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Abstract 

 

The panel data literature on deterrence and capital punishment contains a wide range of empirical 

claims despite the use of common data sets for analysis. We interpret the diversity of findings in 

the literature in terms of differences in statistical model assumptions.  Rather than attempt to 

determine a “best” model from which to draw empirical evidence on deterrence and the death 

penalty, this paper asks what conclusions about deterrence may be drawn given the presence of 

model uncertainty, i.e. uncertainty about which statistical assumptions are appropriate. We 

consider four sources of model uncertainty that capture some of the economically substantive 

differences that appear across studies.  We explore which dimensions of these assumptions are 

important in generating disparate findings on capital punishment and deterrence from a standard 

county-level crime data set. 
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1. Introduction 

 

The effectiveness of capital punishment in deterring homicides, despite decades 

of empirical work, remains very unclear.  This is so despite the fact that the Supreme 

Court’s moratorium on capital punishment and the subsequent adoption of capital 

punishment by a subset of states, combined with very different rates of execution in those 

polities with capital punishment, would seem to provide an ideal environment for 

identifying the magnitude of deterrence effects using panel data methods.  Focusing on 

post-moratorium studies, one can find papers that argue that post-moratorium data reveal 

large deterrent effects (Dezhbakhsh, Rubin and Shepherd (2003), Zimmerman (2004)), 

fail to provide evidence of a deterrent effect (Donohue and Wolfers (2005), Durlauf, 

Navarro, and Rivers (2010)), or that provide a mixture of positive deterrence negative 

deterrence (brutalization) effects depending on the frequency of execution (Shepherd 

(2005)).   

The presence of disparate results on the deterrent effect of capital punishment is 

not, by itself, surprising. Social scientists have long understood that the data “do not 

speak for themselves” and so empirical analyses that involve substantive social science 

questions such as the measurement of deterrence, can only do so conditional on the 

choice of a statistical model.  The disparate findings in the capital punishment literature 

reflect this model dependence.  This is even true when one conditions on the modern 

panel literature in which the various models typically represent statistical instantiations of 

Becker’s (1968) rational choice model of crime.  Thus, a common basis for 

understanding criminal behavior, in this case murder, is compatible with contradictory 

empirical findings because of the nonuniqueness of the mapping of the underlying 

behavioral theory to a statistical representation suitable for data analysis. 

This paper is designed to understand the sources of the disparate literature 

findings.  Specifically, we consider how different substantive assumptions about the 

homicide process affect deterrence effect estimates.  From our vantage point, alternate 

models of the homicide process are the result of different combinations of assumptions. 

Since there is no a priori reason to assign probability 1 to any of the models that have 

been studied in the literature or our own new models in this paper, our approach respects 
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and tries to constructively address the fact that the evaluation of the deterrent effect of 

capital punishment constitutes a context in which one must account for the presence 

model uncertainty. 

The closest predecessor to this paper is Cohen-Cole, Durlauf, Fagan, and Nagin 

(2009), which employed model averaging efforts to adjudicate the different findings of 

Dezhbakhsh, Rubin and Shepherd (2003) and Donohue and Wolfers (2005).  Cohen-

Cole, Durlauf, Fagan and Nagin were especially concerned to illustrate how model 

averaging could address the problem of different papers coming to diametrically opposite 

conclusions because of minor differences in model specification.  As such, the purpose of 

the exercise was, to a major extent, the integration of disparate deterrence estimates 

across papers into a single number.  Cohen-Cole et al were thus able to draw conclusions 

about the disagreement between Dezhbakhsh, Rubin and Shepherd and Donohue and 

Wolfers, finding that intermodel uncertainty was sufficiently great that no firm inferences 

about deterrence were possible for the data set under study. 

In contrast, the current paper takes a broader view of the capital punishment and 

deterrence literature in attempting to understand why the literature has generated very 

disparate results.  We explore a broader set of modeling assumptions so that a more 

general, and we think basic, set of sources of disagreements across papers are considered 

when evaluating what the data reveal about capital punishment and deterrence.  Further, 

we consider models that have not previously appeared but, for theoretical reasons, in our 

judgment should be part of the model space.  Finally, unlike Cohen-Cole, Durlauf, Fagan 

and Nagin, we are not primarily interested in reducing the model-specific estimates of 

deterrence down to a single number.  Instead, our goal is to understand which substantive 

assumptions matter in determining the sign, magnitude and precision of various model-

specific deterrent effects.   

We explore four sources of model uncertainty.  Each, we believe, represents a 

fundamental issue in modeling the homicide process from which deterrence estimates are 

obtained. In all cases our object of interest, the deterrent effect, is measured as the 

marginal number of lives saved by an additional execution. This is a purely statistical 

definition. We are not concerned with efforts such as Shepherd (2005) to draw 

conclusions about distinct behavioral mechanisms that distinguish brutalization effects 
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from deterrence.  The reason for this is that the statistical models we study only reveal 

information (at best) on the net effects of capital punishment and so do not identify 

distinct behavioral mechanisms.  

First, we consider differences in the specification of the stochastic process for 

unobserved heterogeneity in individual choices as to whether or not to commit a murder.  

As argued in Durlauf, Navarro, and Rivers (2010), the standard linear regression model 

used for deterrence regressions places very strong restrictions on the process for 

unobserved heterogeneity in the payoff differential between the choices to commit and 

not to commit a murder.  These restrictions are well known to derive from the 

requirement that the probability that a given individual at a given point in time commits a 

murder lies between zero and one.  We contrast this specification of unobserved 

heterogeneity with the logistic error assumption that is standard in discrete choice 

models.  While this might seem to be an arcane technical issue, in fact it matters a great 

deal whether one works with a linear probability or a logistic probability specification 

because of differences in the implied restrictions on those determinants of the homicide 

choice that an analyst cannot observe. 

