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TESTS OF MEAN-VARIANCE EFFICIENCY OF
INTERNATIONAL EQUITY MARKETS

By CHARLES M. ENGEL* and ANTHONY P. RODRIGUESTY

1. Introduction

THE mean-variance optimizing model is a popular description of investors’
behavior, but one which has received mixed support empirically. As applied to
international asset markets, it implies that demand for foreign assets depends
on expected returns and variability of returns, which may arise from exchange
rate movements and other factors. In this paper we propose some tests of the
mean-variance models, and apply the tests to a ten-country asset pricing model
of equities.

The behavior of the returns on equities across countries has received
considerable attention in recent years. While many studies have been concerned
specifically with the transmission of disturbances across markets during and
after the crash of October 1987, several papers have addressed the issue of
whether asset-pricing models can be used to describe international asset
returns. Among those taking this approach are Cumby (1990). Korajczyk and
Viallet (1989), Wheatley (1988), and Cho et al. (1986).

Our test is closely related to a test of the mean-variance model developed by
Frankel (1982b, 1983, 1985) and implemented by Frankel and Engel (1984),
Engel and Rodrigues (1989), Ferson et al. (1987), Lewis (1988), Attanasio and
Edey (1987), Giovannini and Jorion (1989), Bollerslev et al. (1988), and Engel
et al. (1989). Compared to many other tests of the model, the Frankel procedure
puts little restriction on the behavior of expected returns and the ‘betas’ (the
co-variance of the rate of return on a particular asset and the rate of return on
the portfolio) beyond what is imposed by the model.

A specific alternative hypothesis nesting the mean-variance model is a
general linear (Tobin) asset pricing model.! As opposed to most other tests
of the capital asset pricing model (CAPM) hypothesis, there is an economic
interpretation to the alternative hypothesis. Hence, if the restrictions of the
mean-variance model are rejected (and we will find that they are), the
(unrejected) alternative model stands as an economically meaningful model of
asset pricing, and is useful in helping us understand what goes wrong with the
mean-variance model.

The techniques we employ retain the desirable properties of the Frankel
test but considerably ease the computational burdens imposed by the maximum
likelihood estimation (MLE) proposed by Frankel. His method requires

! The idea of nesting the mean-variance model in the Tobin model and testing the restrictions can
be traced back to Parkin (1970) and Courakis (1975).
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simultaneously choosing hundreds of parameters to maximize a likelihood
function that describes a linear system with a restriction between the mean and
the variance of the errors.

We present two types of tests of the mean-variance model. The first is a Wald
test which requires estimation only of the unrestricted (Tobin) asset pricing
model. The second is based on a minimum distance estimator of the restricted
(mean-variance) model that makes use of parameter estimates and their
variances from the unrestricted model. These estimators are much easier to
calculate than the MLEs, which allows us to consider asset pricing systems of
larger dimensions than is practical with the MLE. Correspondingly, we are also
able to allow for much richer dynamics in the covariance structure of the
individual asset returns.

Section 2 of this paper reviews the mean-variance hypothesis and discusses
the nature of the restrictions that the Frankel procedure tests. Section 3 briefly
explains the Wald statistic, and presents the Wald tests of mean-variance
efficiency (MVE) under the assumption that variances and coefficients are
constant over time, and that variances are allowed to vary over time. Section
4 shows how the parameters of the restricted model can be estimated, and
presents additional tests of MVE. In Section 5 we examine the characteristics
of the various asset demands implied by our estimates. The implications of our
findings are summarized in the concluding section.

2. Testing the mean-variance model

2.1. The restrictions of the mean-variance model

A well-known relation that emerges from the mean-variance optimizing model
is that for any asset i,

Et(ri,t+1 - 7‘5’+ 1) = ﬁitEt(rm,t+1 - rf+ 1) (1)
where

f:+1 = return on asset i from time ¢ to t + 1

13

rP, , = riskless rate of return from time ¢ to t + 1

Tw.:+1 = return on the value weighted ‘market’ portfolio of equities between ¢

and ¢t + 1.2

The coefficient f;, is, in general, a time-varying coefficient that is defined as

Bie = CovFi 1415 T+ 1)/ Var (1 41) 2

2 The term ‘market’ here refers to the set of assets in the mean-variance efficient portfolio. If this
set of assets coincided with the entire range of assets available in the market, then our tests would
be a test of the CAPM hypothesis. The inability to measure returns on the entire market eliminates
the possibility of a formal test of CAPM, as Roll (1977) has emphasized.



C. M. ENGEL AND A. P. RODRIGUES 405
We could rewrite the equilibrium relation as the ‘security market line’

E(ti 141 — "z+ 1) =P Cov(ri 1415 Tm,e+1) €)]
where

p= Et(rm,t+ 1 rzb+ 1)/Vart(rm,t+ 1) 4)

The coefficient p is sometimes referred to as the price of risk. It represents
the trade-off between the expected return on the market portfolio and the
variance of return on that set of assets. A critical assumption we make is that
this ‘price’ is constant over time. In general, this variable could change over
time but the assumption of constancy of p seems quite innocuous compared to
some other common assumptions made to test mean-variance efficiency. (See
Frankel 1982, 1983, for a discussion of the drawbacks to some of the common
assumptions.) The price of risk in equilibrium is a measure of the degree of risk
aversion of investors, and can thus be viewed as a behavioral parameter.

The return on the market portfolio is a weighted average of returns on each
of the individual assets:

rm,t+1 - Z )"jtrj t+1 (5)

ji=1
where
A;; = ratio of the value of outstanding shares of asset j to the value of all assets.

