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SUMMARY

We perform maximum-likelihood estimation of a model of international asset pricing based on CAPM.
We test the restrictions imposed by CAPM against a more general asset pricing model. The ‘betas’ in our
CAPM vary over time as the supplies of assets change and as the conditional covariances or returns on
those assets change. We let the covariances change over time as a function of macroeconomic data, and
an alternative model allows the covariances to follow a multivariate ARCH process. We also can identify
a modified CAPM model with measurement error. We find that the estimated CAPM performs much
better when variances are not constant over time. Nonetheless, CAPM is rejected in favour of the less-
restricted model of asset pricing.

1. INTRODUCTION

One branch of the ‘asset market approach’ to exchange rates has focused on the demand by
residents of an open economy for foreign currency denominated assets. In this view, people
diversify their portfolios to hold a variety of domestic and foreign assets with the aim of getting
the maximum return on their portfolios while taking into consideration the riskiness of the
assets. In particular, foreign currency denominated assets are subject to exchange rate risk—or,
perhaps more accurately, they might be subject to different purchasing power risk than
domestic assets. In the general equilibrium of such a ‘portfolio balance’ model, the supplies
of outside assets affect macroeconomic variables, including the exchange rate. The portfolio
balance approach to flexible exchange rate was pioneered by Black (1973), Kouri (1976),
Branson (1977) and Girton and Henderson (1977).

Some general forms of the portfolio balance model have been treated empirically by, among
others, Frankel (1982a, 1984); Branson, Halttunen and Masson (1977, 1979); Dooley and Isard
(1979, 1983) and Lewis (1988a). These models typically postulate that demand for domestic
assets relative to foreign assets is a function of the expected value of i — i* — 8, where i is the
return on home assets, i* is the return on assets from abroad, and & is the rate of depreciation
of the domestic currency. The anticipated level of i —i* — & is often referred to as the risk
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premium in this literature. It represents the excess expected return the domestic asset must pay
to compensate for its riskiness. (Of course, the risk premium as defined here could be negative,
implying foreign assets pay a greater expected rate of return.) These papers proceed by making
some assumption on how expectations of the future exchange rate are formed, and then
estimate bond demand equations as functions of the risk premium, or else estimate a reduced
form in which the exchange rate depends on asset supplies.

The portfolio balance approach can be seen as one possible explanation of the finding by
many authors (including Geweke and Feige (1979), Frankel (1980), Hansen and Hodrick (1980)
and Cumby and Obstfeld (1981)) that uncovered interest parity does not hold. That is, in the
sample periods tested, the conditionally expected return differential between comparable assets
across countries is non-zero (i;+1 — ir+1 — 6:+1 has a non-zero mean conditional on information
available at time 7). Although the presence of a risk premium is one explanation for this finding,
others include the possibility of inefficient markets or a peso problem.

Numerous studies have tested whether the rejection of uncovered interest parity is
attributable to a risk premium, without resorting directly to estimating bond demand
equations. Various ingenious approaches have been taken by Hansen and Hodrick (1983),
Hodrick and Srivastava (1984), Domowitz and Hakkio (1985), Mark (1985), Cumby (1987,
1988), Giovannini and Jorion (1987a), and Kaminsky and Peruga (1987). These studies
typically exploit the time series properties of asset returns (and sometimes other variables such
as consumption) without relying on asset supply data.

One branch of this literature can be viewed as a refinement on the portfolio balance models,
in that it derives asset demand equations (rather than asset pricing equations as in most of the
literature cited in the previous paragraph) from an underlying utility-maximization approach.
Frankel (1982b) proposed that a popular and reasonable model of asset diversification—the
capital asset pricing model (CAPM)—can be implemented for international asset data and
estimated. Furthermore, the restrictions that CAPM places on more general bond demand
equations can be tested. Papers that employ this type of international CAPM test include
Frankel (1983), Frankel and Engel (1984), Engel and Rodrigues (1986), Lewis (1988b),
Attanasio and Edey (1987) and Giovannini and Jorion (1987¢).!

These papers demonstrate that CAPM implies an equation of the form:

Eziv1=c+ pQiN\ 1

where z;41 is a vector of real rates of return between time ¢ and ¢ + 1 relative to the real return
on some numeraire asset (the jth real return is calculated as [(1 + #)(1 + aj)/(l +m)] -1,
where / is the nominal rate of return of an asset in its own currency, a is the rate of appreciation
of the currency relative to the currency of the numeraire asset and ~ is the rate of inflation of
prices in the currency of the numeraire asset), ¢ is a vector of constants?, p is a constant that
is a measure of relative risk aversion of the typical market participant, ; is the conditional
variance at time ¢ of z,+1, and )\, is a vector whose jth element is the value of the total
outstanding supply of the jth asset as a share of the value of all assets. The derivation of this
equation assumes that all investors have the same consumption basket, and that the law of one
price holds.

Frankel’s key observation is that if E;z.; is replaced by realized values of z:4, then, under

! Attanasio and Edey (1987), and Giovannini and Jorion (1987c¢), are quite similar to this paper and were written
independently.

2 In general, c is a covariance that could change over time (see Frankel and Engel, 1984). We cannot, however, impose
any constraints between ¢ and the vector of errors. We treat ¢ as a constant for convenience.
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rational expectations, the variance of the vector of forecast errors (z:+1 — E:z:+1) should equal
Q.. This suggests an empirical test of CAPM. Regress each relative ex-post rate of return on
all of the asset shares in \. If there are N assets (not counting the numeraire), this would yield
an N X N matrix of regression coefficients that under the CAPM hypothesis should be
proportional to the covariance matrix of the regression errors—with the constant of
proportionality equal to p.

In the international finance context this idea has been implemented by constructing aggregate
asset data comprising the outstanding obligations of governments from each of several
countries. Dollar assets are chosen as numeraire, and average real returns for assets from each
of the other countries relative to the real return on dollar assets are calculated. In the CAPM
tests that have been performed using this technique there has been little support for the
restrictions imposed by the CAPM theory (see Frankel (1986) for a discussion of this literature).