Second, we consider model uncertainty with respect to the specification of 

probabilities of punishment as determinants of individual choices. Here we follow 

Durlauf, Navarro and Rivers (2010) in contrasting the probabilities that naturally derive 

from a crime choice problem, probabilities which in fact appear in Ehrlich (1975), with 

those that have become standard in the literature.  In terms of statistical models, this 

amounts to asking whether joint or conditional probabilities involving apprehension, 

receipt of a death sentence, and the carrying out of a death sentence, are the appropriate 

regressors in controlling for the uncertainty facing a potential murderer with respect to 

possible punishments if a murder is committed.  As shown in Durlauf, Navarro and 

Rivers (2010), the joint probabilities are those suggested by rational choice models of 

crime. While we are unaware of a decision framework that implies that conditional 

probabilities should appear additively, as is the empirical standard in the recent literature, 

we certainly cannot rule out such a decision process and so treat the empirical convention 

as an alternative to the rational choice model. 
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Third, we consider model uncertainty from the vantage point of heterogeneity in 

the deterrent effect of murders, contrasting the assumption in Shepherd (2005) that the 

deterrent effect varies across states with the standard assumption in the literature that the 

same parameters apply to all states.  The model uncertainty we consider contrasts two 

cases: one in which the deterrent effect is state-specific and one in which the deterrent 

effect is constant across states.  This form of model uncertainty addresses concerns that 

have been raised that the skewed distribution of executions across US states renders the 

interpretation of a single deterrent effect problematic.  The most prominent example of 

this concern is Berk (2005) which questions claims of a deterrence effect from interstate 

data because of the concentration of executions in a few states, and their absence in many 

state-year observation pairs.  As stated, Berk’s criticism is not an obvious a priori 

objection to the claims of the deterrence literature.  For example, the success of a polio 

vaccine based on trials in Texas would not be regarded as self-evidently meaning that the 

vaccine’s efficacy in other states is uninformed by the Texas data.  In other words, Berk’s 

argument has import only if the concentration in a few states means that extrapolability 

findings for death penalty states to other states is not warranted.
1
 Shepherd’s introduction 

of state-specific execution effects is a constructive way to formalize the concern over 

extrapolability and indeed does so in a fashion that is more general than what we interpret 

as Berk’s criticism.
2
 

Fourth, we address model uncertainty in the handling of cases in which a given 

polity-time pair exhibits 0 murders. Once the murder rate is understood as a probability, 

standard models have difficulty in predicting 0 murders.
3
 For the most part, the literature 

(e.g. Dezhbakhsh, Rubin and Shepherd (2003), Mocan and Gittings (2003), Zimmerman 

(2004), Donohue and Wolfers (2005)) has sidestepped this difficulty by using aggregate 

                                                 
1
The treatment effect literature takes a much more sophisticated view of heterogeneity of 

effects of a given policy across individuals; see Abbring and Heckman (2007) for a 

review. 
2
Berk estimates a nonparametric regression relating number of executions to homicides. 

State-specific effects thus relax the assumption that two states with similar number of 

executions should exhibit the same deterrent effect.  
3
Note that this is a distinct concern from whether political unit-time pairs with zero 

homicides are or are not exchangeable with those that have non-zero homicides, which is 

subsumed in our third level of model uncertainty. 
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versions of the linear probability model that do not restrict predicted murder rates to live 

in the [0,1] interval. By using linear regression models with the murder rate on the left 

hand-side, the polity-time pairs with zero murders can simply be included as part of the 

model. However, as shown in Durlauf, Navarro and Rivers (2010), once a properly 

specified probability model is used as the basis to construct the estimating equation, the 

left hand side variable (an appropriately transformed version of the murder rate) is no 

longer defined for zero-murder observations.  To deal with this problem, under an 

assumption of selection on observables, Durlauf, Navarro and Rivers drop these zero-

murder observations from the analysis. In this paper we additionally consider what 

happens when, in models based on the linear probability model, one confronts the zero-

murder observation by not including them in the analysis, even though mechanically they 

could be included. More importantly, we generalize (for both linear and non-linear 

probability models) the analysis to allow for selection on unobservables. To do so, we use 

a control function approach to account for the possibility that polity-time observations 

with zero murders differ from those with positive murders in ways that are unobservable 

to the econometrician.          

Section 2 of the paper outlines the way we think about model uncertainty. Section 

3 discusses data. Section 4 describes the model space we employ to evaluate deterrence 

effects to capital punishment.  Section 5 provides empirical results on deterrence effects 

across models. Following the literature, we place particular emphasis on net lives saved 

per execution. Section 6 concludes. 

 

 

2. Model uncertainty: basic ideas  

 

 In this section, we discuss the basic idea of model uncertainty. The intuitive idea 

undoubtedly has been understood throughout the history of statistics, but the way we treat 

the problem appears to trace back to Leamer (1978).  Constructive approaches for 

addressing model uncertainty have been an active area of research in the last 15 years 

with particular interest in model averaging, which is a principled procedure for 

combining information across models.  Draper (1995) provides a still useful conceptual 
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discussion, Raftery, Madigan, and Hoeting (1997) is a seminal contribution on the 

implementation of model averaging in linear models and Hoeting, Madigan, Raftery and 

Volinsky (1999) and Doppelhofer (2008) are useful overviews.  Our own approach is 

similar in spirit to Leamer (1983) in that we are interested in exploring how different 

assumptions affect deterrence estimates, although we do not endorse the extreme bounds 

approach to assessing whether an empirical claim is robust or fragile with respect to a 

given data set. 

 The basic idea of model uncertainty is simple to explain. Suppose one wants to 

calculate a deterrence measure D.  Conventional frequentist approaches to empirical work 

produce estimates of this measure given available data d  and the choice of a model m: 

 

  ˆ ,D d m  (1) 

 

Conventional analyses of deterrence estimates derive from the choice of m in (1). 