Therefore, we can write

COV,( i+ 1 mt+1)_ Z j'JtCOVt( ,t+ 1o 11+1) (6)

ji=1

Cov,(¥; 1 +1, I'm, +1) could vary over time either because supplies of assets (the
As) change, or because the underlying stochastic process of returns is time-
varying, meaning that Cov,(r; 1, 7;,+1) 1S not constant. We initially assume
only the 1s move over time, but then we allow the covariances to vary as well.

In matrix form we have

ErrH- 1= pr/lt (7)
where

t,. 1 = vector of excess returns
A, = vector of asset shares

Q =E(rs1 — Efy )y — Eriiy).

Tobin’s (1958, 1969) general equilibrium portfolio balance theory posits that
the demand for assets by individuals should be a function of the vector of
expected returns. We can write a linear form of the model which posits
A, = A,E,r,,, where A4, is a matrix of coefficients (possibly time-varying) that
represents the response of the assets demanded (as a share of the total portfolio)
for a change in the expected returns. We can rewrite the system as an
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equilibrium model for expected returns (as in Tobin, 1969):
Etyy = Btj't (®)

Here, B, = A, !. Tobin’s model is a general theory that does not specify precisely
the determinants of the response of asset demands to expected returns.

We view the mean-variance model as a restriction on the general Tobin
model. It tells us exactly the responses of asset demands with respect to changes
in expected returns. The response depends upon the covariance of asset returns.
Specifically, comparing equations (7) and (8). we can see that the mean-variance
model requires that B, equal pQ,.

2.2. Testing the restrictions
If expectations are rational, we have
o1 =Eni+ 64 )]

where ¢,,; is a white-noise error term. Thus, the restricted model (7) can be
rewritten as:

T+ =th’11+8t+1 (10)
while the unrestricted model becomes
hhe1 =B, + 644 (11

Consider for a moment the case in which Q, and B, are constant over time.
Equation (11) then describes a system of linear equations that can be estimated
simply by regressing the ex-post returns on the values of the asset shares at
time z. Such a regression requires data on the returns and the values of each
asset as a share of the total market.

Note, however, that the variance-covariance matrix of ¢, , is Q. Therefore,
the restrictions of the mean-variance model on the general system (11) are that
the matrix of regression coefficients, B, should be proportional to the covariance
matrix of the residuals (with the constant of proportionality equal to p).

One way of testing mean-variance efficiency is to compare the likelihood of
the system (11) without imposing any restrictions on B to the likelihood
obtained from estimating (10), imposing the restriction that B be proportional
to Q. The likelihood ratio test will fail to reject mean-variance efficiency if the
estimated likelihood with the restriction imposed is not significantly smaller
than the likelihood from the unrestricted regressions. The Wald test, on
the other hand, estimates B and Q from the unrestricted system, then tests the
restriction that the two matrices are proportional. Clearly in this case the
estimation is quite easy, since only OLS estimation of the system (11) need be
performed.

The estimator we propose in Section 4 finds a matrix we can call Q*, and a
parameter p* which minimizes a weighted average of the distance between Q*
and the unconstrained estimate of Q, and the distance between p*Q* and the
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unconstrained estimate of B. The test of the mean-variance model is simply a
test of whether this minimized distance is near zero.
More generally, Q, and B, will vary over time. In particular, we postulate that

Q=Q,+Q,z} + Q22 +- -+ Q,z" (12)

where z/ is an economic variable that is known at time ¢, and Q; is constant
for all j. This type of variance model has been used recently by Giovannini
and Jorion (1987), Engel and Rodrigues (1989), and Shanken (1990). The
mean-variance model does not explicitly pinpoint the sources of variability in
returns, yet it does not require that returns have constant second moments. In
the absence of a specific theoretical model, we hypothesize that the second
moments depend on some plausible economic sources of variation in returns.

Correspondingly, we allow the coefficients on the asset-shares in the asset
pricing equation (8) to change over time, according to the relation:

B, = By + Bz} + Bz + -+ B,z" (13)

Mean-variance efficiency then imposes the constraints Q; = pB; for all
j=0,...,m

The principle of our test remains the same, even with time-varying B, and
Q,. We note that relationship (10) now takes the form

i1 = BoA, + Bzl + Byzid, + -+ - + Bz, + &4, (14)

This is still a system of regression equations, albeit one with many more
variables. Furthermore, it is one that is not efficiently estimated by OLS,
because the variance of the vector of error terms, ¢, , ;, follows a heteroskedastic
process given by equation (12).

The unconstrained system can be efficiently estimated using a GLS estimator
described in the next section. The likelihood ratio test would also require
estimation of the constrained system by maximum likelihood techniques.
Instead, we propose a Wald test of the mean-variance restrictions that requires
estimation only of the unconstrained system. Then we derive a minimum
distance estimator of the constrained system that is considerably less burden-
some computationally than the MLE.

3. Testing the mean variance model with the Wald test

We can write the restrictions of the mean-variance model as the conditions
that a specific vector of functions of the parameters equal zero. We can then
take the estimated coefficients and construct a measure of the distance of the
estimated vector of functions from zero. The Wald statistic provides such a
measure. (See Silvey, 1975, for a discussion of the Wald test.)

The vector of restrictions can be represented as h(6) = 0, where 6 is the vector
of parameters, and & is a vector of functions. The Wald statistic measures how
close to zero is h(@), where 0 is the vector of estimates of parameters. The Wald
statistic is motivated by noting first that 7*/3(0 — 0) is distributed approximately
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normally with mean zero and variance ¢, !, where g, represents the informa-
tion matrix of the parameters (and T is the number of observations). We can
write the vector of restrictions here as h(d) ~ h(0) + H(6 — 6). The matrix H is
the matrix of derivatives of the constraints with respect to the parameters.
Under the null hypothesis, then, we have h(f) ~ H( — 0). Therefore, T'/*h(0)
is distributed approximately normally with mean zero and variance H ¢, 'H’.
It follows that a natural test statistic is T[h(9)] [H.#§ "H']™ '[h()]. In large
samples this Wald statistic is distributed chi-square with n? degrees of freedom.

