FORECASTING ECONOMIC AGGREGATES BY DISAGGREGATES

by David F. Hendry and Kirstin Hubrich
In 2006 all ECB publications will feature a motif taken from the Euro banknote.

This paper can be downloaded without charge from http://www.ecb.int or from the Social Science Research Network electronic library at http://ssrn.com/abstract_id=882790.

1 We thank Graham Elliott, Domenico Gianonne, Lutz Kilian, Helmut Lutkepohl, Lucrezia Reichlin, Frank Schorfheide, Jonathan Wright and seminar participants at Humboldt University and the Free University, Berlin, participants of the ESF-EMF 2004 conference, Sardinia, the CEPR/EABCN workshop on forecasting combination, Brussels, the SCE Conference 2005, Washington, the Econometric Study Group Bristol conference, the EEA 2005, Amsterdam, and the Annual Conference of the German Economic Association 2005, Bonn, for useful comments. Financial support from the ESRC under grant RES 051 270035 is gratefully acknowledged. The views expressed in this paper are not necessarily those of the European Central Bank.

2 Department of Economics, Oxford University, Manor Road Building, Manor Road, Oxford, OX1 3UQ, United Kingdom; contact e-mail: maureen.baker@nuffield.ox.ac.uk

3 Research Department, European Central Bank, Kaiserstraße 29, 60311 Frankfurt am Main, Germany; e-mail: kirstin.hubrich@ecb.int
CONTENTS

Abstract 4
Non-technical summary 5
1 Introduction 7
2 Improving predictability by disaggregation 9
 2.1 Predictability and its properties 9
 2.2 Predictability of the aggregate and disaggregation 11
3 Forecasting the aggregate: does disaggregate information help? 12
 3.1 Disaggregate forecasting model: true disaggregate process known 13
 3.2 Aggregate forecasting model with known disaggregate process parameters 14
 3.3 Aggregate forecasting model with unknown disaggregate process parameters 15
4 Adding disaggregates to forecast aggregates 17
5 Forecasting euro area and US inflation 18
 5.1 Data 18
 5.2 Forecast methods and model selection 19
 5.3 Simulated out-of-sample forecast comparison 20
 5.3.1 The experiment 20
 5.3.2 Aggregate and disaggregate information in VARs 20
 5.3.3 Disaggregate information in dynamic factor models 24
6 Conclusions 27
References 29
Figures and tables 34
European Central Bank Working Paper Series 49
Abstract

We suggest an alternative use of disaggregate information to forecast the aggregate variable of interest, that is to include disaggregate information or disaggregate variables in the aggregate model as opposed to first forecasting the disaggregate variables separately and then aggregating those forecasts or, alternatively, using only lagged aggregate information in forecasting the aggregate. We show theoretically that the first method of forecasting the aggregate should outperform the alternative methods in population. We investigate whether this theoretical prediction can explain our empirical findings and analyse why forecasting the aggregate using information on its disaggregate components improves forecast accuracy of the aggregate forecast of euro area and US inflation in some situations, but not in others.

JEL: C51, C53, E31

KEYWORDS: Disaggregate information, predictability, forecast model selection, VAR, factor models
Non-technical summary

Forecasts of macroeconomic aggregates are employed by the private sector, governmental and international institutions as well as central banks. For example, in the context of forecasting aggregate inflation rates the question arises as to what extent the forecasting accuracy of different models for aggregate inflation can be improved by taking into account information on its disaggregate components, as for example energy, industrial goods, food and services inflation. One issue has been the potential improvement in forecast accuracy delivered by forecasting the component indices and aggregating such forecasts, as against simply forecasting the aggregate itself.

In this paper, we suggest an alternative use of disaggregate information to forecast the aggregate variable of interest, that is to include disaggregate information or disaggregate variables in the model for the aggregate as opposed to forecasting the disaggregate variables separately and aggregating those forecasts or, alternatively, including only lagged aggregate information in the aggregate model. We show theoretically that the first method of forecasting the aggregate should outperform the alternative methods in population.

We investigate whether this theoretical prediction can explain our empirical findings. We analyse why forecasting the aggregate using information on its disaggregate components improves forecast accuracy of the aggregate forecast of euro area and US inflation in some situations, but not in others. To this aim, we conduct an out-of-sample forecasting experiment for forecasting euro area and US inflation.

Predictability in population need not translate into forecastability in finite samples when the forecast model differs from the data generation process. The predictive value of disaggregate information can be offset by model selection uncertainty, estimation uncertainty, changing collinearity, structural breaks over the forecast horizon and measurement errors.

We compare a broad range of time series models and model selection procedures including autoregressive, vector autoregressive and dynamic factor models. The theoretical prediction that disaggregate information should increase forecast accuracy, is not strongly supported for forecasting euro area inflation, where only a short sample can be considered due to data availability. We find that including disaggregate variables in the aggregate model does rarely improve forecasts of the euro area aggregate, in particular at longer forecast horizons. The forecasting model based on lags of the aggregate seems to be a more robust forecasting device in this context. We find that changing weights in the price index and changing collinearity between disaggregate
prices undermine the performance of disaggregate-based models for forecasting euro area inflation.

However, the theoretical result on predictability that disaggregate information does help is supported for forecasting US inflation, in particular for a longer sample period from 1980 to 2004. We find that for the US CPI inflation and its components, disaggregates clearly help forecasting the aggregate at short horizons for a sample excluding the 1980s. Based on a longer, more informative estimation sample including the 1980s disaggregates help forecasting the aggregate at all horizons.