Of course, authors are typically sensitive to issues of the robustness of deterrence 

estimates and so typically vary m  relative to some baseline. That said, it is also a fair 

statement that this variation is typically local to the baseline and is implemented in an ad 

hoc fashion, by which we mean the typical analysis considers whether a result is robust 

relative to some baseline model by using intuition to suggest modifications of the 

baseline.  Similarly, critiques of the robustness of a particular paper’s claims often 

proceed on ad hoc alternate specifications that were not originally considered.   

The difficulties created by model uncertainty are well illustrated in the conflicting 

claims of Dezhbakhsh, Rubin, and Shepherd (2003) and Donohue and Wolfers (2005). 

Dezhbakhsh, Rubin, and Shepherd (2003) use county level data to conclude an additional 

execution of a murderer saves a net 17 lives.
4
   Donohue and Wolfers (2005) critique 

argues that the Dezhbakhsh, Rubin, and Shepherd deterrence estimates are fragile (i.e. 

can be reversed) based on two different deviations from the baseline regression that 

appeared in the original paper. Specifically, Donohue and Wolfers relax the assumptions 

that 1) certain instrumental variable coefficients are constant across time and 2) 

                                                 
4
By net, we mean that Dezhbakhsh, Rubin, and Shepherd find that each execution deters 

18 murders.  
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comparability of the homicide data process for California and Texas with the rest of the 

country; this amounts to dropping the two states from the sample.  Dezhbakhsh and 

Rubin (2011) respond by arguing most specifications of their model (out of a large set 

whose construction is not justified per se) do find a deterrence effect.   

This sequence of arguments is not constructive, because neither the fragility 

finding nor the finding of deterrence effects in “most specifications” can be given a 

formal statistical or decision-theoretic meaning.  One way to proceed constructively is to 

move beyond dueling specifications and ask what information is contained about 

deterrence in a given model space.  Cohen-Cole, Durlauf, Fagan, and Nagin (2009), 

following Brock, Durlauf, and West (2003), employs the appropriate decision-theoretic 

method for resolving the discrepancies between these two papers by using model 

averaging, and find that the uncertainty surrounding the deterrence estimates swamps the 

estimates themselves. At the same time, they find that the problem is not that 

Dezhbakhsh, Rubin, and Shepherd use a model that fits the data less well than that of 

Donohue and Wolfers; rather the problem is that neither model has any claim to be the 

correct one, and each is best conceptualized as an element of a model space which 

consists of different combinations of assumptions in the two papers.  Relative to this 

space, while the point estimate of lives saved is positive, intermodel uncertainty swamps 

this value, in a fashion analogous to the standard error swamping the estimate of a 

coefficient.  

This paper is not interested in resolving the differences between a pair of papers, 

as was the objective in Cohen-Cole, Durlauf, Fagan, and Nagin.  Our objective is to 

understand how different substantive assumptions about the homicide process affect 

deterrence estimates. We do not make the assumption that the “true” homicide process is 

part of the model space.  While its absence would produce interpretation issues as to what 

the deterrence estimates mean, it does not preclude an analyst from exploring the 

sensitivity of deterrence estimates to alternative modeling assumptions.  

Underlying our analysis is a particular concern for the use of deterrence studies as 

a source of information for policymakers. In our judgment, the import of model 

uncertainty for policy evaluation is that the prior comparison of models to select a best 

model is inappropriate.  A policymaker, in our view, is really only concerned about the 
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distribution of outcomes of interest, such as the murder rate, given a criminal sanction 

regime for murderers.  Knowledge of the true model has no intrinsic value but is only 

useful to the extent that it informs the distribution of outcomes under alternative capital 

punishment regimes.  More formally, if the deterrent effect is going to be used in a policy 

analysis, decision theory requires that model uncertainty be part of the overall description 

of the uncertainty surrounding the effects of a given sanction regime, which exactly 

parallels the argument Draper (1995) makes about properly describing the uncertainty 

surrounding a forecast.   

At the same time, we eschew an emphasis on model averaging as a mechanism 

for reconciling different model-specific estimates.  Our reason for this is that we focus on 

what we regard as substantive differences between model specifications. Our goal is to 

understand how these assumptions determine deterrence findings.  Given our focus on 

substantive differences, one can well imagine strong disagreements on the choice of a 

prior by either analysts or policymakers. Put differently, we are less concerned with a 

bottom line deterrence number than understanding how deterrence estimates vary across 

the model space according to what substantive assumptions an analyst makes. We will 

discuss posterior model probabilities under a uniform prior on the model space in order to 

analyze the relative explanatory power that the different models have for the data we 

employ.  However, we are dealing with models where a priori reasons may justify one 

model or set of models versus another, so that a given analyst might well choose to assign 

a prior of 1 to a particular model or subset of the model space. Hence, these posteriors 

are, in our judgment, useful as implicitly providing information on the Bayes factors 

associated with the models.    

 

 

3. Data 

 

The data we use come from Dezhbakhsh, Rubin and Shepherd (2003). The data 

set includes the murder rates for a panel of 3,054 counties for the 1977-1996 period.  The 

data on murders is obtained from the FBI Uniform Crime Reports (UCR).  It also 

includes data on county and state level covariates. In particular, we use data on the 
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county assault and robbery rates (also from UCR), NRA state level membership (from the 

National Rifle Association), data on population distribution by age, gender and race as 

well as population density (from the Bureau of the Census) and data on per-capita 

income, income maintenance and unemployment insurance payments from the Regional 

Economic Information System.   

We also use county level data on murder arrests (UCR) and murder sentencing as 

well as state level data on executions of death-penalty inmates (Bureau of Justice 

Statistics) to estimate the probabilities of arrest, sentencing and execution. We follow 

Dezhbakhsh, Rubin and Shepherd and estimate these probabilities as follows. The 

probability of arrest is formed as the ratio of murders at time t .  In order to account for 

the lag between sentencing and arrest, the probability of sentencing conditional on arrest 

is formed as the ratio of death sentences at t over arrest for murder at 2t  ; this lag is 

meant to capture the average gap between a murder and an arrest, when an arrest occurs. 