The appendix (available from the authors on request) describes how the test
statistics are constructed. We take up first the case when B, and €, are constant
over time.

3.1. The Wald test with constant variances and coefficients

Our empirical analysis relates to the demand for equities from ten countries—
the US, Belgium, Canada, the UK, France, Germany, Italy, the Netherlands,
Japan, and Switzerland. The data on returns are constructed from price and
dividend data in monthly issues of Capital International Perspectives. Returns
on foreign assets are converted into dollar terms using exchange rates from the
last day of the month, obtained from the data base of the Federal Reserve Bank
of New York. The excess returns are calculated relative to the return on
one-month LIBOR deposits, measured as the average of the bid and ask rates
on the last day of the month as recorded by DRI. The regressions of equation
(8) require data on asset shares, which we construct using the data on
capitalization from each of the ten markets, in the monthly issues of Capital
International Perspectives. The sample period is June 1973 to July 1988. The
asset shares are the total capitalization of each market (in dollar terms) as a
share of the aggregate capitalization.

The model tested in this section assumes B, and Q, are constant over time.
Note that despite this restriction, the f,, and hence the risk premiums,
vary over time with asset supplies. From equation (2), §;, changes as Cov,(r; ;+ 1,
Fm.1+1) varies. Equation (6) shows how Cov,(; ;+1, n . +1) depends on the asset
supplies. In equation (6), even if Cov,(r;,+;,7;,+1) is constant for all i, j,
CoV,(¥;, 1+ 1> tm,1+1) Will change as the 4; change.

For any given value of the parameter for the price of risk, p, the set of
constraints may be written as b;; — pw;; = 0, where b;; is the ij element of B
and w;; is the ij element of Q. For example, Frankel and Engel (1984) maximize
the constrained likelihood function setting p = 2. In general, of course, one does
not know the true value of p. The unconstrained regressions do not provide
a unique estimate of p. However, the constraints of the mean-variance model
can be expressed as the set of proportionality constraints such that b;;/w;; be
equal for all i, j. Expressing the constraints in this fashion does not require
knowledge of p.

It is well known that algebraically equivalent ways of writing a set of
constraints do not give the same numerical answer in finite samples for the
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TABLE 1
Regressions of excess returns on equity market shares (equation 4)

equation shares

UK Us JP GE cA Sw NL FR IT BE
UK —-2.029* —-0.015 0.346* 4.346 0817 —1.081 2.481 0.743 —1.209 —17.94*
0.754 0.147 0.150 2.692 1.400 3.885 9.335 2.509 2071 8.900
US 0464 —0.060 0.032 3.400* —0.275 2616 —1.494 -0.104 —0.737 —17.705
0.453 0.089 0.090 1.618 0.841 2334 5.610 1.508 1.245 5.342
JP 0467 0075 —0.141 —1207 —1.672% 3.961 6974 —0.950 3.356 —3.844
0.545 0.106 0.109 1.944 1.011 2.805 6.741 1.812 1.496 6.419
GE —-0.965% 0.092 0.024 —0.688 —0.232 1.014 5.673 —1.938 1.989 —0.590
0.554 0.108 0.110 1.976 1.028 2.852 6.854 1.842 1.521 6.527
CA 0218 0.141 0.014 2062 —2.042% 2921 —1335% 0516 —0.434 2771
0.623 0.122 0.124 2.225 1.157 3.211 7.715 2.073 1.712 7.347
SW —0.253 0.043 0.175% 4.861* —0.342 —3.536 —-3.831 —1.118 —0.766 —9.529
0.523 0.102 0.104 1.868 0.972 2.696 6.479 1.741 1.438 6.170
NL -0.683 0.245% 0.178% 2902 —1.607t 2072 —14.32% 0.617  —0.005 —4.698
0.521 0.102 0.104 1.859 0.967 2.683 6.447 1.732 1.430 6.139
FR —-0.648 —0.177 0.045 4.1401 0.976 1.666 2979 —7.529* 1.758 3.666
0.680 0.133 0.136 2429 1.263 3.505 8.423 2.264 1.869 8.021
IT -0.051 —0.097 —0.046 1.553  —0475 1.276 8.663 —0.249 —0.588 —14.24
0.740 0.145 0.148 2.643 1.374 3.814 9.164 2.463 2,033 8.727

BE -0.419 0.050 0.173 4500t —0.962 —0.706 —3.467 —2.031 0.672 —-9.253
0.557 0.109 0.111 1.987 1.033 2.867 6.890 1.852 1.529 6.561

Coefficient estimates are the first number reported.
Standard errors are the second number reported.
* Significant at the 5% level.

+ Significant at the 10%, level.

Wald test, although they are asymptotically equivalent. Gregory and Veall
(1985) have argued on the basis of Monte Carlo evidence that expressing the
constraints to be tested as products (rather than quotients) improves the quality
of the approximation to the asymptotic distribution of the test statistic. We test
the constraints in the form b;;w,, = by, w;;, for all i, j, and a particular k, [. The
value of the Wald statistic will depend upon the choice of k, . In the statistics
we report below, we chose k, | so that the unconstrained estimates of b, , and
wy,, are significantly different from zero. If b, , and w,, equal zero, then
b;jwy, = by w;; trivially.

Table 1 reports the results of the ten OLS regressions of excess rates of return
on the asset shares. The performance of the unrestricted model is weak. In
particular, few of the coefficients are significant at the 5% level, and (as is typical
in equations used to predict returns on equities) little of the variation of the
returns can be predicted ex ante. Moreover, contrary to what the underlying
model leads us to expect (see Frankel, 1982a), the diagonal elements of B are
all negative, though only three of these negative coefficients are significant at
the 5% level.