We find that the differences between the theoretical results on predictability and the empirical results for different forecasting methods, countries and sample periods can be attributed to changes in collinearity between disaggregate price components that affect the bias-variance trade-off in forecast model selection, to changes in the extent that the variance of disaggregate price components can be explained by their common factors, as well as changes in the unconditional moments of the aggregate variable to be predicted. Estimation samples with sufficient variability in the aggregate and the components are necessary for disaggregate variables to improve forecast accuracy of the aggregate. Our results suggest that model selection does play an important role in whether disaggregate information helps in forecasting. More research is necessary on how to select a good forecasting model, in particular in the presence of changing collinearity that affects the bias-variance trade-off in model selection.

We conclude that disaggregate information might help for forecasting the aggregate in line with our theoretical results on predictability in population, but the scope of such an improvement has to be assessed depending on the particular forecasting situation.
1 Introduction

Forecasts of macroeconomic aggregates are employed by the private sector, governmental and international institutions as well as central banks. Recently there has been renewed interest in the effect of contemporaneous aggregation in forecasting. For example, one issue has been the potential improvement in forecast accuracy delivered by forecasting the component indices and aggregating such forecasts, as against simply forecasting the aggregate itself. The theoretical literature shows that aggregating component forecasts improves over directly forecasting the aggregate if the data generating process is known. If the data generating process is not known and the model has to be estimated, it depends on the unknown data generating process whether the disaggregated approach improves the accuracy of the aggregate forecast. It might be preferable to forecast the aggregate directly. Since in practice the data generating process is not known, it remains an empirical question whether aggregating forecasts of disaggregates improves forecast accuracy of the aggregate of interest. For example, the results in Hubrich (2005) indicate that aggregating forecasts by component does not necessarily help to forecast year-on-year Eurozone inflation twelve months ahead.

In this paper, we suggest an alternative use of disaggregate information to forecast the aggregate variable of interest, that is to include the disaggregate information or disaggregate variables in the model for the aggregate as opposed to forecasting the disaggregate variables separately and aggregating those forecasts.

We show that disaggregating elements of the information set \(I_{T-1} \) into their components cannot lower and might improve predictability of a given aggregate \(y_T \). We focus on disaggregation across variables (such as sub-indices of a price measure). Disaggregation may also be considered across space (e.g., regions of an economy), time (higher frequencies), or all of these. The predictability concept considered in this paper concerns a property in population of the variable of interest in relation to an information set. A related predictability concept is discussed by Diebold & Kilian (2001). Whereas that paper considers measuring predictability of different variables based on one information set, we investigate predictability of the same variable based

1 See e.g. Espasa, Senra & Albacete (2002), Hubrich (2005) and Benalal, Diaz del Hoyo, Landau, Roma & Skudelny (2004) for forecasting euro area inflation; see also Fair & Shiller (1990) for a related analysis for US GNP. Contributions to the theoretical literature on aggregation versus disaggregation in forecasting can be found in e.g. Grunfeld & Griliches (1960), Kohn (1982), Lütkepohl (1984, 1987), Pesaran, PIERSE & Kumar (1989), Van Garderen, Lee & Pesaran (2000); see also Granger (1990) for a survey on aggregation of time-series variables and Lütkepohl (2005) for a recent review on forecasting aggregated processes by VARMA models.
on different information sets. In contrast to predictability as a property in population, we use 'forecastability’ to refer to the improvement in forecast accuracy related to the sample information. Potential misspecification of the forecast model due to model specification (including the selection of variables included in the general information set and the choice of the functional form), model selection and estimation uncertainty as well as data measurement errors and structural breaks over the forecast horizon will affect the accuracy of the resulting forecast and help to explain why theoretical results on predictability are not confirmed in empirical applications (see also Hendry (2004) and Clements & Hendry (2006)).

In previous work on disaggregation in forecasting, all disaggregates are considered and model selection is restricted to selecting the VAR order. Our proposal of including all or a selected number of disaggregate variables in the aggregate model gives rise to a classical model selection problem, complementing previous literature on the role of model selection in disaggregation and forecasting. Although the predictability theory provides a useful guide for forecasting, we need to empirically investigate the usefulness of different methods to include disaggregate information for forecasting euro area and US inflation. Thereby we extend the results in Hubrich (2005) and relate our empirical findings to the analytical results presented in the previous sections.

The paper is organised as follows. First, Section 2 briefly reviews the notion of (un-) predictability and its properties most relevant to our subsequent analysis. Then we show that adding lagged information on disaggregates to a model of an aggregate must improve predictability. However, an improvement in predictability is a necessary, but not sufficient condition for an improvement in the forecast accuracy. In Section 4, we discuss the effect of model selection and estimation uncertainty on the forecast accuracy in a conditional model with particular reference to forecasting the aggregate when disaggregate information is included in the aggregate model. In Section 5, we investigate in a simulated out-of-sample experiment whether adding lagged values of the sub-indices of the Harmonized Index of Consumer Prices (HICP) to a model of the aggregate improves the accuracy of forecasts of that aggregate relative to forecasting the aggregate HICP only using lagged aggregate information, or aggregating forecasts of those sub-indices. Section 6 concludes.
2 Improving predictability by disaggregation

In this section the notion of predictability and its properties most relevant to our subsequent analysis are reviewed first, including the properties of predictions from a reduced information set. Then we address the issue of predictability and disaggregation.\footnote{The theory of economic forecasting in Clements & Hendry (1998, 1999, 2006) for non-stationary processes subject to structural breaks, where the forecasting model differs from the data generating mechanism, is rooted in the properties of (un-)predictability. Hendry (2004) considers the foundations of this predictability concept in more detail.}