Since the average lag between sentencing and execution is six years, the execution 

probability is constructed as ratio of executions at t  to sentences at 6t  .
5
 

Finally, the dataset also includes data on expenditures on police and judicial legal 

system, prison admissions, (Bureau of Justice Statistics) as well as percentage of the state 

population who vote Republican in presidential elections (Bureau of the Census). These 

variables represent exclusion restrictions with respect to the murder equation, i.e. they are 

variables that help predict the probability of punishment but that are not included in the 

equation relating murders to these probabilities. As such, these variables may be used to 

instrument for the endogenous probabilities of arrest, sentencing and execution. 

 

 

4. Model space 

 

Each element of our model space consists of an outcome equation for murder 

rates in which the deterrent effect of capital punishment may be calculated from the 

                                                 
5
Sometimes these probabilities are not defined since the denominator can be zero. To 

avoid losing observations, we impute values from lagged values of the probability (up to 

4 periods) when possible.   
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presence of variables which measure probabilities associated with a murderer receiving 

capital punishment.  Other forms of heterogeneity are also included.  Each of the models 

we consider can be interpreted as a modification of the baseline regression in 

Dezhbakhsh, Rubin, and Shepherd (2003), which is  

 

      , , , , , , ,c t c t A c t S c t E c t cc ttM P A P S A P E S X             (2) 

 

where ,c tM  is a measure of the murder rate in county c  at time t ,  ,c tP A  is the 

probability that a murderer is caught, i.e. the apprehension rate for murders.  ,c tP S A  is 

the probability that an apprehended murderer is sentenced to death.  ,  c tP E S  is the 

probability that a death sentence is carried out given a death sentence. ,c tX  are 

demographic and economic characteristics of the county. 
c  and 

t  are county and time 

fixed effects. ,c t  is a zero mean residual that is assumed to be independent of ,c tX  but 

not of  , ,c tP A  , ,c tP S A  and  ,  c tP E S .
 
  

We construct a model space by considering four distinct sources of model 

uncertainty.  It is appropriate to think of our analysis as forming models by the resolution 

of the model uncertainty from each of these sources.   

The first source of model uncertainty we consider is generated by alternative 

assumptions on the underlying probability model generating equation (2).  As will be 

apparent, it is appropriate to consider this as model uncertainty about the distribution of 

unobserved heterogeneity.  This follows from considering how eq. (2) may be justified as 

the aggregation of individual decisions in a population.  In order to justify the linear 

structure in (2) as the aggregation of individual choices in county c  at time t , it is 

necessary that the binary choices of the individuals obey a linear probability model; this 

is shown in Durlauf, Navarro, and Rivers  (2010).   

Linear probability models are well known to impose very stringent assumptions 

on the individual-level analogs of ,c t  in order to ensure that probabilities are always 

bounded between 0 and 1.  For this reason, they are really only used for estimation 
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convenience.  Further, standard assumptions on errors, such as normality or the negative 

exponential distribution, imply a complicated relationship between individual level 

variables, their associated distributions across the population, and aggregate behavior 

rates.  This is problematic when one is considering something such as the deterrent effect 

of capital punishment, since the linearity in (2) will not hold for alternative unobserved 

heterogeneity assumptions.  For these reasons, we contrast (2) with a model in which the 

individual murder choices obey the standard logit model.  The logit functional form for 

individual choices has the advantage that it also allows for a simple representation of the 

aggregate murder rate in county c  at time t .  Durlauf, Navarro, and Rivers, show that 

these aggregate murder rates will follow 

 

      ,

, , , , ,

,

ln
1

c t

c t A c t S c t E c t c t

c t

c t

M
P A P S A P E S X

M
     

 
         

. (3) 

 

Notice that this form of model uncertainty involves the appropriate dependent variable in 

the statistical model, and so is fundamentally different from the standard model 

uncertainty question of the choice of variables in a linear regression. 

Our second source of model uncertainty involves the choice of probabilities 

employed in eqs. (2) and (3).  We refer to this as model uncertainty about the 

determinants of choice under uncertainty.  The conditional probabilities that appear in eq. 

(2) represent an assumption about how the capital punishment regime (by which we mean 

the likelihood of various punishment outcomes) affects individual choices.  This 

specification appears in two of the most prominent studies in the panel literature on 

capital punishment.  What is surprising is that these are not the appropriate probabilities 

to employ if potential murders obey the rational choice model of crime.
6
  Durlauf, 

Navarro, and Rivers (2010) show that,
7
 under the linear probability model assumption, 

                                                 
6
We are not sure why the probabilities that are implied by Bayesian decision theory, 

which were certainly understood by Ehrlich, see Ehrlich (1975) for example, are no 

longer the standard ones used in the death penalty and deterrence literature.  
7
To see why the probabilities in (2) are incorrect, as opposed to those that appear in (3), 

following Durlauf, Navarro, and Rivers (2010), let NA  denote not apprehended, NS  

denote not sentenced to death, and NE  denote not executed. Denote  ,i tu   as the utility 
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the probabilities that derive from utility maximization produce the aggregate murder 

equation  

 

      , , , , , ,, , ,c t c t A c t S c t E c t c tc tM P A P A S P A S E X             . (4) 

 

The differences between (4) and (2) are immediate when one notes that 

     , , ,,c t c t c tP A S P S A P A  and        , , , ,, ,c t c t c t c tP A S E P E S P S A P A ,
8
 so that the 

probabilities in (2) interact to produce the regressors in (4).  While we are unaware of any 

formal justification for the use of conditional probabilities as appears in (2), we note that 

there may be a justification for them on bounded rationality grounds.  By this we mean 

that the conditional probabilities are simpler than at least one of the joint probabilities. 