Typically the conditional variance, ,, has been treated as a constant. However, several
authors, including Hodrick and Srivastava (1984), Cumby and Obstfeld (1985), Hsieh (1984)
and Diebold and Nerlove (1986), have noted that forecast errors in foreign exchange markets
are notoriously heteroskedastic. Giovannini and Jorion (1987a) offer some ‘back-of-the-
envelope’ calculations that suggest that the degree of variability over time in {; is large enough
to account for the empirical failure of CAPM (however, see Giovannini and Jorion (1987b) and
Frankel (1987)).

The international finance literature does not offer a very good guide to the determinants of
the variance of the forecast error. It seems plausible that forecasts should have higher variance
in times of economic turbulence. One approach we take in this paper is to let Q, vary over time
as a function of macroeconomic data such as the US money supply and oil prices. If, in fact,
shocks to the US money supply and dollar oil prices increased the difficulty of forecasting
foreign exchange rates, then the constant variance models of Frankel are misspecified. They
base their measurement of the forecast variance at any time on the average past squared
forecast errors. However, if the money supply or oil prices have been behaving erratically in
the recent past, it is likely that the exchange rate forecast variance will increase.

A method of modelling time-varying variances that does not rely on macroeconomic data has
been suggested by Engle (1982). In essence, he postulates that the variance in this period is likely
to be large following a large error (positive or negative) in the previous period. In a univariate
context, for example, we might see

0_[2= a+ BC%,

where ¢?is the variance for the forecast error made for the time ¢ forecast of time ¢ + 1 returns,
and ¢, is the forecast error made at ¢ for the time ¢ — 1 forecast. This modelling of the variance
is labelled autoregressive conditional heteroskedasticity (ARCH) by Engle. ARCH models have
been used in the foreign exchange literature by Domowitz and Hakkio (1985), Hsieh (1988),
Kaminsky and Peruga (1987), McCurdy and Morgan (1987, 1988), Diebold and Nerlove (1986),
Baillie and Bollerslev (1987a,b), Lastrapes (1987), Hodrick (1987), Bodurtha and Mark (1987),
Mark (1987), Attanasio and Edey (1987), Giovannini and Jorion (1987c), and Engle and
Bollerslev (1986).

In this paper we estimate and test a six-country international CAPM, allowing for time-
varying variances following both ARCH specifications and models relating the variance to
macroeconomic data. We use aggregate asset data representing the nominal obligations of six
governments—France, Germany, Italy, Japan, the UK and the US—and the rates of return
from Eurocurrency markets from April 1973 to December 1984. These CAPM tests can be
viewed as a direct extension of Frankel’s tests by allowing for heteroskedasticity. This work is
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also quite similar to that of Bollerslev, Engle and and Wooldridge (1988), who estimate—but
do not test the restrictions imposed by—a CAPM for domestic US assets, using nominal rates
of return.

We also allow for a generalization of the Frankel-type CAPM by introducing the possibility
that the empirical CAPM equation (1) does not hold exactly. We embed the model in the
traditional measurement error framework and test the CAPM restriction under the assumption
that the variance of the forecast error depends on observable data. We are able to identify the
elements of the variance matrix of the measurement error because they are assumed to be time-
invariant, as opposed to the variance of the forecast errors.

In section 2 we introduce the time-varying variance CAPM and test CAPM under the
assumption that the variance is a function of macroeconomic variables. In the next section
some multivariate ARCH models are presented and estimated. The CAPM restrictions are
tested. Section 4 presents the measurement error model, and section 5 concludes.

2. CAPM WITH TIME-VARYING VARIANCES

A general model of the real rates of return on N+ 1 assets might be that the rates of return
are related to the value of these assets as a share of total wealth. Thus one might expect that,
for any given asset, its expected rate of return in equilibrium would be higher if the share of
that asset in the market portfolio increased. The expected return on this asset may also be
influenced by an increase in the values of other assets.

Choosing one asset as numeraire, the expected rates of return on the N-vector for the other
assets relative to the numeraire are a function of the values of the supplies of these assets as
shares of the total value of the N+ 1 assets. Thus, we could write:

Eziv1=c+ B\, )

where B is an N X N matrix of coefficients, and the other variables are defined as in section
1. In this general form of the equation, B could vary over time.

Equation (1) is clearly a restriction on equation (2)—it forces the matrix of coefficients in the
N equations to be proportional to the covariance matrix of forecast errors of z;+ . In the earlier
papers that have tested international CAPM, B and ), were treated as constants; here, we allow
both to vary over time. As in the previous literature, we can test the restriction imposed by
CAPM that B is proportional to €.

In this paper there are six aggregate assets. Each is essentially the outstanding debt at the
end of period ¢ of each of the six governments. The debt is calculated in such a way as to include
only the value of debt in the hands of the public. For example, corrections are made for foreign
exchange intervention by central banks that may remove some of the obligations of one
government from public hands and replace it with another. The calculation of the data is
described in detail in Frankel (1982b). The data set used here is an updated data set kindly
provided to us by Alberto Giovannini. The asset share data are measured at end of the month,
and run from April 1973 to December 1984. See the Appendix for a description of the data.

To produce an empirical model it is assumed that expectations are formed rationally.
Equations (1) and (2) can be transformed into regression equations by replacing the expected
value of z;.; with the ex-post realized value of this variable, and appending an error term equal
to the forecast error at the end of each equation. The ex-post real rates of return are used to
calculate z;41, with the dollar as the numeraire asset. The rate of return on the asset of each
country is calculated in dollar terms as (1 + ir+1)S:+1/S:, where i is constructed for each country
from spot and 1-month forward exchange rates, and the Eurodollar 1-month rate assuming
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covered interest parity, and S is the end-of-period exchange rate in dollars per unit of each
country’s currency (e.g. the dollars per mark exchange rate). Each nominal rate is then deflated
by the common deflator P;./P:;, which is a dollar inflation index. P, is a geometrically
weighted average of price indices of the six countries (converted into dollar terms by
multiplying by S;). The ex-post rates of return are measured from July 1973 to January 1985.
These data are described in more detail in the Appendix.