2.1 Predictability and its properties

A non-degenerate vector random variable ν_t is unpredictable with respect to an information set I_{t-1} (which always includes the sigma-field generated by the past of ν_t) over a period $T = \{1, \ldots, T\}$ if its conditional distribution $D_{\nu_t}(\nu_t | I_{t-1})$ equals its unconditional $D_{\nu_t}(\nu_t)$:

$$D_{\nu_t}(\nu_t | I_{t-1}) = D_{\nu_t}(\nu_t) \quad \forall t \in T. \quad (1)$$

Unpredictability, therefore, is a property of ν_t in relation to I_{t-1} intrinsic to ν_t. Predictability requires combinations with I_{t-1}, as for example in:

$$y_t = \phi_t(I_{t-1}, \nu_t) \quad (2)$$

so y_t depends on both the information set and the innovation component. Then:

$$D_{y_t}(y_t | I_{t-1}) \neq D_{y_t}(y_t) \quad \forall t \in T. \quad (3)$$

The special case of (2) relevant here (after appropriate data transformations, such as logs) is predictability in mean:

$$y_t = f_t(I_{t-1}) + \nu_t. \quad (4)$$

Other cases of (2) which are potentially relevant are considered in Hendry (2004).

In (4), y_t is predictable in mean even if ν_t is not as:

$$E_t[y_t | I_{t-1}] = f_t(I_{t-1}) \neq E_t[y_t],$$

in general. Since:

$$V_t[y_t | I_{t-1}] < V_t[y_t] \quad \text{when} \quad f_t(I_{t-1}) \neq 0 \quad (5)$$
predictability ensures a variance reduction.

Predictability is obviously relative to the information used. Given an information set, \(\mathcal{J}_{t-1} \subseteq \mathcal{I}_{t-1} \) when the process to be predicted is \(y_t = f_t(I_{t-1}) + \nu_t \) as in (4), less accurate predictions will result, but they will remain unbiased. Since \(E_t[\nu_t | I_{t-1}] = 0 \):

\[
E_t[\nu_t | \mathcal{J}_{t-1}] = 0,
\]

so that:

\[
E_t[y_t | \mathcal{J}_{t-1}] = E_t[f_t(I_{t-1}) | \mathcal{J}_{t-1}] = g_t(\mathcal{J}_{t-1}),
\]

say. Let \(e_t = y_t - g_t(\mathcal{J}_{t-1}) \), then, providing \(\mathcal{J}_{t-1} \) is a proper information set containing the history of the process (see e.g., Doob (1953)):

\[
E_t[e_t | \mathcal{J}_{t-1}] = 0,
\]

so \(e_t \) is a mean innovation with respect to \(\mathcal{J}_{t-1} \).

However, as:

\[
e_t = (f_t(I_{t-1}) - g_t(\mathcal{J}_{t-1})) + \nu_t = w_{t-1} + \nu_t
\]

(say) where \(E[w_{t-1}\nu_t'] = 0 \) then:

\[
E_t[e_t | I_{t-1}] = f_t(I_{t-1}) - E_t[g_t(\mathcal{J}_{t-1}) | I_{t-1}] = f_t(I_{t-1}) - g_t(\mathcal{J}_{t-1}) \neq 0.
\]

As a consequence of this failure of \(e_t \) to be an innovation with respect to \(I_{t-1} \):

\[
E[e_te'_t] = E[(\nu_t + w_{t-1})(\nu_t + w_{t-1})']
\]

\[
= E[\nu_t\nu_t'] + E[\nu_tw_{t-1}'] + E[w_{t-1}\nu_t'] + E[w_{t-1}w_{t-1}']
\]

\[
\geq E[\nu_t\nu_t']
\]

where strict equality follows unless \(w_{t-1} = 0 \) \(\forall t \).

Nevertheless, that predictions from \(\mathcal{J}_{t-1} \) remain unbiased on the reduced information set suggests that, by itself, incomplete information is not fatal to the forecasting enterprise.

In particular, disaggregating components of \(I_{T-1} \) into their elements cannot lower predictability of a given aggregate \(y_T \), where such disaggregation may be across space (e.g., regions of an economy), time (higher frequency), variables (such as sub-indices of a price measure), or all of these. These attributes suggest forecasting using general models to be a
preferable strategy, and provide a formal basis for including as much information as possible, being potentially consistent with many-variable ‘factor forecasting’ (see e.g. Bai (2003), Bai & Ng (2002), Forni, Hallin, Lippi & Reichlin (2000, 2005), and Stock & Watson (2002a, 2002b), and with the benefits claimed in the ‘pooling of forecasts’ literature (e.g., Clemen, 1989; Clements & Hendry, 2004, for a recent theory). Although such results run counter to the common finding in forecasting competitions that ‘simple models do best’ (see e.g. Makridakis & Hibon, 2000; Allen & Fildes, 2001; Fildes & Ord, 2002), Clements & Hendry (2001) suggest that simplicity is confounded with robustness.

2.2 Predictability of the aggregate and disaggregation

The previous section concerns adding content to the information set \(\mathcal{J}_{T-1} \) to deliver \(\mathcal{I}_{T-1} \). One form of adding information is via disaggregation of the target variable \(y_T \) into its components \(y_{i,T} \) although \(D_{y_{T+1}} (y_{T+1} | \cdot) \) remains the target of interest. We consider only two components and a scalar process to illustrate the analysis, which clearly generalizes to many components and a vector process.