While we do not go so far as to claim that the conditional probabilities are a natural way 

to incorporate the presence of capital punishment on individual choices, we nevertheless 

include such specifications in our model space.
  

Our third source of model uncertainty, following Shepherd (2005), allows for 

state-specific coefficients in the probability of execution. We call this model uncertainty 

                                                                                                                                                 

of a murder by individual i at t under different punishment scenarios.  Expected utility 

from a murder will equal 

 

            

   

, , , , , ,

, ,

1 Pr Pr , , Pr , , , ,

Pr , , , , .

c t i t c t i t c t i t

c t i t

A u NA A NS u A NS A S NE u A S NE

A S E u A S E

   
 

 

If the utility differences across punishment scenarios are constant, so that 
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, ,

, ,

,

, , ,

, , , , .

A i t i t

S i t i t

E i t i t

u A NS u NA

u A S NE u A NS

u A S E u A S NE







 

 

 

 

 

Then the form (4) is generated when decisions are aggregated under the linear probability 

model that produced (2). 
8
Note that in this derivation, we have made the substitution    , , ,c t c tP E S P E A S , 

which follows from the fact that one has to be apprehended in order to be sentenced to 

death. 



13 
 

about state level heterogeneity.  Formally, if one defines an indicator variable ,s c  which 

equals 1 if county c is in state s and 0 otherwise, Shepherd replaces  ,c t EP E S   with 

 , ,, cs Ec t s

s

P E S   in equation (2).  Shepherd does not motivate her decision to 

introduce state-level heterogeneity for this conditional probability while leaving the 

coefficients on the other probabilities, and for that matter the other state level controls, 

constant.  However, while this suggests a broader conception of model uncertainty with 

respect to state-level heterogeneity, we restrict ourselves to the type of heterogeneity 

considered by Shepherd in order to maintain closer touch to the existing literature. 

Our final source of model uncertainty arises as a consequence of the murder rate 

being zero in many county-time observations in our data.  Consider first the models based 

on the logistic probability model. Since the left-hand-side variable is a log transformation 

of the murder rate, this variable is not defined for those county-time pairs for which the 

murder rate is zero.  One possibility is to follow Durlauf, Navarro, and Rivers (2010) and 

simply run the models dropping those observations for which the murder rate is zero. 

This is a valid approach if the county-time pairs with zero murder rates are a random 

subsample of the data given the observable characteristics we condition on.  However, 

there is no good reason to think that the zero-murder-rate observations are random.  We 

therefore introduce a fourth form of model uncertainty: model uncertainty about 

exchangeability of county-time pairs with no murders and those with murders.  While we 

refer to this as uncertainty about exchangeability between subsets of observations, note 

that it also encompasses issues normally associated with selection on unobservables. 

In order to account for the potential endogeneity of the zero murder county-time 

pairs, we employ control functions.
9
  In order to understand why the zero-murder-rate 

observations may introduce selection bias, and to explain how the control function 

approach solves the problem, consider a simplified version of equation (2) 

 

 , , ,c t c t c tM W    , (5) 

                                                 
9
See Heckman and Vytlacil (2007) and Navarro (2008) for discussions of the control 

function approach. 
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where ,c tW  represents all the covariates on the right hand side of (2) and   represents 

their associated parameters.  For ease of exposition, we assume that ,c tW  is independent 

of ,c t , even though in our empirical analysis we allow for  , ,c tP A  , ,c tP S A  and

 , c tP E S  (when we follow eq. (2)) or  ,c tP A  , ,c tP A S and  , , ,c tP A S E
 
(when we 

follow eq. (4)) to be correlated with ,c t . 

Define an indicator variable ,c tD  that equals 1 if the murder rate in county c  at 

time t  is positive and equals 0 otherwise.  Following the logic originally developed in 

Heckman (1979) this indicator variable is assumed to obey a “selection” equation, i.e. a 

binary choice model for whether ,c tD  is one or not, of the form 

 

  , , ,1 0c t c t c tD Y    , (6) 

 

where ,c tY  may contain all the variables in ,c tW , but it may also contain other variables 

that affect the selection equation but not the outcome.  For expositional simplicity we 

assume that ,c tY  is independent of ,c t , even though in practice we allow for correlation 

between      , , ,, ,c t c t c tP A P S A P E S  and ,c t .  Let 

 

  , , ,Pr 1|c t c t c tD Y    (7) 

 

denote the probability of having a positive murder rate conditional on ,c tY . 

Consider estimation of the model of equation (5), conditional on the murder rate 

being positive under the assumption that, given the observable characteristics one 

conditions on, the subset of county-year pairs with positive murder rates is nonrandom, 

i.e. that there is selection on unobservables into the positive murder rate case.  Under 

nonrandom selection, 
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    , , , , ,,,| , 1 | , 1c t c t c t cc tt c t c tE M Y D W E Y D     . (8) 

 

The second term in the right hand side of (8) is the selection bias that arises because we 

can no longer assume that the observable characteristics are sufficient to ensure 

orthogonality of regressors and model errors. The control function approach exploits the 

fact that one can formulate  , ,, | , 1c t cc t tE Y D   as a function of ,c t ,  

 

  , , , ,c t c t c t c tM W g      (9) 

 

such that, for a function  ,c tg   (the control function), the new residual has conditional 

zero mean (i.e.  , ,, | , 1 0c t c tc tE Y D   ).
10

  Furthermore, it follows that selection on 

unobservables is a problem only when ,c tM depends on the function  ,c tg  , a testable 

restriction.
11

  

 Together, these four sources of uncertainty generate 20 distinct models. Figure 1 

illustrates our four sources of model uncertainty and illustrates how the model space may 

be described using a tree structure.  The tree illustrates how the sources of model 

uncertainty produce a sequence of models.  The tree structure should not be interpreted as 

producing a “hierarchy” for model uncertainty since it could have been constructed using 

any order for the layers of model uncertainty.  