We assume that errors are distributed normally. The log likelihood for observation ¢ is given
by

In L=-2-5In27—-0-51In{Q|—05ze+1— ¢~ B\)' Q "(ze+1— ¢~ B:\y). 3)

When the CAPM constraint is imposed, B; = pQ;,. We estimate the likelihood under alternative
assumptions about the behaviour of Q; over time.

Table I reports the maximume-likelihood estimates of the model under the CAPM constraint
and under the additional constraint that the variance matrix be constant over time. These
estimates correspond to those reported by Frankel (1982b) and Frankel and Engel (1984).

Although the point estimate of p in this model is negative, its standard error is very large,
so that essentially no economically reasonable value of p can be ruled out. In particular, p =0
is not rejected, which would say that there is no evidence of a risk premium.

Table I also reports the Lagrange multiplier (LM) statistic for a test of CAPM. The

Table I. CAPM estimation, constant

Zs1=C+p(P'P)N\ + &4
Var(€1+l) =P'P
Log-likelihood: 1639-789088

FRA GER ITA JAP UK

The estimate of the-vector ¢’:
0-0039629 0-0028871 0-0044543 0-0052062 0-0020641
(0-0168931) (0-0172629) (0-0140137) (0-0173972) (0-0133013)

The estimate of the coefficient p:
—19-287650
(42-676856)

The estimate of the upper triangular matrix P:
0-0322951 0-0288285 0-0223217 0-0179637 0-0161121
(0-0019034) (0-0018396) (0-0024820) (0-0024482) (0-0025755)
0 0-0165643 0-0018479 0-0034280 0-0046026
(0-0010655) (0-0017589) (0-0030412) (0-0023601)
0

0 0-0181945 0-0009552 0-0030412
(0-0006800) . (0-0040832) (0-0025898)

0 0 0 0-0270647 0-0051627
(0-0015644) (0-0018011)

0 0 0 0 0-0237012

(0-0014565)

Standard errors in parentheses.
Test of CAPM restrictions
Lagrange multiplier test statistic = 33:221925
Marginal significance level = 0-002676 (14 d.f.)
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alternative hypothesis is actually a somewhat restricted version of the general unrestricted
version of the model in equation (2). In the test reported here, under the alternative hypothesis,
B is still restricted to be symmetric, although it is no longer proportional to the covariance
matrix. This means that a one-unit increase in the supply of asset j has the same effect on the
relative return of asset / that a one-unit increase in the supply of asset i/ has on the return of
asset j. CAPM is rejected at the 1 per cent level even against this restricted form of the
alternative hypothesis. The test statistic reported is x> with 14 degrees of freedom. (We are
testing 15 proportionality restrictions while estimating the constant of proportionality,
implying 14 unique restrictions.)

In this constant variance version there is not much encouraging news for the CAPM
hypothesis. However, CAPM does not require that {; be constant over time. , represents the
variance conditional on information available at time ¢. It is a measure of dispersion of forecast
errors for market participants. Frankel’s formulation of CAPM is a significant advance on
those empirical specifications that require the ‘beta’ of each asset to be constant over time or
else vary in a deterministic way. The ‘beta’ for each asset will, in fact, vary as the supplies of
the assets change over time. But there is another possible source of variation in the beta that
Frankel does not allow for, and that is the change over time in ,.

The CAPM hypothesis does not provide any particular clue to the source of change in the
conditional variance of forecast errors over time. A more complete general equilibrium model
of the economy would investigate the source of shocks to the economy, and indicate what might
cause fluctuations in the forecast variance.? In the absence of such a model, we will test some
plausible macroeconomic sources of variation.

Each element of the covariance matrix Q, could vary independently with the macroeconomic
data (subject to the symmetry constraint on Q,). Thus, in our five-equation model, each of the
15 elements of Q, might be a linear function of some variable or variables x. As a practical
matter, this five-equation system with the constraint imposed between coefficients and the
variance matrix is very difficult to estimate. We find it desirable to parameterize the process
parsimoniously, at least in our first attempt at estimating the time-varying variance model.
Thus, we let the variance depend on only one variable at a time, and initially we model the
variance according to

Q= P'P+ hh'x,. 4)

In this equation, P is an upper triangular matrix of parameters to be estimated and # is column
vector of parameters. The macroeconomic variable is given by x;. In all cases the values of the
data are positive numbers, so the form of equation (4) guarantees that the estimated Q, matrix
is positive semi-definite. In practice, imposing this positive-semi-definiteness constraint is useful
in achieving convergence of the maximum-likelihood estimates. Note that we are restricting the
variance to depend only on one x; (at a time) and that only 20 parameters are used to describe
the relation between the variance of the forecast made at time 7 of ¢ + 1 variables, and that this
variance is a function only of variables known at time ¢.

We have chosen macroeconomic variables that seem most likely to have influenced the
variance of forecast errors of the exchange rate. We allow the variance to depend on stationary
representations of the US money supply and of the dollar price of oil. Both variables had very
large economic effects during our sample period both in the US and abroad. Furthermore, it

3 We do not know the true model of the variance but, following Pagan (1984), Pagan and Sabau (1987) and Pagan
and Ullah (1988), the estimates of p are almost certain to be inconsistent if the conditional covariance matrix is
misspecified.
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is likely that the size and unpredictability of these variables over this span of time added to the
variability of forecasts of many macroeconomic variables, including exchange rates.