Consider a scalar \(y_t \) to be forecast, composed of:

\[
y_{T+1} = w_{1,T+1} y_{1,T+1} + w_{2,T+1} y_{2,T+1}
\]

with the weights \(w_{1,T+1} \) and \(w_{2,T+1} = (1 - w_{1,T+1}) \) for each of the two components. Note that the weights are allowed to vary over time. It may be thought that, when the \(y_{i,t} \) themselves depend in different ways on the general information set \(\mathcal{I}_{T-1} \), predictability could be improved by forecasting the disaggregates and aggregating those forecasts to obtain those for \(y_{T+1} \). However, let:

\[
E_{T+1} \left[y_{i,T+1} \mid \mathcal{I}_T \right] = \delta'_{i,T+1} \mathcal{I}_T
\]

which is the conditional expectation of each component \(y_{i,T+1} \) and hence is the minimum mean-square error (MSE) predictor. Then, taking conditional expectations in (6), aggregating the two terms in (7) delivers \(E_{T+1} [y_{T+1} | \mathcal{I}_T] \):

\[
E_T [y_{T+1} \mid \mathcal{I}_T] = \sum_{i=1}^{2} w_{i,T+1} E_{T+1} [y_{i,T+1} \mid \mathcal{I}_T] = \sum_{i=1}^{2} w_{i,T+1} \delta'_{i,T+1} \mathcal{I}_T = \lambda'_{T+1} \mathcal{I}_T \quad \text{(say)}.
\]

By way of comparison, consider predicting \(y_{T+1} \) directly from \(\mathcal{I}_T \):

\[
E_{T+1} [y_{T+1} \mid \mathcal{I}_T] = \phi'_{T+1} \mathcal{I}_T,
\]
so $\phi_{T+1} = \lambda_{T+1}$ with a prediction error:

$$y_{T+1} - E_{T+1} [y_{T+1} \mid I_T] = v_{T+1}$$

which is unpredictable from I_T and hence nothing is lost predicting y_{T+1} directly instead of aggregating component predictions once the general information set I_T is used. In practice, if both the weights $w_{i,T+1}$ and the coefficients of the component models $\delta_{i,T+1}^{'}$ change more than the coefficients of the aggregate model λ_{T+1}, forecasting the aggregate directly could well be more accurate than aggregating the component forecasts. Thus, the key issue in (say) aggregate inflation prediction is not predicting the component price changes, but including those components in the information set I_T. This result implies that weights are not needed for aggregating component forecasts, and also saves the additional effort of specifying disaggregate models for the components.

Including the components in the information set I_T is quite distinct from restricting information to lags of aggregate inflation, an information set we denote by J_T. Then:

$$E_{T+1} [y_{T+1} \mid J_T] = \psi_{t+1}^{'} J_T,$$

so that using y_{T+1} from (8) and (9) gives:

$$y_{T+1} - E_{T+1} [y_{T+1} \mid J_T] = \phi_{T+1}^{'} I_T - \psi_{T+1}^{'} J_T + v_{T+1},$$

(10)

which must have larger MSE than (9), since according to Section 2.1, although the predictions based on I_T and J_T are both unbiased, the prediction based on the smaller information set J_T, here only including the lags of aggregate inflation and no disaggregate information, is less accurate, and has a larger variance than the forecast based on I_T. If y_{T+1} was unpredictable from both information sets, i.e. $\psi_{T+1} = \phi_{T+1} = 0$, then (9) and (10) would have equal MSE.

3 Forecasting the aggregate: Does disaggregate information help?

In this section we consider forecasting the aggregate if the true data generating process (DGP) is a VAR(1) and the aggregate is a weighted average of the disaggregate components. There are three possible methods to forecast the aggregate if the information set contains the aggregate and disaggregate components: First, forecasting the disaggregates by lagged disaggregates and
then aggregating those forecasts; second, forecasting the aggregate directly by the lags of the aggregate; and third we can forecast the aggregate not only by including lags of the aggregate, but also lags of the disaggregates in the aggregate model. The first and second method has been considered in previous literature on disaggregation and forecasting, whereas our paper proposes the third method to forecast the aggregate.

In the following, we elaborate on the results in the previous section by investigating whether forecasting the aggregate by disaggregates improves forecast accuracy over the other methods under the assumption that the true DGP is known or, alternatively, is not known and has to be approximated.

Let the DGP be a vector autoregression of order one in the components $y_{i,t}$:

$$
\begin{pmatrix}
y_{1,t} \\
y_{2,t}
\end{pmatrix} = \begin{pmatrix}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{pmatrix}
\begin{pmatrix}
y_{1,t-1} \\
y_{2,t-1}
\end{pmatrix} + \begin{pmatrix}
v_{1,t} \\
v_{2,t}
\end{pmatrix}
$$

where $E[v_t] = 0$, $E[v_t v_s'] = \Sigma_v$ and $E[v_t v_s'] = 0$ for all $s \neq t$. Furthermore, $y_t = w_{1,t} y_{1,t} + (1 - w_{1,t}) y_{2,t}$, as in a price index, where weights shift with value shares, leading to:

$$
y_t = w_{1,t} \left[(\pi_{11} - \pi_{21}) y_{1,t-1} + (\pi_{12} - \pi_{22}) y_{2,t-1} \right] + \pi_{21} y_{1,t-1} + \pi_{22} y_{2,t-1} + w_{1,t} v_{1,t} + (1 - w_{1,t}) v_{2,t}.
$$