 

 

5. Results 

 

                                                 
10

To understand why this is the case, notice that  , , ,1c t c t c tD Y      

   , ,c t c tF F Y       , ,1c t c tF     , where F  denotes the distribution 

function of ,c t . It then follows that we can write 

      , , , , , , ,| , 1 | 1 .c t c t c t c t c t c t c tE Y D E F g          

11
See Heckman, Schmierer and Urzua (2010). 
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The exact specification for the baseline model we estimate is given by 
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 (10) 

 

The remaining elements of the model space are variations of this baseline model 

following the description in section 4.  

Estimation follows a (adapted) two stage least squares algorithm. In the first stage 

we regress the three endogenous probabilities in (10) (i.e. the first three terms on the right 

hand side) against the exogenous covariates including the instruments described in the 

last paragraph of Section 3. For the models where we have state-specific coefficients, we 

do not possess a sufficient number of instruments for all of the state-specific probabilities 

of execution. We solve this problem by interacting state dummies with the instruments in 

order to create state-specific instruments (strengthening the assumptions accordingly).  

In models where we correct for selection we introduce an intermediate step. We 

first predict the probability of having a positive murder rate, ,c t , against the same 

covariates in equation (10) plus the county population, making sure we instrument for the 

potentially endogenous probabilities of arrest, sentencing and execution.
12

  

In the second stage of the algorithm, we run equation (10) against the predicted 

probabilities obtained in the first stage.  When appropriate, we approximate the control 

function in eq. (9) with the inverse-Mills ratio that arises from assuming joint normality 

                                                 
12

When we instrument for the potentially endogenous probabilities of arrest, sentencing 

and execution in the selection model, the empirical results are virtually identical to the 

results we present, in which we assume these probabilities are exogenous.  
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of the residuals, i.e.  
 
 

,

,

,1

c t

c t

c t

Y

Y
g









 
 where   and   are the density and 

distribution functions of a standard normal random variable.
13

  In all models that include 

a control for selection, we cannot reject the hypothesis that selection on unobservables is 

present. 

In evaluating deterrence effects, the literature emphasizes the number of net lives 

saved per execution.  For any model for the murder rate  M e , where e  is the number of 

executions, net lives saved is calculated as 

 

 
 

  * 1
M e

Net Lives Saved Population
e


  


 (11) 

 

where 
 M e

e




 is the derivative of the murder rate with respect to the number of 

executions implied by each model.  

Since the number of net lives saved varies by county, there is no unique way of 

summarizing this metric. For all models, we present three different summary measures of 

net lived saved. In the first case, we calculate net lives saved by evaluating the formula in 

(11) at the average values for states having the death penalty in 1996 as in Dezhbakhsh, 

Rubin and Shepherd (2003).  For the other measures we present, for each of the 38 states 

having the death penalty in 1996, we average (11) over counties. We then report either 

the average over states or the median over states. Table 1 presents our estimated 

measures of net lives saved. The model numbering in the table follows Figure 1. In all 

cases, the confidence intervals are such that we cannot reject the hypothesis of zero 

deterrence effects. Our confidence intervals are wider than those in Dezhbakhsh, Rubin, 

                                                 
13

We also experimented using a semiparametric control function by plugging a fourth 

order polynomial in ,c t  for  ,c tg  . The results do not change qualitatively and are 

quantitatively very similar. The advantage of the normality assumption is that it allows us 

to more easily define the likelihood required for the calculation of posterior probabilities 

for model averaging.  
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and Shepherd (2003) because we follow Donohue and Wolfers (2005) and obtain 

standard errors using the nonparametric bootstrap, clustering at the state level.
14

  

Figures 2-4 provide a visual summary of how model assumptions determine 

estimates of the net lives saved per execution, a statistic which has commonly been 

treated as the “bottom line” of deterrence studies. Figure 2 presents the summary measure 

of net lives saved when evaluation is made using the average characteristics of a 1996 

death penalty state. Figures 3 and 4 present summary measures when one averages over 

states (Figure 3) and when one takes the median effect over states (Figure 4).  As shown 

by the figures, regardless of which summary measure is used, the clustering of effects by 

type of model used is striking. It clearly illustrates how different model assumptions 

determine deterrence effect estimates. In general, we have the following major findings.  

First, the estimates exhibit great dispersion across models. Depending on the 

model, one can claim that an additional criminal executed induces 63 additional murders 

or that it saves 21 lives if one evaluates at the X’s of the average death penalty state in 

1996; that it induces 98 additional murders or saves 31 lives if one averages across 1996 

death penalty states; or that it induces 22 more murders or saves 19 lives if one takes the 

median net lives saved across 1996 death penalty states.  This demonstrates the ease with 

which a researcher can, through choice of modeling assumptions, produce evidence either 

that each execution costs many lives or saves many lives.  As such, we show that the 

Donohue and Wolfers (2005) finding that the Dezhbakhsh, Rubin, and Shepherd (2003) 

                                                 
14

For all models, the standard errors are sufficiently large that evidence of a deterrence 

effect is weak regardless of which model is employed.  This suggests that the 

disagreement between Dezhbakhsh, Rubin, and Shepherd (2003) and Donohue and 

Wolfers (2005) on standard error calculations (in which we think that Donohue and 

Wolfers is preferable to Dezhbakhsh, Rubin, and Shepherd) is a first order issue.  We do 

not emphasize this for two reasons.  First, the paper is designed to understand how 

deterrence estimates are affected by modeling assumptions, not to assess statistical 

significance per se.  Second, neither standard error approach is necessarily appealing 

because neither fully addresses potential cross-county dependence.  We therefore do not 

regard either approach as spanning the set of plausible dependence structures for the 

county-level homicide regression errors. In other words, there is a distinct question 

concerning model uncertainty with respect to the probability structure of the unobserved 

heterogeneity in the county homicide processes which we do not explore.  This type of 

model uncertainty does not affect the point estimates of the regressions under study and 

so functions independently from the model uncertainty we examine. 
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is driven by their particular choice of model is broader problem than the fact that the two 

papers find different deterrent effects.  We move beyond Donohue and Wolfers by 

identifying how substantive modeling assumptions (as opposed to what can reasonably be 

regarded as ad hoc variations of the Dezhbakhsh, Rubin, and Shepherd model) matter.  