The assumption of rational expectations might lead one to conclude that only unexpected
changes in oil prices or the money supply would increase the difficulty of making forecasts. In
this view, consumers are able to form expectations of the money supply and oil prices given
the past behaviour of these variables. A large, but expected, change in one of them will not
add any uncertainty, or make forecasts of exchange rates more difficult. To allow for this
possibility we fit ARIMA models to the logs of US M1 and dollar oil prices. We then squared
the residuals, and allowed for the variance of the exchange rate forecast to increase if there were
a large innovation in one of these variables in the previous month. The Appendix contains a
description of the ARIMA models.

Table II reports the estimates of the model when the variance is allowed to depend on the
square of the 1-month change in the log of the US money supply. Three of the coefficients in
the A vector are individually significantly different from zero, and the x? test indicates that they

Table II. CAPM estimation, variance as a function of square of change
in log of US Ml

Zs1=C+ pQN+ €41
Var[(CH- 1) = Q( =P'P+ hh' Xt
Xx; = square of change in log US M1
Log-likelihood: 1647-625183

FRA GER ITA JAP UK
The estimate of the vector ¢':
0-005956 0-004988 0-006123 0-006953 0-003338
(0-013681) (0-013695) (0-011231) (0-014585) (0-011425)
The estimate of the coefficient p:
—23-934543
(36-290540)
The estimate of the upper triangular matrix P:
0-030219 0-025191 0-020613 0-018436 0-019729
(0-002054) (0-002419) (0-002908) (0-003298) (0-003370)
0 0-015772 0-001692 0-005086 0-009071
(0-001358) (0-002119) (0-003297) (0-002637)
0 0 0-018193 0-001027 0-003226
(0-000716) (0-004228) (0-002686)
0 0 0 0-026389 0-001813
(0-001625) (0-002341)
0 0 0 0 0-018658
: (0-002559)
The estimate of the vector A’:
1-590317 2077879 1-201510 0-287016 -0-917194
(0-713113).  (0-645719) (0-622900) (0-607644) (0-559770)

Standard errors in parentheses.
Test of CAPM restrictions

Lagrange multiplier test statistic - 56:225719
Marginal significance level = 0-000015 (14 d.f.)
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are jointly significant at the S per cent level. Thus we can reject the constant Q, version of
CAPM, in favour of a model in which the forecast variances are greater when there are large
percentage changes in the money supply.

Given that this model is a significant improvement on the model whose estimates are reported
in Table I, we now want to test whether the restrictions imposed by CAPM are binding. In
Table II the coefficients were constrained to be proportional to the variance matrix Q,. The
unconstrained model in this case would let the coefficient matrix B (from equation (2)) vary over
time as a function of the square of the change in the log of the money supply, and not be
constrained to be related in any way to the @, matrix. At the bottom of Table II is reported
the LM statistic for the test of the CAPM restriction against the alternative that B is not
constrained to be proportional to the variance matrix of the residuals. The x? statistic has 19
degrees of freedom and, as indicated in the table, shows that the CAPM restrictions are
strongly rejected. Actually, visual inspection of Table II is enough to cast serious doubt on the
CAPM hypothesis, since the point estimate of p is negative (but not significantly different from
Z€ro). .

A note of caution is in order here. Suppose the LM test had failed to reject the CAPM
restrictions in Table II. How should we interpret such a failure to reject? We estimate p quite
imprecisely, and in fact cannot reject that p is zero. But this means that we cannot reject the
hypothesis that our explanatory variables have no ability to explain our dependent variables,
since all of the explanatory variables are multiplied by p. Thus, were we not to reject CAPM,
probably the correct interpretation would be that we are unable to explain relative rates of
return using asset shares—but we seem to do about as badly whether or not the restrictions of
CAPM are imposed.

Table III reports the results of the estimation in which the variance of the forecast errors is
a linear function of the square of the change in the dollar price of oil. Here we do not quite
reject the hypothesis that the macro data do not help explain changes in the variances and that
Q, is constant at the 5 per cent level. The LM test indicates that the CAPM restrictions are
strongly rejected.

The hypothesis that the variance in the forecast errors is related to the size of unanticipated
changes in money and oil prices are also tested in Table III. We in fact find that the squared
ARIMA residuals for oil prices do a good job of explaining changes in the variance under the
CAPM restrictions (in the sense that the likelihood is significantly improved over the constant
; model), but the ARIMA residuals for money are not as successful. However, in both cases
the LM test rejects the CAPM restrictions in favour of the more general model of equation (2).

Equation (4) restricts the matrix of coefficients that multiplies the macroeconomic variable
to have only five independent parameters. We also estimated the general form of equation (4)
in which the matrix multiplying the macro variable has 15 parameters. Specifically, we take the
variance to be given by

Q=PP+Q'0x, (&)

where Q is an upper triangular matrix. This formulation imposes the constraint that Q, be
positive semi-definite. The five-parameter version of this model given by equation (4) is a
restriction on equation (5), which forces all but the top row of Q to equal zero—providing ten
zero restrictions. .

In no case is the 15-parameter model a significant improvement on the five-parameter model
of equation (4). Table III reports the log likelihoods, the x? statistics and the p-values for the
null hypothesis that all but the top row of Q is zero. In no case is the null hypothesis rejected
at the 5 per cent level.
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Table III. CAPM estimation, variance as a function of macroeconomic data

Square of change in log of price of oil (parsimonious model, eq. (4))
Log of likelihood = 1644 -831445
LM test of CAPM restrictions:
Chi-square statistic (10 d.f.) =41-783589
Marginal significance level = 0-001895

Square of residual from US. M1 ARIMA (parsimonious model, eq. (4))
Log of likelihood = 1642-882930
LM test of CAPM restrictions:
Chi-square statistic (10 d.f.) =43-015021
Marginal significance level = 0-001290

Square of residual from oil price ARIMA (parsimonious model, eq. (4))
Log of likelihood = 1645 - 886909
LM test of CAPM restrictions:
Chi-square statistic (10 d.f.) = 53-858668
Marginal significance level = 0:000035