3.1 Disaggregate forecasting model: True disaggregate process known

The disaggregate forecasting model for known parameters is:

$$
\begin{pmatrix}
\hat{y}_{1,T+1|T} \\
\hat{y}_{2,T+1|T}
\end{pmatrix} = \begin{pmatrix}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{pmatrix}
\begin{pmatrix}
y_{1,T} \\
y_{2,T}
\end{pmatrix},
$$

with:

$$
\hat{y}_{T+1|T} = w_{1,T+1} \hat{y}_{1,T+1|T} + w_{2,T+1} \hat{y}_{2,T+1|T}.
$$

Thus, the forecast error from forecasting the disaggregate components and aggregating those forecasts is:

$$
y_{T+1} - \hat{y}_{T+1|T} = w_{1,T+1} (y_{1,T+1} - \hat{y}_{1,T+1|T}) + w_{2,T+1} (y_{2,T+1} - \hat{y}_{2,T+1|T}) + w_{1,T+1} v_{1,T+1} + w_{2,T+1} v_{2,T+1}
$$

which is unpredictable, independent of whether the weights are known or not known.
3.2 Aggregate forecasting model with known disaggregate process parameters

In contrast to the first example where the disaggregate forecasting model is fitted to the process, consider restricting the information set underlying the forecasting model to lags of \(y_t \) alone, with no disaggregates used. Furthermore, the true aggregate process is assumed known so that the true parameters of the aggregate forecasting model are known to the forecaster. In the following, to simplify the presentation, it is assumed that \(w_{1,t} = w_{2,t} = 1 \), so that \(y_t = y_{1,t} + y_{2,t} \). Then the aggregate \(y_t \) based on the true disaggregate process (11) can be represented by an ARMA(2,1) process (for a proof see e.g. Lütkepohl, 1987, Ch.4, 1984a).

The VAR in (11) can be written as \(\Pi(L)y_t = v_t \):
\[
\begin{pmatrix}
1 - \pi_{11}L & -\pi_{12}L \\
-\pi_{21}L & 1 - \pi_{22}L
\end{pmatrix}
\begin{pmatrix}
y_{1,t} \\
y_{2,t}
\end{pmatrix}
=
\begin{pmatrix}
v_{1,t} \\
v_{2,t}
\end{pmatrix}.
\tag{14}
\]

Multiplying (14) by the adjoint \(\Pi(L)^* \) of the VAR operator \(\Pi(L) \) gives:
\[
\begin{pmatrix}
1 - a_1 - a_2L^2 \\
0
\end{pmatrix}
\begin{pmatrix}
y_{1,t} \\
y_{2,t}
\end{pmatrix}
=
\begin{pmatrix}
1 - \pi_{22}L & \pi_{12}L \\
\pi_{21}L & 1 - \pi_{11}L
\end{pmatrix}
\begin{pmatrix}
v_{1,t} \\
v_{2,t}
\end{pmatrix}.
\tag{15}
\]

Furthermore, multiplying (15) by the vector of weights \(F = (1, 1) \) of the disaggregate components entails:
\[
(1 - a_1 - a_2L^2)y_t = (1 - b_1L)v_{1,t} + (1 - b_2L)v_{2,t}
\tag{16}
\]
with \(a_1 = \pi_{11} + \pi_{22}, \ a_2 = \pi_{12}\pi_{21} - \pi_{11}\pi_{22}, \ b_1 = \pi_{21} + \pi_{22} \) and \(b_2 = \pi_{12} + \pi_{11} \). It can be shown that the right-hand side of expression (16) is a process with an MA(1) representation, so that the aggregate process has an ARMA(2,1) representation: \((1 - a_1L - a_2L^2)y_t = (1 - \gamma L)u_t. \)

The model in (16) is used as a forecasting model based on the information set restricted to the aggregate:
\[
\hat{y}_{T+1} = a_1y_T + a_2y_{T-1} + v_{1,T+1} - b_1v_{1,T} + v_{2,T+1} - b_2v_{2,T}
\tag{17}
\]

3Results are easily extended to the case of different and time-varying component weights.

4More generally, it has been shown in the literature that, if the disaggregate process follows a VARMA\((p, q)\), the aggregate process follows an ARMA\((p^*, q^*)\) process with \(p^* \leq (n - m) + 1 \times p \) and \(q^* \leq (n - m) \times p + q \) with \(n \) being the number of variables in the system and \(m \) being the rank of the matrix of aggregation weights (see e.g. Lütkepohl, 1987, Ch.4).
To derive the forecast error made, recall that the aggregate is $y_t = y_{1,t} + y_{2,t}$. Then (16) entails:

$$y_t = a_1 y_{1,t-1} + a_2 y_{1,t-2} + a_1 y_{2,t-1} + a_2 y_{2,t-2} + v_{1,t} - b_1 v_{1,t-1} + v_{2,t} - b_2 v_{2,t-1}$$

(18)

Since in this section, we have assumed that $w_{1,t} = w_{2,t} = 1$ for ease of exposition, the disaggregate process in (11) simplifies to

$$y_t = (\pi_{11} + \pi_{21}) y_{1,t-1} + (\pi_{12} + \pi_{22}) y_{2,t-1} + v_{1,t} + v_{2,t}.$$

(19)

Then the forecast error of the disaggregate process is given by the difference between (19) and (17):

$$\hat{u}_{T+1|T} = y_{T+1} - \hat{y}_{T+1|T} = (\pi_{11} + \pi_{21}) y_{1,T} - a_1 y_{1,T-1} + (\pi_{12} + \pi_{22}) y_{2,T} - a_2 y_{2,T-1} + v_{1,T+1} + v_{2,T+1} - v_{1,T+1} + b_1 v_{1,T} - v_{2,T+1} + b_2 v_{2,T} = (\pi_{11} - \pi_{22}) y_{1,T} - a_2 y_{1,T-1} + (\pi_{12} - \pi_{11}) y_{2,T} - a_2 y_{2,T-1} + b_1 v_{1,T} + b_2 v_{2,T}$$

which will not be unpredictable in general. The entailed restrictions are of the following form5:

$$\pi_{21} - \pi_{22} = 0$$

$$\pi_{12} - \pi_{11} = 0$$

$$a_2 = -\pi_{11} \pi_{22} - \pi_{12} \pi_{21} = 0$$

These restrictions will usually not be fulfilled simultaneously, so u_t will be predictable from $y_{1,t-i}$ and/or $y_{2,t-i}$ ($i = 1, 2$).