Put differently, we consider alternative modeling assumptions that help characterize the 

literature, rather than identify a special set of assumptions that reverse the Dezhbakhsh, 

Rubin, and Shepherd regression. 

Second, a particular subset of models  linear models with constant coefficients   

always predict positive net lives saved (i.e. a deterrence effect). This subset contains all 

cases in which a marginal execution saves lives. All other models predict negative net 

lives saved for an additional execution under any of the three summary measures we use.  

Our evidence is consistent with Shepherd (2005) who finds evidence of “brutalization”, 

i.e. negative net lives saved, for some states when the effect is allowed to differ by state. 

As opposed to Shepherd, we find that the summary effect is negative for models that 

allow the effect to vary by state regardless of how one summarizes the different effects 

across 1996 death penalty states.
15

  The assumptions of linearity and constant coefficients 

thus are critical in the determination of the deterrence effect sign.  

Third, the magnitudes of the point estimates of net lives saved, given a stance on 

whether the deterrent effect is constant across states or not, differ mainly because of the 

choice of linear versus logistic specifications. Controlling for the other three sources of 

model uncertainty, the magnitudes of the point estimates from the linear models are 

almost always larger (in absolute value) than those from the corresponding logistic 

models.  

How might information be aggregated across the model space to draw overall 

conclusions on deterrence? Because one of the sources of uncertainty we consider 

involves different sample sizes (i.e. sometimes dropping the county-time pairs with zero 

murder rate), standard model averaging techniques cannot be employed. Instead, we 

                                                 
15

One of the reasons our results for the linear model vary with respect to Shepherd, is that 

we do not restrict our averaging to states that have a statistically significant effect. We 

see no reason why such a restriction is justifiable, as the statistical significance of the 

summary transformation can be evaluated independently of the significance of the 

individual effects.       
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separate our model space into two subspaces, one containing all 8 models that drop the 

county-time pairs with zero murder rate, and another containing the 12 models that 

include all observations. For each subspace we calculate the posterior probability that m  

is the correct model given the data d . That is, we calculate: 

 

      Pr Pr Prm d d m m . (12) 

 

It is immediate that the posterior probabilities reflect both the evidentiary support for 

each model, as reflected in  Pr d m , as well as the researcher’s prior beliefs about the 

models,  Pr m . Hence the data and the substantive a priori theoretical commitments 

matter in determining the weights assigned to each model. Since we have no prior reason 

to prefer one model over another, we employ uniform priors in the calculation of (12). 

Finally, following Raftery (1995) and Eicher, Lenkoski and Raftery (2009) we 

approximate  Pr d m  using the Bayesian information criterion so that 

 

       11ˆPr ln Pr ,
2

ln ln( ) ( ),m Nd m d O Nm k    (13) 

 

where N  is the sample size,  ˆPr ,d m   is the likelihood of model m evaluated at the 

estimated parameter vector ̂  and mk  is the number of variables in the model.  

Table 1 also reports the posterior probability of each model for the two model 

subsets under our uniform model space prior assumption. Only two out of our twenty 

models have positive posteriors. In each of our two model subspaces the logistic model, 

with joint probabilities employed to measure deterrent effects, and with constant 

coefficients, possesses a posterior probability of one (where in one case we drop the 

county-time pairs with zero murder rate and in the other we control for selection on 

unobservables). This is of interest since the joint probability specification is the one 

suggested by the appropriate decision problem facing a potential murderer, and because 

the logistic specification has more appealing statistical properties than the linear 
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probability model.  We further note that the failure of the state-specific coefficients 

models to receive any posterior weight suggests that the degrees of freedom lost in 

allowing for additional coefficients is not compensated for by a superior goodness of fit. 

In this sense, Shepherd’s generalization does not seem to be justified by the properties of 

the data, if one works with a uniform prior, as is conventional in the model averaging 

literature. Put differently, one needs a strong prior belief in state-specific coefficients in 

order to place much weight on models that embody this feature.   

For both of our model subspaces, the estimates suggest that an additional 

execution leads to approximately 15 more murders being committed when evaluated at 

the average characteristics of a 1996 death penalty state or when averaging across states. 

When taking the median over states, the effect is about 13 additional murders when we 

do not control for selection and about 6 additional murders when we do control for 

selection. Hence, if one were to attempt to draw a conclusion from our model space, 

based on averaging, this conclusion would be that the marginal effect of an execution on 

the number of murders is positive.  However, the standard errors of the estimates are of 

the same order of magnitude as the estimates themselves, so this evidence is quite weak.
16

   

 

 

6. Conclusions 

 

In this paper, we have examined how four different types of model uncertainty 

affect deterrent effect estimates of capital punishment. We do this by considering 

modifications of a panel regression model of Dezhbakhsh, Rubin, and Shepherd (2003), 

which has been criticized for fragility by Donohue and Wolfers (2005).  Our approach 

                                                 
16

In the criminology literature, the possibility that executions can increase homicides is 

known as a brutalization effect. Cochran, Chamblin, and Seth (1994) argue that capital 

punishment can legitimize the taking of life in potential murderers’ minds. We note that 

one can produce an increase in murders from capital punishment based on rational choice 

deterrent arguments; for example, a murderer may have an increased incentive to kill 

witnesses if he already is facing the maximum penalty.  Our point is that a positive 

relationship should not be regarded as perverse from the perspective of the economic 

model of crime, once one considers how deterrence affects decisions at the margin. 
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tries to move beyond debates about whose model specification is best by examining how 

substantive modeling assumptions do or do not matter in deterrence effect estimates. 