These results do not necessarily indicate that the general model should be
rejected. Rather, they are characteristic of the imprecision in nearly all models
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TABLE 2
Covariance and correlation matrix for residuals from regressions in Table 1

UK Us JP GE CA Sw NL FR IT BE

UK 0.6464 0.5092 0.3331 0.4007 0.4737 0.5451 0.6392 0.5224 0.3588 0.4926
US 01978 0.2334 0.2710 0.3923 0.6309 0.5330 0.6172 0.4745 02164 0.4372
JP 0.1555 0.0760 0.3371 0.3975 0.2374 0.4004 0.4417 04153 03882 0.5354
GE 01902 0.1119 0.1362 0.3484 03074 0.7736 0.6839 0.5641 0.3574 0.6377
CA 02530 0.2025 0.0916 0.1206 0.4415 0.4898 0.5288 0.4150 0.2580 0.3248
SW 02445 0.1437 01297 02548 0.1816 03113 0.7395 0.6062 03914 0.6467
NL 0.2853 0.1656 0.1424 02241 0.1951 0.2291 0.3082 0.5769 03692 0.6314
FR 03047 0.1663 0.1749 0.2415 0.2001 0.2454 0.2324 0.5262 0.4454 0.5925
IT 0.2277 0.0825 0.1779 0.1665 0.1353 0.1724 0.1618 0.2550 0.6229 0.3897
BE 0.2350 0.1253 0.1500 0.2234 0.1281 0.2141 0.2080 0.2550 0.1825 0.3521

Covariances ( x 100) appear on and below the diagonal.
Correlations appear above the diagonal.

that try to explain stock returns ex ante. It is this very imprecision that leads
one to study restricted models such as the mean-variance model. Table 2
reports the unrestricted estimate of Q. A quick check reveals that there are, in
fact, wide variations in the estimates of b;;/w;;. (Divide the estimates from Table
1 by the corresponding elements from Table 2, bearing in mind that because
of our scaling in Table 2, the ‘estimated’ values of p are 100 times these
numbers). As before, when the parameters are individually estimated with low
precision, reliable inferences are difficult to draw from the individual point
estimates.

The first line on Table 3 shows that our Wald tests reject the restrictions of
mean-variance efficiency when we test whether the constraints hold and p = 2.
That is, we reject the constraint b;; — 2w;; = 0. The second test reported on the
top line of Table 3 takes the form b;;wy — byw;; = 0. The k, | element was
chosen as the coefficient of UK excess returns on UK asset shares, since, in this
case, both b, and w,, clearly do not equal zero. In contrast to the case in which
we choose a value for p, we do not reject the constraints of mean-variance
efficiency when the constraints take the form b;;w,;, — by,w;; = 0. One possible
explanation for this difference in results is that MVE holds, but p is not close
to 2. However, an alternative explanation, discussed at the end of this section,
is that the tests in which p is not specified have very low power compared to
the linear form of the test.

3.2. The Wald test with time-varying variances and coefficients

Until now, we have treated the covariance matrix €, as a constant, indicating
homoskedasticity of returns on the equities. In this section we consider the
model described by equations (12), (13) and (14), in which the conditional
covariances may be a function of currently observed economic data.
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TABLE 3
Results of Wald tests

Constraint: bij —2w;=0  bjjw, — byw; =0

Constant co-variance
Wald statistic: 183.45%* 97.68
(degrees of freedom) (100) 99)

Time-varying co-variance
Variance a function of:
LIBOR, price of gold money supply, oil price

Wald statistic: 1124.23* 82.27
(degrees of freedom) (500) (499)
LIBOR, price of gold lagged money, lagged oil price

Wald statistic: 1051.90* 56.22
(degrees of freedom) (500) (499)

4 principal components

Wald statistic: 1322.98%* 188.35
(degrees of freedom) (500) (499)

2 principal components lagged money, lagged oil price

Wald statistic 1058.99* 152.07
(degrees of freedom) (500) (499)

* Significant at the 1% level.

We adopt a four-step procedure to estimate the parameters of the uncon-
strained model. First, we estimate the B; (i = 1,...,m) with OLS regressions
of the system described by equation (14). Noting that the moment matrix, v, ,
of the estimated ¢, ., from equation (14) is equal to Q, plus a random error
term, it follows from equation (12) that:

Vea1 = Qo+ Quzt + Q22+ + Q2" + v,y (15)

Hence, we can regress this moment matrix on the vector of economic variables
to generate consistent estimates of the Q; (i = 1,..., m). While this procedure
generates consistent estimates of all of the parameters (the B; and the €;), the
estimates are not efficient because the errors are heteroskedastic. So, we use
the assumption that the ¢, are normally distributed, and the fitted values of Q,
to construct a variance matrix for the error terms in the Q regression (equation
15). Using GLS, we get new estimates of the Q,. With these new Q;, we get new
measures of the fitted values of Q, which we use to make the heteroskedasticity
correction for the returns regression (equation 14). We then can construct
efficient estimates of the B; using GLS.?

We allow the variance to be a function of four different economic variables.
In particular, following Giovannini and Jorion (1987) and Shaken (1990),
we postulate that the variance of excess returns is a function of short-term

3 The procedure is described in greater detail in the appendix available from the authors.



412 TESTS OF MEAN-VARIANCE EFFICIENCY

interest rates, in this case the one-month LIBOR rate (computed as the average
of the bid and ask rates reported on the last day of the month by DRI). In our
earlier paper, Engel and Rodrigues (1989), we argued that oil prices and the
US money supply may be sources of uncertainty regarding returns. Accordingly,
we use the squared growth rates of these series as explanatory variables for the
covariances. The oil price series is the producer price index for crude petroleum
products, and the money supply variable is US M1. We also use the squared
growth rates in the price of gold, measured on the last day of the month, London
afternoon fixing. The money supply, oil price and gold price series are from the
Federal Reserve Board data base.*

Again, the results from the unrestricted regressions (which are not reported)
are weak. Few of the coefficients are individually significant, and the adjusted
R?s are low.