Square of change in log of US M1 (general model, eq. (5))
Log of likelihood = 1649-718806
Test of general model against parsimonious model:
Chi-square statistic (10 d.f.) =4-18724
Marginal significance level = 0-93850486

Square of change in log of price of oil (general model, eq. (5))
Log of likelihood = 1645-836216
Test of general model against parsimonious model:
Chi-square statistic (10 d.f.) = 2-009542
Marginal significance level = 0-99626650

Square of residual from US M1 ARIMA (general model, eq. (5))
Log of likelihood = 1643-892504
Test of general model against parsimonious model:
Chi-square statistic (10 d.f.) =2-019542
Marginal significance level = 0-99618817

Square of residual from oil pricce ARIMA (general model, eq. (5))
Log of likelihood = 1646-620739
Test of general model against parsimonious model:
Chi-square statistic (10 d.f.) = 1-467660
Marginal significance level = 0-99903254

In this section we have found some evidence that the variance of forecast error does change
over time. In particular, we find that the square of the unanticipated monthly growth rate of
dollar oil prices and of the monthly growth rate of US M1 are significant explainers of the
variance of the residuals. Thus, the constant , version of CAPM can be rejected. However,
these models offer little consolation for the more general CAPM, since the CAPM restrictions
are in every case strongly rejected. The next section considers a more time-series-oriented model
of the variance process—the ARCH model.

3. CAPM WITH ARCH

Often the economist does not know the true model of the variance. Without a full general
equilibrium model of the economy, we do not know exactly which macroeconomic variables
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the variance should be related to. In such a case Engle’s (1982) ARCH model is well-suited.
Engle’s model does not require knowledge of the structure of the economy. Instead, it makes
the reasonable postulation that, for example, if the absolute size of errors in # — 1 are large,
the conditional variance at time ¢ would be larger than average. This is the essence of the ARCH
hypothesis.
In this section we apply the general idea of ARCH to our five-equation CAPM system. We
test two versions of ARCH. They take the general form:

= P'P+ GC[C[’G, (6)

where P is a constant upper triangular matrix, G is a constant symmetric matrix and &
represents the lagged forecast error (the error made in predicting the returns between 7 — 1 and
t). This formulation ensures that the estimated variance matrices are positive semi-definite.
(This property is not necessarily satisfied in the ARCH formulation used by Bollerslev, Engle
and Wooldridge.)*

Equation (6) represents a particular form of a first-order ARCH. In our applications we will
take G first to be diagonal (so that it has five independent non-zero elements) and then we will
consider the general symmetric case for G (with 15 independent elements). Even our ‘general’
case is a quite parsimonious form of a first-order ARCH. There are 15 elements in the time
t conditional covariance matrix. In its most general formulation each of those 15 elements could
be related linearly to each of the 15 elements in the moment matrix for the lagged residual.
Thus, for general first-order ARCH we could postulate a model with 225 parameters relating
the current conditional variance to the lagged errors. Moreover, in generalized ARCH models
(see Bollerslev, 1986), the variance matrix is essentially related to a distributed lag of error
moment matrices. In a multiple-equation model such as the one estimated here, the number of
ARCH parameters increases quite quickly with the number of equations.

Two considerations motivate our model of equation (6). First, estimation of a five-equation
ARCH system that imposes constraints between coefficients and elements of the variance
matrix is very difficult. It is made much more managable by choosing specifications with a small
number of parameters. The less parsimoniously parameterized versions are not only more
difficult to estimate, but given the limited data set from the floating rate period, they also leave
too few degrees of freedom for meaningful estimation. The second advantage of our
formulation is that it constrains the estimates of the variance to be positive definite. This turns
out to be of great practical importance in estimating a large multi-equation ARCH system.

In Table IV we present the result of an ARCH estimation in which the matrix G is diagonal.
Thus, there are five ARCH parameters to estimate. The constant variance model could be
thought of as a constrained version of this time-varying variance formulation, in which the five
ARCH parameters are forced to be zero. It is easy to perform a likelihood ratio test of this
constraint. Doubling the difference between the log likelihood for the model reported in Table
IV and the one reported in Table I gives a x? statistic with degrees of freedom equal to 37-78.
This is easily significant at the 1 per cent level—so we can reject the constraint that the variance
is constant over time. .

The ARCH parameters range in size from about 0-23 to about 0-64, so the variance process
appears stationary over time. (All the parameters are significantly different from one.) Four of
the five parameters are significantly different from zero at the 1 per cent level in a two-sided
t test.

4 Baba et al. (1987) and Engle (1987) present formulations that impose positive-semi-definiteness.
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Table IV. CAPM estimation, five parameter ARCH

Zr1=C+ 091)\1 + €41
Varz(CH. 1) = Q/ =P'P+ GC(&'I/G
Log-likelihood: 1658682319

FRA GER ITA JAP UK
The estimate of the vector ¢’:
—0-006027 —0-007428 —0-004122 —0-004009 —0-006882
(0-006596) (0-006869) (0-005514) (0-006892) (0-005812)

The estimate of the coefficient p:
13-270001
(15-036330)

The estimate of the upper triangular matrix P:

0-030631 0-027416 - 0-021628 0-015429 0-015644
(0-002278) (0-002153) (0-002339) (0-003147) (0-002867)
0 0-015277 0-002311 0-002357 0-004313
(0-001201) (0-001541) (0-003246) (0-002660)
0 0 0-015184 —0-000316 0-002262
(0-000578) (0-003692) (0-003157)
0 0 0 0-022775 0-005693
(0-001720) (0-002368)
0 0 0 0 0-023374
(0-001620)

The estimates of the diagonal elements of G:
0-425252 0-384488 0-478617 0-642844 0-227064
(0-103266) (0-106483) (0-082283) (0-103571) (0-116554)

Standard errors in parentheses.
Test of CAPM restrictions
Lagrange multiplier test statistic = 45- 846083
Marginal significance level = 0-000521 (19 d.f.)

