & \equiv T_{i} Y_{1 i}+\left(1-T_{i}\right) Y_{0 i} \\
& =T_{i}\left(Y_{1 i}-Y_{0 i}\right)+Y_{0 i} \\
& =\beta_{0}+\alpha_{i} T_{i}+\varepsilon_{i}
\end{aligned}
$$

(where $\beta_{0}=E\left(Y_{0 i}\right)$ and $\left.\varepsilon_{i}=Y_{i}-\beta_{0}\right)$
Assume that we have an instrument Z_{i} that is correlated with T_{i} but not with α_{i} or ε_{i} (or equivalently $Y_{0 i}$ or $Y_{1 i}$)

Does IV estimate the ATE?

Lets abstract from other regressors

IV yields

$$
\begin{aligned}
\operatorname{plim} \widehat{\beta}_{1} & =\frac{\operatorname{Cov}\left(Z_{i}, Y_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(Z_{i}, \varepsilon_{i}+\alpha_{i} T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(Z_{i}, \varepsilon_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)}+\frac{\operatorname{Cov}\left(Z_{i}, \alpha_{i} T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(Z_{i}, \alpha_{i} T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)}
\end{aligned}
$$

In the case in which treatment effects are constant so that $\alpha_{i}=\alpha$ for everyone

$$
\begin{aligned}
\operatorname{plim} \widehat{\beta}_{1} & =\frac{\operatorname{Cov}\left(Z_{i}, \alpha T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\alpha
\end{aligned}
$$

However, more generally IV does not converge to the Average treatment effect

Local Average Treatment Effects

Imbens and Angrist (1994) consider the case in which there are not constant treatment effects

The consider a simple version of the model in which Z_{i} takes on 2 values, call them 0 and 1 for simplicity and without loss of generality assume that

$$
\operatorname{Pr}\left(T_{i}=1 \mid Z_{i}=1\right)>\operatorname{Pr}\left(T_{i}=1 \mid Z_{i}=0\right)
$$

There are 4 different types of people those for whom $T_{i}=1$ when:
(1) $Z_{i}=1, Z_{i}=0$
(2) never
(3) $Z_{i}=1$ only
(4) $Z_{i}=0$ only

Imbens and Angrist's monotonicity rules out 4 as a possibility
Let μ_{1}, μ_{2}, and μ_{3} represent the sample proportions of the three groups
and G_{i} an indicator of the group

Note that

$$
\begin{aligned}
\widehat{\beta}_{1} \xrightarrow{p} & \frac{\operatorname{Cov}\left(Z_{i}, \alpha_{i} T_{i}\right)}{\operatorname{Cov}\left(Z_{i}, T_{i}\right)} \\
& =\frac{E\left(\alpha_{i} T_{i} Z_{i}\right)-E\left(\alpha_{i} T_{i}\right) E\left(Z_{i}\right)}{E\left(T_{i} Z_{i}\right)-E\left(T_{i}\right) E\left(Z_{i}\right)}
\end{aligned}
$$

Let ρ denote the probability that $Z_{i}=1$. Lets look at the pieces
first the numerator

$$
\begin{aligned}
& E\left(\alpha_{i} T_{i} Z_{i}\right)-E\left(\alpha_{i} T_{i}\right) E\left(Z_{i}\right) \\
= & \rho E\left(\alpha_{i} T_{i} \mid Z_{i}=1\right)-E\left(\alpha_{i} T_{i}\right) \rho \\
= & \rho E\left(\alpha_{i} T_{i} \mid Z_{i}=1\right) \\
& -\left[\rho E\left(\alpha_{i} T_{i} \mid Z_{i}=1\right)+(1-\rho) E\left(\alpha_{i} T_{i} \mid Z_{i}=0\right)\right] \rho \\
= & \rho(1-\rho)\left[E\left(\alpha_{i} T_{i} \mid Z_{i}=1\right)-E\left(\alpha_{i} T_{i} \mid Z_{i}=0\right)\right] \\
= & \rho(1-\rho)\left[E\left(\alpha_{i} \mid G_{i}=1\right) \mu_{1}+E\left(\alpha_{i} \mid G_{i}=3\right) \mu_{3}-E\left(\alpha_{i} \mid G_{i}=1\right) \mu_{1}\right] \\
= & \rho(1-\rho) E\left(\alpha_{i} \mid G_{i}=3\right) \mu_{3}
\end{aligned}
$$

Next consider the denominator

$$
\begin{aligned}
& E\left(T_{i} Z_{i}\right)-E\left(T_{i}\right) E\left(Z_{i}\right) \\
= & \rho E\left(T_{i} \mid Z_{i}=1\right)-E\left(T_{i}\right) \rho \\
= & \rho E\left(T_{i} \mid Z_{i}=1\right) \\
& -\left[\rho E\left(T_{i} \mid Z_{i}=1\right)+(1-\rho) E\left(T_{i} \mid Z_{i}=0\right)\right] \rho \\
= & \rho(1-\rho)\left[E\left(T_{i} \mid Z_{i}=1\right)-E\left(T_{i} \mid Z_{i}=0\right)\right] \\
= & \rho(1-\rho)\left[\mu_{1}+\mu_{3}-\mu_{1}\right] \\
= & \rho(1-\rho) \mu_{3}
\end{aligned}
$$

Thus

$$
\begin{gathered}
\widehat{\beta}_{1} \xrightarrow[\rightarrow]{p} \frac{\rho(1-\rho) E\left(\alpha_{i} \mid G_{i}=3\right) \mu_{3}}{\rho(1-\rho) \mu_{3}} \\
=E\left(\alpha_{i} \mid G_{i}=3\right)
\end{gathered}
$$

They call this the local average treatment effect