The second and third rows of Table 3 report the tests of mean-variance
efficiency when the variance depends upon the four economic variables. The
left column of Table 3 reports the Wald statistics for the tests of b;; — 2w;; = 0,
while the statistic in the right column is for the case in which p is unrestricted.
In the latter case, the constraints are tested in their multiplicative form:
b;jwy, — byw;; = 0. As in the constant variance case, we chose k, I to correspond
to the coefficient of UK excess returns on UK shares. The third row in Table
3 reports statistics for models in which the variance depends on the lagged oil
price and the lagged money supply (as well as the current squared gold price
and Eurodollar rate). The reason these are included is that the variance is
supposed to be conditional on information available on the last day of the
month. Although investors often know much about the US money supply for
a given month on the last day of the month (because the money supply numbers
are reported weekly, but with a ten-day lag), they do not know the exact figure
until it is reported some time after the last day of the month. The crude oil
price index used closely reflects prices on spot markets, but the index itself is
not reported until after the end of the month.

The mean-variance constraints when p = 2 are again rejected at the 5% level
(as was the case with the constant Q model), while the constraints are not
rejected when we do not specify a value for p. As we will explain below,
this failure to reject when the value of p is not specified probably arises
from the low power of the test when the constraints tested are of the form
bijwiy — buyw;; = 0.

Our earlier paper (Engel and Rodrigues, 1989) argued that ARCH may be
a useful ad hoc way to model the time-varying variances. In general it appears
that financial models can explain ex ante only a small fraction of the variation
in asset returns. In practice, there is almost no difference between an ARCH
model in which the variance depends on lagged squares (and cross products) of

4 While the money supplies of all countries may provide useful information to investors, for
parsimony we include only the dollar, which has a more dominant role in international financial
markets.
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regression errors, and a model in which the variance depends upon the lagged
squares (and cross-products) of deviations of the returns from their sample
means. Here we approximate ARCH by exactly such a model.

We reduce the dimension of the problem by treating the lagged squared
deviations of the excess returns from their means as the z,, while ignoring the
possible dependence of elements of Q, on lagged cross-products of the returns.
We find that there is a high correlation amongst the ten squared returns
variables. So, we reduce the dimensions of the z vector further by calculating
the principal components of the squared returns, and then constructing a vector
z consisting of only the lagged values of the first four principal components.
These four components account for 87.87%, of the sum of the variances in the
squared returns.

The fourth line of Table 3 reports the results of the tests of mean-variance
efficiency. As was the case for the models in which the variance depended upon
the economic variables, the constraints imposed by mean-variance efficiency
are rejected when p = 2, but are not rejected when p is left unrestricted.

This same conclusion emerges when Q, is assumed to depend on the lagged
values of: the squared changes in the log of M1, the squared changes in the
log of oil prices, and the first two principal components of the squared
deviations from mean of the excess returns. (These two principal components
account for 72.13% of the sum of the variances in squared returns.) These tests
are reported in the fifth line of Table 3.

As was discussed in Section 3, there are many ways to parameterize the Wald
test, and generally the different parameterizations will not yield the same Wald
statistic. Even if we stick to the multiplicative form of the constraints, as
advocated by Gregory and Veall (1985), so that the constraints are of the form
b;jwy — byw;; = 0, the value of the Wald statistic will vary depending upon the
choice of k and . For the model in which the variance is assumed to depend
upon lagged squared money, lagged squared oil and the lagged first two
principal components of squared returns, we checked the robustness of our
conclusions by calculating the Wald statistic when the k, | element corresponds
to the coefficient of the excess returns on shares for each of the ten countries.
We found that we cannot reject the mean-variance constraints in any of the
ten cases. (Note that when we test the mean-variance hypothesis and restrict
p to equal 2, the constraints are linear, so that there is a unique Wald statistic.)

We believe that the failure to reject the mean-variance restrictions when the
value of p is not specified is, in fact, a demonstration of the low power of the
tests when the constraints are written in the form b;;w, — byw;; = 0. These
tests are much less powerful than when the constraints are of the form
b;; — pw;; = 0. One reason for this is that the estimates of each of the constraints
by w;; — b;jw,; = 0 has higher variance because four estimated parameters,
rather than two, appear in each constraint. There is also a high correlation
among the constraints because each of the constraints involve the estimates of
b, and w,,. This correlation appears to play the most significant role in lowering
the power of the test when the constraints take the form byw;; — b;;0, = 0.
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TABLE 4
Average values of B,
Unconstrained model (B, defined in Equation 6)

UK Us JP GE CA Sw NL FR IT BE
UK —8826 0.343 0.743 —0.897 6.645 16348 —1425 —17.11 9.784 45810
US —2681 0.035 0.395 —2.592  3.015 3.895 —0947 -—5.896 0973 24.126
JP —6.308 0.702 0387 —13.79 —1207 19.211 -1035 5.087 6.735 27.290
GE —6.350 0.251 0.431 —4.878 3311 14.966 2253 —9.945 7.688 25.851
CA —-7014 0.567 0.640 —10.06 3229 20462 —2273 —3.881 2387 49.834
SW —6.157 0.038 0.434 0.355 3229 8.920 3442 —8213 9.520 15.799
NL —4961 0.323 0514 —1.552 1514 11.872 —13.71 —7.495 4.612 28.787
FR —7.760 0407 0.349 —5.539 3.358 23583 —1548 —14.64 11.047 55434
IT —-1057 0989 0817 —14.22 2902 30.171 —40.46 9.152 2.669 28.491
BE —4211 0.5% 0517  —3.071 —1.161 16.672 —2740 —7.115 3.165 37.236