Allowing the variance to change over time greatly reduces the standard error on the estimated
coefficient of relative risk aversion. It drops from 42-7, as reported in Table I, to 15:0 in the
ARCH model presented in Table IV. The point estimate of p is extremely high—around 13-6.
In a one-sided ¢ test it is not significantly different from zero at the 5 per cent level.

This model with the CAPM constraint is tested against the alternative that the B matrix has
the same form as ©; but is not constrained to be proportional to the covariance matrix. As the
LM statistic in Table IV indicates, CAPM is still strongly rejected at the 1 per cent level.

Figure 1 is a graph of the estimated conditional variances from this model for the error in
forecasting the return on German mark securities ‘relative to the dollar. This graph is
representative for all currencies. Also drawn on the graph is an estimate of the unconditional
variance. In most periods the conditional variances are much smaller than the unconditional
one. In the constant variance version of CAPM, the unconditional variance is an upper bound
on the size of the conditional variance. Frankel (1986) argued, using the estimates of the
unconditional variance as upper bounds on the conditional variances, that a change in the
supply of outside assets is unlikely to generate much change in the risk premium, since the
change in the risk premium is the product of the change in the asset supply and the conditional
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variance of exchange rate forecasts (times p). Pagan (1986) has pointed out that, in fact, the
conditional variance need not be smaller than the unconditional variance if the variances
change over time. Figure 1 confirms that for some periods the conditional variances are much
larger than the unconditional variance. On average they should be smaller, however, as Frankel
(1987) indicates.

If the variance does vary over time, the variability of the variances themselves might explain
the observed size of risk premia within the framework of CAPM. This point is brought out
in the exchange between Giovannini and Jorion (1987a,b) and Frankel (1987). The results from
our ARCH estimation and CAPM tests, though, make this speculation moot. Our estimation
does allow the variance to change, but CAPM is still strongly rejected.

Because the five-parameter ARCH model of CAPM is such a large improvement on the
CAPM constrained to have a constant variance, we proceed to test a less sparsely parameterized
ARCH model. Table V reports the results of the estimation in which the G matrix is allowed
to be a general symmetric matrix. There are 15 independent elements in G.

The five-parameter ARCH is a restricted version of the ARCH in this model in which all the
off-diagonal elements are forced to be zero. That imposes 10 restrictions on this richer
specification. The likelihood ratio test for these restrictions yields a x? statistic with 10 degrees
of freedom of 43-34, which is easily significant at the 1 per cent level. Thus, we seem to gain
a lot by going to this more general specification. _

There is one troubling aspect to this particular form of the model. The characteristic roots
of the estimated G matrix are —0-646, 0-198, 0-305, 0-421 and 1-144. This last root indicates
the possibility of non-stationarity in the variance process.>

This ARCH specification once again reduces the standard error of the estimate of p—from
15-0 in the five-parameter ARCH to 9-4 here. The estimate of p is negative and significantly

5 Hong (1987) and Engle (1987) discuss integrated ARCH.
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different from zero. This would be very troubling were it not for the fact that the restrictions
of CAPM relative to a formulation of asset demands with a symmetric B are very strongly
rejected. The rejection is much stronger than in any of our earlier specifications of CAPM. So,
the model reported in Table V is not capturing the true behaviour of investors in international
financial markets.

It is not clear why CAPM fares so badly in this case. Perhaps the non-stationarity in the
variance is distorting the test statistics, but more likely the CAPM restrictions are just very
strong relative to a model that allows returns to depend in a relatively unrestricted way on asset
shares and lagged covariances.

It is possible that we have not considered a general enough ARCH specification. Perhaps the
variance is related to the moment matrix of forecast errors at lags greater than 1. We tested
for this possibility using the squared deviations from the means for each of the relative rates
of return. Lagrange multiplier tests for ARCH with one lag, computed following the suggestion
of Engle (1982), provided strong evidence in favour of that hypothesis (relative to
homoskedasticity) for all but UK. Comparison of ARCH with 12 lags to ARCH with one lag
gave no support to the more complex model.

In sections 2 and 3 we have estimated a variety of forms of CAPM with time-varying
variances. There seems to be abundant evidence that the explanatory power of the model is
increased by letting the conditional covariances of the asset returns change over time. Yet these
more sophisticated models still provide no support for the CAPM restrictions between
coefficients and variances when tested against the more general unconstrained asset pricing
models. We perform six LM tests of the capital asset pricing model in sections 2 and 3, and
they all reject the restrictions. In the next section we take up the possibility of some specific
cases of misspecification in equation (1).

4. MEASUREMENT ERROR

The model presented in equation (1) and estimated in sections 2 and 3 is a model in which it
is assumed that the CAPM equation holds exactly and all variables are measured without error,
so that the residual in the estimating equation can be identified with the forecast error. There
is a large class of empirical macroeconomic models that make the same assumptions in order
to exploit ‘orthogonality conditions’. These assumptions are particularly convenient because
they rule out any simultaneous-equations problem. The right-hand side variables in equation
(1) are uncorrelated with the error term because under rational expectations all currently known
variables are orthogonal to forecast errors.

Suppose that equation (1) did not exactly describe investors’ behaviour, but instead it was
only correct on average. Preference shocks, for example, would be represented by a disturbance
appended to the true model of equation (1). Then when we replace the expectation of z;,; with
its realization, the disturbance term in the estimating equation will be the sum of the forecast
error and the preference shocks. In this case the explanatory variables—the asset shares—would
be correlated with the error, since we would expect that as risk preferences change the values
of the outstanding stocks of the assets would also change. Thus, the estimation techniques
undertaken here would be rendered invalid. It should be understood, then, as Frankel and
Engel discuss, that the CAPM tests discussed previously in this paper are tests that the CAPM
equation (1) holds exactly.