3.3 Aggregate forecasting model with unknown disaggregate process parameters

Again, consider restricting the information set to lags of y_t with no disaggregates used. However, in contrast to the example in Section 3.2, the true disaggregate process is not known. Consequently, the aggregate process has to be approximated. We assume that the aggregate

5(See e.g., Lütkepohl, 1984, for the implied restrictions for equality of the aggregate and the disaggregate forecast model for a more general DGP).
is a weighted average of the two disaggregates where the weights are allowed to vary across components and change over time.

We approximate (11) by an autoregression of the form:

\[y_t = \rho y_{t-1} + u_t \]

(20)

where:

\[\hat{y}_{T+1|T} = \hat{\rho} y_T. \]

Since \(y_t = w_{1,t} y_{1,t} + (1 - w_{1,t}) y_{2,t} \), (20) entails that:

\[y_t = \rho w_{1,t-1} y_{1,t-1} + \rho (1 - w_{1,t-1}) y_{2,t-1} + u_t. \]

(21)

Thus, the forecast error \(\hat{u}_{T+1|T} \) from forecasting the true disaggregate process (11) with an estimated AR(1) model is given by (12) minus (21):

\[\hat{u}_{T+1|T} = y_{T+1} - \hat{y}_{T+1|T} \]

\[= \left(w_{1,T+1} [\pi_{11} - \pi_{21}] + \pi_{21} - \hat{\rho} w_{1,T} \right) y_{1,T} \]

\[+ \left(w_{1,T+1} [\pi_{12} - \pi_{22}] + \pi_{22} - \hat{\rho} (1 - w_{1,T}) \right) y_{2,T} \]

\[+ w_{1,T+1} v_{1,T+1} + (1 - w_{1,T+1}) v_{2,T+1}, \]

(22)

which will not be unpredictable in general. Even for constant weights, the entailed restrictions are well known to be of the form:

\[w_1 (\pi_{11} - \pi_{21} - \hat{\rho}) + \pi_{21} = 0 \]

\[w_1 (\pi_{12} - \pi_{22} + \hat{\rho}) + (\pi_{22} - \hat{\rho}) = 0 \]

There is no reason to anticipate that \(\hat{\rho} \) can simultaneously satisfy both requirements (even less so with time-varying weights), so \(u_{T+1} \) will be predictable from \(y_{1,T} \) and \(y_{2,T} \), as in the previous example where the true aggregate process was known.

These results indicate that it should improve forecast accuracy to include disaggregate information in the aggregate forecasting model. The additional difficulties in an actual forecast exercise of the choice of the information set, estimation of unknown parameters, unmodeled breaks, forecasting the weights, and data measurement errors that the forecaster faces, however, may be sufficiently large to offset the potential benefits. In the next section the influence of changes that potentially influence the model selection when considering the disaggregate information set are presented analytically. Section 5 presents an empirical analysis for forecasting euro-area inflation.
4 Adding disaggregates to forecast aggregates

In this section we illustrate how different types of changes, that occur in the real world forecasting environment affect the forecast accuracy of the aggregate.

Let y_t denote the vector of n disaggregate prices with elements $y_{i,t}$ where we illustrate using:

$$ y_t = \Gamma y_{t-1} + e_t \quad (23) $$

as the DGP for the disaggregates. Let $y_t = \omega_t^t y_t$ be the aggregate price index with weights ω_t. Then pre-multiplying (23) by ω_t^t:

$$ y_t = \omega_t^t \Gamma y_{t-1} + \omega_t^t e_t = \kappa y_{t-1} + (\omega_t^t \Gamma - \kappa \omega_{t-1}^t) y_{t-1} + \omega_t^t e_t $$

$$ = \kappa y_{t-1} + (\phi_t - \kappa \omega_{t-1})^t y_{t-1} + \nu_t \quad (24) $$

where $\phi_t = \Gamma \omega_t$ are the parameters of the disaggregates in the aggregate model. In (24) the aggregate y_t depends on lags of the aggregate, y_{t-1}, and the lagged disaggregates y_{t-1}. Thus, even if the DGP is (23) at the level of the components, an aggregate model will be systematically improved by adding disaggregates only to the extent that $\phi_t - \kappa \omega_{t-1} = \pi$, i.e. the coefficients of the disaggregates, are constant, and the elements contribute substantively to the explanation. The additional role of disaggregate information over just including the lagged aggregate in the aggregate model (24) is represented by the extent to which $\phi_{i,t} \neq \kappa \omega_{i,t-1}$ for each variable i.