(z, includes lagged money, lagged oil prices, and first two principal components of excess returns).
TABLE 5
Average values of Q,
Unconstrained model (Q, defined in Equation 5)

UK Us JP GE CA Sw NL FR IT BE
UK 04696 0.1581 0.0983 0.1139 0.1633 0.1827 0.2101 0.2175 0.1372 0.1570
US 0.1581 0.1739 0.0549 0.0784 0.1484 0.1083 0.1233 0.1213 0.0537 0.0845
JP 0.0983 0.0549 02192 0.0790 0.0601 0.0777 0.0891 0.0940 0.1032 0.0997
GE 0.1139 0.0784 0.0790 02382 0.0722 0.1712 0.1446 0.1757 0.0918 0.1381
CA 0.1633 0.1484 0.0601 0.0722 03215 0.1086 0.1230 0.1272 0.0834 0.0707
SW  0.1827 0.1083 0.0777 0.1712 0.1086 02109 0.1526 0.1827 0.1063 0.1396
NL 02101 0.1233 0.0891 0.1446 0.1230 0.1526 0.2187 0.1622 0.0828 0.1298
FR 02175 0.1213 0.0940 0.1757 0.1271 0.1827 0.1622 0.3677 0.1662 0.1737
IT 0.1372  0.0537 0.1032 0.0918 0.0834 0.1063 0.0828 0.1662 0.3906 0.1175
BE 0.1570 0.0845 0.0997 0.1381 0.0707 0.1396 0.1298 0.1737 0.1175 0.2554

(z, includes lagged money, lagged oil prices, and first two principal components of excess returns)
Reported covariances are 100 x actual values.

So, it appears that in those cases in which the mean-variance model is not
strongly rejected, it is because the particular Wald test employed has very low
power, and probably not because the null hypothesis is true.

Table 4 reports the sample mean of the fitted values for B,, for the model
in which B, is assumed to depend upon lagged changes in the log of the money
supply, lagged changes in the log of oil prices and the lagged values of the first
two principal components of the square of the deviation from mean of the
excess returns. Table 5 reports the average of the fitted values for Q, from the
same model. (Note that the values reported in Table 5 are the elements of €,
times 100.)
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It is instructive to compare the average coefficients reported in Table 4 to
the coefficients reported for the constant B model in Table 1. There are large
differences in the two matrices. This indicates the importance of allowing B, to
be time-varying. If the average value of B, is so much different from the estimated
value of B assuming constant coefficients, then clearly there can be even bigger
differences at specific dates. The same observation holds for comparison of the
estimates of the average value of €, in Table 5 to those for the constant Q
model in Table 2.

Frankel (1986) observed that the mean-variance model was unlikely to
explain large values of the foreign exchange risk premium, because the
conditional variance of returns was very small. In our context, the implication
is that Q, is very small relative to B,. Comparison of Tables 4 and 5 indicate
the elements of the matrix of average values of Q, are generally three orders of
magnitude smaller than the absolute values of the elements of the average values
of B,.

It is not clear yet exactly why the mean-variance restrictions are rejected
when the constraint is expressed linearly. The output from Tables 4 and 5
suggests that if the mean-variance constraint were imposed, the estimated value
of p may not be close to 2. So, have we rejected MVE because we have chosen
an inappropriate value of p? The non-linear form of the constraint does not
require that we specify p, and we do not reject MVE in this case, but we have
argued that the test has low power under this specification. It appears that
examination of the constrained estimates would be helpful in understanding
the nature of the mean-variance model. We turn to those estimates in the next
section.

4. Estimates of the MVE-constrained model

We can construct minimum distance estimators of the parameters of the
constrained model following the suggestion of Rothenberg (1973, p. 24). Call
b the vector of coefficients of the estimated B; matrices (i = 1,...,m), where
we take the elements by row from each matrix. Let s be the vector of coefficients
of the estimated Q; matrices (i = 1, ..., m), where we take the elements by row
from the upper triangle of each matrix. The vector of parameters from the
constrained model can be estimated by choosing p and w (which will be the
estimated vector of coefficients in the constrained (); matrices) to minimize:

b—pho [V 0] b—ph
o P A R | ®
s—w 0 I s—w
Here, V3 is the covariance matrix of b, Vs is the covariance matrix of s, and A
is the matrix that maps the elements of w into the relevant elements of b.°

We have found that in practice this two-stage procedure (first estimate the
unconstrained model, then construct the minimum distance estimates of the

5 The appendix available from the authors describes the estimation in greater detail.
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TABLE 6
Average values of Q,
Constrained model (Q, defined in Equation 5)

UK Us JP GE Cc4 SW NL FR IT BE

UK 0.2725 00010 —0.0174 —0.0005 0.0109  0.0439  0.0589  0.0595 0.0292  0.0383
us 0.0010  0.0311 —-0.0236 —-0.0122 0.0178 —0.0028 —0.0000 —0.0012 —0.0220 —0.0120
JP -00174 -0.0236  0.1028 0.0117 —0.0275 —0.0058  0.0002 —0.0115 00210 0.0314
GE -00005 -00122 00117 0.1721 -0.0151 00912  0.0582  0.0850  0.0315  0.0727
CA 0.0109  0.0178 —0.0275 —-0.0151 0.1971 0.0015  0.0056  0.0059  0.0036 —0.0249
SW 0.0439 —0.0028 —0.0058  0.0912 00015 0.1136  0.0467 00712 00309  0.0581
NL 0.0589 —0.0000 0.0002 0.0582  0.0056  0.0467  0.1031 0.0426  0.0029  0.0408
FR 0.0595 —0.0012 —-0.0115 0.0850  0.0059 00712 0.0426 02355 0.0742  0.0789
IT 0.0292 —0.0220 0.0210 00315 00036 00309 00029 00742 03203  0.0573
BE 0.0383 —0.0120  0.0314  0.0727 —0.0249  0.0581 0.0408  0.0789  0.0573  0.1895

(z, includes lagged money, lagged oil prices, and first two principal components of excess returns)
Reported covariances are 100 x actual values.