There is another problem that the addition of demand errors cause that is specific to this
model and does not necessarily appear in some other test of ‘orthogonality conditions’. It is
also present if there is measurement error in either the dependent or explanatory variables.
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When some source of error other than the forecast error is present in the residual, it is no longer
the case that under CAPM the coefficients on the asset shares should be proportional to the
variance of the residual. They should only be proportional to the variance of the forecast error.

Although we offer no general solution to the problems of misspecification, we can generalize
the tests in one direction when forecast errors have a time-varying variance. We can identify
and estimate equation (1) even if there is measurement error in the rates of return. This
identification is possible when the variance of the forecast errors is a function of observable
data, and the variance of the measurement error is constant.

Our economic model is still given by equation (1), but the model to estimate no longer simply
replaces E:z;+1 with z,+1 — &+1. We now have:

Zra1=C+ PN+ €41 + U1, @

where u;, is the measurement error of z,,. The variance of & is given by Q,.,; while the
variance of u, . is equal to . We assume that u, . is uncorrelated with ¢,.; and \,, and that
¥ is constant. .

The likelihood for the model in this case is given by:

In L=-2-5In27-0-51n|®|-05zi+1—c— B:\) & (241 — ¢ = Bi\), ®8)

where ®, = Var/(e+1 + t:+1) = % + £. When the CAPM constraint is imposed, the matrix of
coefficients is proportional to the variance of the forecast errors: B, = p,.

It is useful to consider for a moment why XY is identified in this model. Intuitively,
identification comes because the part of the variance that also appears in the asset pricing
equations (£,) is time-varying, while the measurement error variance (X) is not. Suppose the
forecast error variance were constant as in the Frankel empirical models. Then it would be
impossible to distinguish between the forecast error variance and the measurement error
variance. Suppose we had some estimate of this hypothetically constant Q as well as estimates
of p, &, and ® that maximized the likelihood. We could obtain the same value of the likelihood
with, for example, a Q* = 2Q, a value of 0¥ = 0-5p, a value of £* = ® — 0%, and the same
estimate of &. However; when Q, is time-varying we can no longer perturb its value without
changing the value of the likelihood, since the forecast error variance is the only part of the
total error variance that changes with time.

We only consider models of the forecast error variance in which the variance depends on
macroeconomic data, as in equation (4). While we are able to separate out the variance of the
forecast errors from the variance of the measurement error, we cannot distinguish between the
forecast error and the measurement error themselves. The ARCH model, however, requires
that the forecast errors be identifiable, if we hypothesize that the variance of the forecast error
depends on the lagged moment matrix of realized forecast errors. So, we must abandon ARCH
as our model of time-varying variance of forecast errors, and instead rely on equation (4).

The models of section 2 are restricted forms of equation (7). They force the matrix ¥ to be
zero. As in the previous sections, we choose a form for the variance that ensures it is positive
semi-definite. Equation (4) defines our model for Q. For the variance of the measurement error
we impose

r=Q0'Q )
where Q is an upper triangular matrix. The models of section 2 force 0 to equal zero—a total
of 15 restrictions.

We calculate maximume-likelihood estimates for the model using the two macroeconomic
variables that seemed to do the best job in explaining the variances in section 2 of this paper—



INTERNATIONAL CAPM WITH TIME-VARYING COVARIANCES 133

Table V. CAPM estimation, 15-parameter ARCH

Zier=C+ pUN + €41
Var,(&+1) =% =P'P+ Gee! G
Log-likelihood: 1680-349931

FRA GER ITA JAP UK
The estimate of the vector ¢':
0-005302 0-004158 0-002732 0-005903 0-001906
(0-005211) (0-004958) (0-004468) (0-004900) (0-003912)
The estimate of the coefficient p:
—18-815029
(9-366542)
The estimate of the upper triangular matrix P:
0-030750 0-028908 - 0-023892 0-018148 0-016024
(0-002431) (0-002272) (0-002072) (0-003315) (0-003051)
0 0-015238 —0-001725 0-003238 0-004367
(0-001211) (0-001288) (0-003848) (0-002422)
0 0 0-007587 0-004764 0-007590
(0-001389) (0-005438) (0-004048)
0 0 0 0-025977 0-003559
(0-001905) (0-002234)
0 0 0 0 0-020771
(0-001922)
The estimate of the symmetric matrix G:
0-551903 0-018319 —0-334667 0-092724 —0-106092
(0-133893) (0-081518) (0-083272) (0-073811) (0-086655)
0-018319 0-276057 -0-180710 0-053321 0-033104
(0-103955) (0-084837) (0-075722) (0-080986)
—0-334667 —-0-180710 0-689377 —0-322378 0-349194
(0-122514) (0-083084) (0-095240)
0-092724 0-053321 —0-322378 0-251767 0-321065
(0-154097) (0-1302903)
—0-106092 0-033104 0-349194 0-321065 —0-347991
(0-155485)

Standard errors in parentheses.
Test of CAPM restrictions
Lagrange multiplier test statistic = 88-6136637
Marginal significance level = 0-000000 (29 d.f.)

the square of the change in the log of money and the squared residual from the oil price
ARIMA.

These measurement error models do not significantly improve the explanatory power of the
models estimated in section 2, where the asset pricing equation was assumed to hold identically.
The model in which money helps explain forecast error variances yields a log-likelihood of
1652-55. The restricted form of this model, reported in Table II, has a log-likelihood of
1647-63. While the log-likelihood of the restricted model is of necessity lower than that of the
unrestricted, the x? test of the 15 restrictions yields a statistic of 9-84, which is far less than
the 5 per cent critical level of 25-0.

The same conclusions can be drawn from the model in which the square of the innovation
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of the oil price is a determinant of the conditional variance of the forecast errors. The log of
the likelihood for this model is 1651 -08, compared to the log-likelihood for its corresponding
restricted model reported in Table V of 1645-89. The x? statistic with 15 degrees of freedom
is 10-38, which again is insignificant.

While the evidence of sections 2 and 3 has provided little support for CAPM, it is clear that
the measurement error model is not the solution to the misspecification.