Four distinct types of change can be distinguished in (24) that will affect the forecasting accuracy forecasting the aggregate by lags of the aggregate and disaggregates:

a) changes in the price index weights ω_{t-1} can be due to changes in expenditure shares with constant correlations between the disaggregates;

b) changes in the second-moment matrix of the disaggregates y_{t-1} (i.e., in the regressor correlation structure) can change collinearity, affecting the trade-off between the cost of estimation and the cost of omission that is central to forecast model selection;

c) changes in the parameters ϕ_t of the disaggregates, so the role of the disaggregate regressors is non-constant; and

d) changes in the autoregressive parameter κ.

All four potential shifts influence the decision of whether or not to include (or model) the disaggregates, and might hamper possible improvements in the forecast of the aggregate y_t from adding disaggregate variables $x_{i,t}$ to a model with lags of the aggregate. The first three of these shifts favour an aggregate model as a more robust forecasting device, and could do so even if
κ is not constant. The selection issue in this context, concerns omitting or retaining the dis-
aggregates, where changing collinearity over the forecast period affects the trade-off between
increasing estimation uncertainty by including irrelevant variables on the one hand and the mis-
specification costs of omitting relevant regressors on the other hand. Therefore, the choice of
including some or all disaggregates in the aggregate model relates to a classical model selection
problem. In the empirical analysis we consider a broad range of forecast models and model
selection procedures.

5 Forecasting euro area and US inflation

In this section, we analyze empirically the relative forecast accuracy of the three methods to
forecast the aggregate investigated analytically in the previous sections. We aim to answer the
following questions: First, does including the disaggregate variables in the aggregate model im-
prove the direct forecast of the aggregate? Second, is including disaggregate information in the
aggregate model better in terms of forecast accuracy than forecasting disaggregate variables and
aggregating those forecasts? Third, does it improve the indirect forecast of the aggregate to in-
clude aggregate information in the component models? We relate the findings to our theoretical
results.

5.1 Data

The euro area data employed in this study include aggregated overall HICP for the euro area as
well as its breakdown into five subcomponents: unprocessed food (\(p^{uf}\)), processed food (\(p^{pf}\)),
industrial goods (\(p^i\)), energy (\(p^e\)) and services prices (\(p^s\)).

This particular breakdown into subcomponents has been chosen in accordance with the data
published and analyzed in the ECB Monthly Bulletin.

The data employed are of monthly frequency, starting in 1992(1) until 2001(12). We also
employ an extended data set until 2004(12). The relatively short sample is determined by the
availability of subcomponent data for the euro area and has to be split for the out-of-sample
forecast experiment. Seasonally adjusted data have been chosen\(^6\) because of the changing sea-
sonal pattern in some of the HICP subcomponents for some countries due to a measurement

\(^6\)Except for interest rates, producer prices and HICP energy that do not exhibit a seasonal pattern.
The euro area month-on-month inflation rates (in decimals) and the year-on-year inflation rates (in %) of the indices are displayed in Figures 1 and 2, respectively.

We have carried out Augmented Dickey Fuller (ADF) tests for all HICP (sub-) indices (in logarithms), since Diebold & Kilian (2000) show for univariate models that testing for a unit root can be useful for selecting forecasting models. The tests are based on the sample from 1992(1) to 2000(12). This is the longest of the recursively estimated samples in the simulated out-of-sample forecast experiment in Section 5.3. The tests do not reject non-stationarity for the levels of all (sub-) indices over the whole period. Non-stationarity is rejected for the first differences of all series except the aggregate HICP and HICP services. For the first differences of the latter two series, however, non-stationarity is rejected for all shorter recursive estimation samples up to 2000(8) and 2000(7), respectively. Therefore and because of the low power of the ADF test HICP (sub-)indices are assumed to be integrated of order one in the analysis and modeled accordingly in the VAR based forecast comparison.

We compare our results for the euro area with forecasts for the US consumer price index (CPI; source: Bureau of Labor Statistics). The US all items CPI can be divided into 4 components: food, industrial goods, services and energy prices. For comparability with the euro area results, we also employ seasonally adjusted data for the US. For the US we consider sample periods from 1990 to 2004 and 1980 to 2004, respectively. Figure 3 depicts aggregate year-on-year inflation for the US.

5.2 Forecast methods and model selection

Different forecasting methods using different model selection procedures are employed for both direct and indirect forecast methods, i.e., forecasting HICP inflation directly versus aggregating subcomponent forecasts. We employ simple autoregressive (AR) models where the lag length is selected by the Schwarz (SIC) and the Akaike (AIC) criterion respectively (see e.g. Inoue & Kilian, 2005). We include a subcomponent vector autoregressive model (VAR$^{\text{subc}}$) to indirectly forecast the aggregate by aggregating subcomponent forecasts. We use a VAR including the

7 The data used in this study are taken from the ECB and Eurostat. The seasonal adjustment procedure is based on Census X-12-ARIMA.

8 The ADF test specification includes a constant and a linear trend for the levels and first differences. The number of lags included is chosen according to the largest significant lag on a 5% significance level.

9 Seasonal adjustment is based on X12-ARIMA, as in the euro area.
aggregate and the components, VARagg,sub, to investigate the hypothesis from Section 2 that including component information in the aggregate forecast model improves the forecast of the aggregate. The lag length of the VAR is selected on the basis of the SIC, the AIC and an F-test. We include a VAR where the lags of the aggregate and the components are automatically chosen using $PcGets$, VAR$^{agg,sub}_{Gets}$ (see Hendry & Krolzig, 2003).

We also include results for factor models where factors are estimated from disaggregate price information by Maximum Likelihood (see Lawley & Maxwell (1971)) using an EM algorithm (see e.g. Dempster, Laird & Rubin (1977)). Since the cross-sectional dimension of our information set of disaggregate price components is small, principal component analysis and dynamic principal component analysis as in Bai (2003), Bai & Ng (2002), Forni et al. (2000, 2005), and Stock & Watson (2002a, 2002b) would not provide consistent estimators of the factors.