Estimated value of p = 87.29.

Chi-square (499 d.f.) = 1037.91.

constrained model) requires much less computation than maximum likelihood
estimation of the constrained system. Maximizing the likelihood of the systems
described in the previous section involves simultaneously choosing 226 para-
meters to find the maximum of an unusually complicated function. (The
complication arises because the means depend upon the variances.) While the
minimum distance estimation still requires finding 226 parameters, the mini-
mization of the quadratic form is much more manageable than maximum
likelihood estimation.

Table 6 reports the average value of Q, (times 100) from the constrained
model in which the coefficients and variances are assumed to be functions of
the lagged US money supply, the lagged oil price and the lagged first two
principal components of the squared deviations from means of the excess
returns. It also reports the estimated value of p, 87.29.

This very large estimate of p is consistent with other empirical investigations
of asset pricing relations. It implies that there is a large premium on equity
returns. In the context of a general equilibrium model, Mehra and Prescott
(1985) also concluded that the size of the equity risk premium was difficult to
explain, unless agents were assumed to be extremely risk averse. Frankel (1986)
and Engel (1992) have made similar observations about international asset
pricing relationships. The mean-variance model appears to be inadequate for
explaining these large risk premia.

While we may wish to reject the mean-variance model on the grounds that
87 is an unreasonable estimate of the price of risk, that is not the only reason
for doubting the model. The restrictions of MVE on the Tobin asset-pricing
model are strongly rejected even when the price of risk is allowed to take on
this high value. This should not be too surprising, because examination of the
estimates from the unrestricted model (Tables 4 and 5) reveal that there are
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TABLE 7
Chi-square tests based on minimum distance estimator

Constant Covariance

Estimate of p 2.05
Chi-square statistic: 183.45*
(degrees of freedom) 99)

Time-varying Covariance
Variance a function of:
LIBOR, price of gold money supply, oil price

Estimate of p 108.36
Chi-square statistic: 1006.51*
(degrees of freedom) (499)
LIBOR, price of gold lagged money, lagged oil price

Estimate of p 42.87
Chi-square statistic: 1040.36*
(degrees of freedom) (499)

4 principal components

Estimate of p 283.04
Chi-square statistic: 1097.82*
(degrees of freedom) (499)

2 principal components lagged money, lagged oil price

Estimate of p 87.29
Chi-square statistic: 1037.91%*
(degrees of freedom) (499)

* Significant at the 19, level.

large differences in the ratios of b;;/w;;.° It is apparent that the model is
estimated precisely enough that the restriction of equality of all of the b;;/w;;
can be rejected. In fact, the estimates of the w;; from the restricted model do
not seem very similar to the w;; of the unrestricted model, or to the b;; of the
unrestricted model divided by 87.

Table 7 reports the estimated values of p, and the chi-square test of the MVE
restrictions for all of the models we have considered (the constant variance
model, and the four time-varying variance models). It shows that the restrictions
of MVE are strongly rejected in every case. Also, with the exception of the
constant-variance model, the estimated values of p are very large.

5. Asset demand equations

The models we have estimated have the interpretation of equilibrium asset
pricing models: E,r,, ;, = B,A,. However, as we noted in Section 2, this relation

6 Recall, of course, that Tables 4, 5, and 6 do not report actual values of the estimates of B; and
Q; (i=1,...,m), but instead, to save space, report the average values of B, and Q,. However, the
statement concerning the b;; and w;; is true and evident from observation of the (unreported) B;
and Q.
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TABLE 8
Coefficients in asset-demand systems
Based on inverse of matrix in Table 4

UK Us JP GE CA SwW NL FR IT BE

UK 297 =365 —126 —0.12 8.60 993 —2407 —441 207 10.75
UsS 15.60 —30.04 —3.54 172 4394 3537 —8290 —22.64 —12.63 3531
JP 783 —673 —391 —041 2349 3137 —=73.57 —13.63 —524 3431
GE 099 —244 052 0.02 3.87 345 —-720 —1.81 —1.03 312
CA 1.67 =225 —0.64 —0.04 4.56 476 —11.54 —228 —1.09 4.93
SW 060 —120 —042 0.09 2.38 252 =572 —113 —0.55 2.55
NL 0.29 074 —0.14 0.07 1.19 .02 -217 -057 —-0.33 0.93
FR 074 —150 -034 -0.10 2.74 269 —580 —1.28 —0.69 2.49
IT 063 —-036 —013 —-0.20 1.27 193 —479 -070 —030 2.14
BE 015 —-038 —-006 —0.03 0.63 053 —1.07 -027 -0.18 0.45

Based on inverse of 2Q in Table 5 (rescaled to actual values)