5. CONCLUSION

CAPM is in many respects a very attractive model for pricing of international assets. It can
be derived from a (restrictive) utility-maximizing framework, and the asset demand equations
that it produces are a special case of those studied in the portfolio balance literature.
Unfortunately, the restrictions that CAPM places on those more general asset demand
equations—restrictions that imply that the returns on assets are functions not only of the
supplies of assets, but also of the variances and covariances of the asset returns—have
universally been rejected in previous literature. Although this paper allows for substantial
generalization of CAPM, its restrictions are still not accepted.

One might think of several reasons why previous papers have rejected CAPM—but some of
the most important problems with past models are taken care of here. One of the most obvious
problems, as pointed out by Giovannini and Jorion (1987a) among others, is that in practice
those who have implemented the Frankel test have assumed the forecast error variances and
covariances to be constant over time. Given the abundant evidence of heteroskedasticity in
these errors, this seemed like a natural point of misspecification in the empirical CAPM.
However, we test several versions of CAPM with conditionally heteroskedastic errors, but still
find little support for the model.

It is sometimes argued that a deficiency in the Frankel approach is that the only way it can
provide a measure of the variance of expectational errors is by extrapolating from past
expectational errors. It is argued that if there is a policy change or some other economic shock
that increases uncertainty, then there is no way to pick this up reliably from the data. This
argument carries much less weight when we allow the variance of the forecast error to be a
function of economic variables whose changes are apt to be important generators of
uncertainty—such as money growth or oil prices. Our models of sections 2 and 3 allow for just
such a possibility, yet again CAPM gets no support.

Another potential problem with the Frankel set-up is that it requires the CAPM equation to
hold exactly. We have relaxed this constraint in section 4 by allowing for an error that is
uncorrelated with the forecast error and the right-hand-side variables. However, this model is
no improvement empirically.

This paper extends the frontiers of estimation of international CAPM to consider some of
the most important possibilities that have been suggested for the empirical failure of that
model, yet the model still does not get a shred of support.

DATA APPENDIX

Our analysis relies on rate of return and aggregate asset data for the six countries in the study:
France, Germany, Italy, Japan, UK and US. The assets studied are publicly held outstanding
government debt denominated in the six currencies.

The calculation method, designed to measure debt at the end of each month, is described in
detail in Frankel (1982b). We used an updated data set provided by Alberto Giovannini. Our



INTERNATIONAL CAPM WITH TIME-VARYING COVARIANCES 135

other major source of data was the Data Resources Inc. DRIFACS data base. (We are indebted
to Ken Froot and Susan Collins for providing us access to this data.) We also obtained data
from the Citibank Citibase tape and the International Monetary Fund’s IFS tape.

Asset shares

A complete description of how the values of the assets are calculated is included in Frankel
(1982b). Briefly, for each country the asset data starts with the value of outstanding debt
reported by each government. To this figure is added the cumulative value of foreign exchange
purchases by the central bank of that country (which has the effect of exchanging foreign
denominated assets for domestic denominated assets in the hands of the public). Subtracted
from this total is the value of assets held in that currency by central banks (a figure which is
obtainable through numbers available in the IMF Annual Report). Because no correction is
made for debt held by the central bank of its own government, these figures for the values of
the outstanding assets are the values of debt and monetary base held by the public for each
country.

The analysis in the paper utilizes asset shares rather than the level of assets. The asset shares
were computed from the asset levels, measured in dollars. The asset share data covered the
period from June 1973 to December 1984.

Rates of return

The nominal rate of return for dollar assets was taken as the average of the bid and ask
Eurodollar rates on 1-month securities, measured on the last day of the month that was not
a holiday.

The nominal rate of return for the other five currencies was calculated assuming covered
interest parity. The interest rate calculated on the last day of the month gives the return (known
with certainty) for assets held for the forthcoming month. The exchange rates are averages of
bid and ask rates, as were the forward rates.

The nominal rates of return are converted to ex-post real rates by a common price index.

The common price index, P;, is computed as a geometric mean of the consumer price indices,
IFS item 64, for the six countries at time ¢ after they are converted to dollars by multiplying
by the end of period exchange rate.

Economic variables

In section 2 we allowed the variance of the forecast errors to be a function of an oil price index
and the US money supply. These data were obtained from the Citibase data tape for the periocd
January 1973 to December 1984. The money supply measure used was Citibase variable FM1,
US M1 measured in current dollars as a seasonally adjusted monthly average of daily figures.
The oil price index used was the Citibase variable PW561, the producer price index for crude
petroleum products (1967 = 100), not seasonally adjusted.

To measure the surprise component of the money supply and oil prices, we estimated
ARIMA models for the natural logarithm of each series over the period January 1973 to
December 1984. The autocorrelations of each series indicated that both the money supply and
the oil price index were nonstationary in levels and stationary in first differences. Identification
indicated that the money supply followed a moving-average process with one and four lags. The
estimated model for the differences in natural logs, DM;, is shown below along with the
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Box—Pierce statistic calculated from the residuals (standard errors of the coefficients are shown
in parentheses):

DM, = 0-0055398 + 0-2759634 a; — 0-2574734 a,_4
(0-0003996) (0-0843936)  (0-0862326)

R*>=0-115483 Q-statistic (24 lags) = 22-24084 SE of a,=0-004795 SD of dependent
var. = 0-005063 144 Observations (January 1973 to December 1984).

The first difference of the logarithm of the oil price series, DP;, was identified as an AR(1).
The estimated model is presented below along with the Box—Pierce Q statistic calculated from
the residuals (standard errors of the coefficients are shown in parentheses):

DP, = 0-0119926 + 0-4095051 DP,_, + a
(0-0043962) (0-0766518)

R?=0-167357 Q-statistic (24 lags) =21-89200 SE of a,=0-031151 SD of dependent
var. = 0-034019 144 Observations (January 1973 to December 1984).

Both ARIMA models appear to fit the series well.
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