Our analysis finds that the choice of constant versus state specific coefficients 

plays a key role in determining whether deterrence effects are positive or negative (i.e. a 

brutalization effect is present).  We further find that the magnitudes of the coefficients are 

sensitive to whether a logistic or linear probability model is assumed for unobserved 

heterogeneity. In contrast, neither the use of the theoretically appropriate joint 

probabilities for capital punishment versus the conditional probabilities that have become 

standard in the literature, nor the restriction of the analysis to county-time pairs with 

positive numbers of murders have a first order effect on deterrence estimates. While we 

see good theoretical reasons for preferring the use of joint rather than conditional 

probabilities as regressors, and for using the selection correction when county-time pairs 

with nonzero murders occur, for this particular exercise, neither of these theoretically 

preferred assumptions appears to have a first order effect on estimates of net lives saved 

for our model space. 

Thus we conclude that an analyst’s assumptions on whether the marginal effect of 

an execution on homicides is or is not state specific and whether or not one uses a linear 

or logistic probability specification are the key substantive assumptions in determining 

the magnitude of deterrent effects, at least as measured by the summary statistic of net 

lives saved.  Interestingly, these assumptions both involve the way that an analyst 

addresses heterogeneity: in one case unobserved heterogeneity in parameters across 

political units, and in the other the distribution of unobserved heterogeneity in the 

determinants of homicides in these same units.   Thus the disparity of deterrence claims 

in modern capital punishment literature reflects one of the fundamental messages of 

modern microeconometrics: the modeling assumptions made on unobserved 

heterogeneity can control the findings of an empirical exercise.  In this case, the (in our 

judgment) relatively theoretically unappealing assumptions of constant state coefficients 

and a linear probability model for unobserved heterogeneity are both needed to produce 

estimates that an additional execution will save lives.  Whether one agrees with our 

assessment on what assumptions are better motivated by economic theory or not, our 

results reinforce the message of Heckman (2000,2005): that questions such as deterrence 
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effects cannot be understood outside the prism of models and it is illusory to think that 

questions such as the deterrent effect of capital punishment can be answered without 

careful consideration of what assumptions an analyst is willing to make.  The need for 

judgment cannot be escaped in empirical work.  
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Table 1 

             

 
Not Selection Corrected 

 
Linear Linear Linear Linear Linear Linear Linear Linear Logistic Logistic Logistic Logistic 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

             Net Lives Saved at 
Avg. X 

18.45 -51.71 16.60 -41.33 16.51 -63.57 14.98 -45.04 -1.73 -16.54 -2.71 -14.55 

(Std. Error) (43.53) (45.65) (44.73) (32.73) (45.74) (49.75) (48.16) (35.23) (20.87) (26.18) (22.14) (12.34) 

             
Mean Net Lives 

Saved 
22.44 -86.28 26.04 -37.24 20.10 -98.52 23.55 -40.31 -2.22 -42.83 -4.96 -15.17 

(Std. Error) (50.06) (37.31) (67.51) (23.71) (52.57) (41.37) (72.07) (25.19) (33.71) (34.93) (45.15) (17.53) 

             
Median Net Lives 

Saved 
17.12 -17.93 15.60 -9.36 15.31 -22.04 14.07 -8.75 -1.93 -7.00 -3.59 -13.45 

(Std. Error) (40.00) (8.95) (42.55) (6.05) (42.03) (9.54) (45.73) (7.95) (27.35) (12.81) (31.95) (14.05) 

 
            

Posterior* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

 
            

Conditional/Joint 
Probability 

Cond. Cond. Joint Joint Cond. Cond. Joint Joint Cond. Cond. Joint Joint 

 
            

Fixed/State Specific 
Fixed State Fixed State Fixed State Fixed State Fixed State Fixed State 

 
            

Include Zeros Include Include Include Include Drop Drop Drop Drop Drop Drop Drop Drop 
*Because of the difference in sample sizes, we calculate posterior probabilities for two "classes" of models separately. In this way we keep the sample sizes between model 
classes comparable. In one case we only use models that drop zeros while in the other we only use those models that either include zeros or correct for selection. 
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Table 1 (continued) 

         

 
Selection Corrected 

 
Logistic Logistic Logistic Logistic Linear Linear Linear Linear 

 
(13) (14) (15) (16) (17) (18) (19) (20) 

         Net Lives Saved at 
Avg. X 

-2.74 -11.62 -5.33 -15.25 20.88 -23.47 20.15 -39.01 

(Std. Error) (20.48) (19.41) (21.14) (12.48) (27.37) (37.81) (28.76) (28.55) 

         
Mean Net Lives 

Saved 
-3.90 -18.39 -11.01 -13.71 25.36 -51.43 31.49 -35.23 

(Std. Error) (32.66) (27.85) (45.02) (17.58) (31.78) (30.20) (44.25) (20.00) 

         
Median Net Lives 

Saved 
-3.21 -7.27 -7.54 -6.70 19.38 -8.45 18.95 -8.57 

(Std. Error) (26.23) (16.52) (31.32) (13.13) (25.47) (6.34) (27.85) (6.35) 

 
        

Posterior* 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 
        

Conditional/Joint 
Probability 

Cond. Cond. Joint Joint Cond. Cond. Joint Joint 

 
        

Fixed/State Specific 
Fixed State Fixed State Fixed State Fixed State 

 
        

Include Zeros - - - - - - - - 

*Because of the difference in sample sizes, we calculate posterior probabilities for two "classes" of models separately. In this 
way we keep the sample sizes between model classes comparable. In one case we only use models that drop zeros while in 
the other we only use those models that either include zeros or correct for selection. 
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