UK 23741 —4224 —-077 12844 —597 —1109 —1565 —43.06 —1809 —21.74
US —4224 67856 —439 7001 —1922 —1157 —169.6 —38.64  38.19 —2331
JP —-077 —439 30860 —21.10 —7.78 18.61 —66.67 870 —49.26 —64.51
GE 12844 7001 —-21.10 646.21 27.67 —412.3 —209.5 —88.16 5.78 —61.83
CA —597 —1922 —7.78 2767 26895 —2898 —3299 —1394 -—22.57 3335
SW —1109 —1157 18.61 —412.3 —2898 911.66 —83.53 —64.58 —29.36 —68.32
NL —1565 —169.6 —66.67 —209.5 —3299 —83.53 726.63 2.11 31.69 —38.88
FR —43.06 —38.64 870 —88.16 —13.94 —64.58 2.11 301.57 —51.35 —59.86
IT —18.09 3819 —49.26 578 —22.57 —=2936  31.69 —5135 17636 —2543
BE —-2174 -2331 —6451 —61.83 3335 —6832 —3888 —59.86 —2543 37575

Based on inverse of 87.29-Q in Table 6 (rescaled to actual values)

UK 5.67 1.04 0.82 3.14 003 —234 335 —-09 —-024 —050
UsS 1.04  48.84 9.57 376 —284 —-097 —-171 —0.99 268 —025
JP 0.82 9.57 1487 —0.59 0.76 204 —0.60 1.24  —-036 —2.60
GE 3.14 376 —0.59 15.26 068 —946 —473 225 021 —1.27
CA 0.03 —2.84 0.76 0.68 637 —-053 —-072 —-024 —-042 0.80
SwW  -234 —-097 204 -946 —053 2119 —1.64 —123 —-046 —186
NL -335 —-171 —-060 —473 -—-072 —1.64 16.84 0.05 088 —1.02
FR —-096 —0.99 1.24 225 —-024 —1.23 0.05 721 —111 —154
IT —0.24 2.68 0.36 021 —042 0.46 088 —1.11 421 —-0.71
BE —-050 -025 —-260 —127 080 —18 —102 —-154 -0.71 8.80

is based on an inversion of a system of asset demand equations: 4, = A,E,7, , ;.
It is interesting to consider the asset demand equations that we have implicitly
estimated.

Table 8 reports three different estimates of the demand for equities from the
ten countries. They all report the matrix A for the ten-country system of equity
demands. The first estimate of A is simply the inverse of the average B, for the
unrestricted model reported in Table 4. The second is Q;!/2 from the
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unrestricted estimates reported in Table 5. The inverse of €, is divided by
2 on the assumption that the price of risk is 2. The third set of estimates
of A is the inverse of the restricted estimate of the average B, based on
Table 6 (that is, the inverse of the matrix in Table 6 divided by 87.29, the
estimate of p).

First consider the system of demand equations based on the unrestricted
average B,. Note that several of the diagonal elements are negative, which means
that demand for an asset declines on average when its expected return increases.
While this could occur in principle (for example, if the variance of the return
on the asset tended to rise a great deal when the expected return did), it seems
likely that this is a mismeasurement of the response of the asset demand to the
expected return.

What leads to this mismeasurement? The most probable culprit in this case
seems to be mismeasurement of expectations. There are two possible explana-
tions. The first is that expectations are not rational. If we knew agents’ true
expectations we would find that asset demands rise when the own expected
return (measured correctly) rises. But, under this explanation, our assumption
that the ex post return measures the true expectations up to a white noise error
term is incorrect.

The second is that while expectations are rational, there is such a high
variance in ex post returns, that in any given small sample the ex post returns
may be a poor measure of individual’s true expectations, but these expecta-
tions are nonetheless rational. This small-sample, or ‘peso’ problem haunts all
empirical work that imposes the rational expectations assumption. There has
not been a satisfactory resolution of the problem.

So, we find that imposing rational expectations leads to an unsatisfactory
estimate of the unrestricted (Tobin) system of asset demand equations. Perhaps
imposing the MVE restrictions (on the grounds of a priori knowledge) leads
to more reasonable looking asset demand equations. Consider now the second
set of estimates based on the inverse of pQ, from the unrestricted regressions
(as reported in Table 6, with p = 2). These are also unconvincing estimates of
asset demand equations. Many of the coefficients are too large to be plausible.
For example, these estimates imply that a one percentage point increase in the
expected return on US equities leads to an increase in the share of US assets
in the overall portfolio of 6.78. This is impossible, since the share of any country
(in the aggregate portfolio) cannot exceed one. The implication is that no shock
could lead to an increase in expected returns on US equities of greater than
about 0.15 percentage points in equilibrium, or else the constraint that the share
be less than one would be violated.

These large coefficients are in part a result of the assumption that p equals
2. The estimates of the constrained model find a p equal to 87.29. Examination
of the system of asset demand equations based on the constrained model (the
third matrix in Table 8) reveals a not unreasonable system of equations. The
diagonal coefficients are all positive, and no coefficient is unreasonably large.
The own return has the largest influence on asset demands for each of the assets.
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The demand for securities also depends heavily on returns on US, UK,
Japanese, and German equities.

6. Summary and conclusions

We have presented two sets of tests of the mean-variance efficiency of a
portfolio of equities from ten countries. The first set of tests, the Wald tests, do
not reject the constraints that MVE places on a general system of asset demand
equations when the value of p is not specified. This result is true both when
the conditional co-variances of individual asset returns are constant over time,
and when they are allowed to vary as a function of economic variables.

The second set of tests is based on estimates of a set of asset demand
equations on which the MVE constraints are imposed. We estimate the MVE
constrained model using a minimum distance estimator, and then test whether
the MVE restrictions significantly worsen the fit of the unconstrained model.

The estimated asset demand equations from the regressions that impose the
MVE constraints appear to be plausible specifications of equity demand.
However, these estimates imply a very large value of p, the market price of risk.
Furthermore, the constrained model is strongly rejected relative to the general
asset-pricing model. In general, our results argue against mean-variance
efficiency of the world equity market.

* University of Washington
t Federal Reserve Bank of New York
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