5.3 Simulated out-of-sample forecast comparison

5.3.1 The experiment

A simulated out-of-sample forecast experiment is carried out to evaluate the relative forecast accuracy of alternative methods to forecast aggregate euro area and US inflation using information on its disaggregate components as opposed to aggregating the forecasts of subcomponent models or forecasting the aggregate only using aggregate information. One to twelve step ahead forecasts are performed based on different linear time series models estimated on recursive samples. The main criterion for the comparison of the forecasts employed in this study, as in a large part of the literature on forecasting, is the root mean square forecast error (RMSFE).

5.3.2 Aggregate and disaggregate information in VARs

Table 1 presents the comparison of the relative forecast accuracy measured in terms of RMSFE of year-on-year (headline) euro area inflation of the direct forecast of aggregate inflation ($\Delta_{12}\hat{p}_{agg}^{agg}$).

10 It should be noted that due to the large number of parameters in the high-dimensional VARs the maximum lag order was chosen on the basis of a rough rule such that the total number of parameters in the system would not exceed half the sample size.

11 We thank Dominico Giannone for providing the Matlab code for this algorithm.

12 For treatments of classical factor models when the cross-sectional dimension n is small, see e.g. Anderson (1984), Geweke (1977), Sargent & Sims (1977); see Doz, Giannone & Reichlin (2005) for maximum likelihood estimation of factor models with large n.
and the indirect forecast of aggregate inflation, i.e. the aggregated forecasts of the sub-indices $(\Delta_{12}\hat{p}_{sub})$. Various model selection procedures are applied to AR and VAR models. Multi-step forecasts in this section are derived in an iterative procedure. The results for 1-, 6- and 12-months ahead forecasts are presented.

First we compare methods only based on aggregate information as opposed to forecast methods for the aggregate including disaggregate variables in addition (see Table 1, column for direct forecast for each forecast horizon). Within the framework of the general theory of prediction we have shown that including disaggregate variables in the aggregate model does improve predictability of a variable (see Section 2). We find that the direct forecast using a VAR including the aggregate and subcomponents where the variables are selected by PcGets, $VAR^{agg,sub}_{Gets}$, performs slightly better in RMSFE terms 1 month ahead than directly forecasting the aggregate with an AR model only including lagged aggregate information with the lag length determined by the SIC criterion. Thus, our RMSFE results for the $VAR^{agg,sub}_{Gets}$ for $h = 1$ confirm this predictability result in a forecast experiment. However, the model including the aggregate and all subcomponents, $VAR^{agg,sub}_{(1)}$ does not provide a more accurate forecast of the aggregate than the autoregressive models AR^{SIC} and AR^{AIC}.

Furthermore, we investigate the accuracy of forecasting the aggregate directly including disaggregate variables relative to the forecast accuracy of indirectly forecasting the aggregate by aggregating component forecasts based on an AR model or a subcomponent VAR, $VAR^{sub}_{(1)}$, (Table 1), i.e., the way previous literature has taken disaggregate variables into account (see e.g. Lütkepohl (1984, 1987), Hubrich (2005)). The VAR model that outperforms the other direct forecast methods of the aggregate, $VAR^{agg,sub}_{Gets}$, also exhibits higher forecast accuracy for the indirect forecast than all other methods for $h = 1$. Thus, including aggregate variables in the disaggregate model improves forecast performance for short horizons. The $VAR^{agg,sub}_{(1)}$ does also outperform the $VAR^{agg,sub}_{(1)}$, where the variables and lag length are the same across the aggregate and components, for $h = 1$. Therefore, selection pays at short horizons in this context.

Overall, the direct forecast including the aggregate and subcomponents is best for 1 month ahead forecasts. That confirms within a forecasting set-up the results derived with respect to predictability in Section 2, i.e. that forecasting the aggregate directly including disaggregate information in the aggregate model might perform better than aggregating component forecasts. Figure 4 (upper two panels) shows that the one month ahead forecasts from the different direct and indirect methods that perform either best or worst in RMSFE terms are very close to actual year-on-year inflation. The differences between the different methods for one month ahead
forecasts appear to be quite small. The six months ahead forecasts of year-on-year inflation (Figure 4, lower two panels) do generally relatively well. The graphs show that the differences in RMSFE terms between some of the forecasts are relevant to be considered when choosing the forecasting model.

More important from a monetary policy point of view is the 12 months ahead forecast. Here we find that the direct forecast including disaggregate information (VARagg,sub(1)) is clearly better than the indirect forecast based on AR or VAR models of the components. The low forecast accuracy of aggregating subcomponent models is analyzed in Hubrich (2005), and it is found that this can be related to unexpected shocks that occur in the forecast period and affect some or all components in the same direction so that forecast errors do not cancel. Furthermore, predictability in the sense we have defined in Section 2.1 is low for some component series and their unconditional variance is large. Consequently they are very difficult to forecast. This leads to low forecast accuracy of the indirect forecast of the aggregate. Hubrich (2005) investigates whether forecast combination of different methods improves forecast accuracy of the components and hence the indirect forecast of the aggregate and finds that this is not the case. However, directly forecasting the aggregate using VARagg,sub is very similar in terms of forecast accuracy to using the same model, i.e. including all disaggregate variables and the aggregate, for the indirect forecast. Including the aggregate in the component models seems to improve forecast accuracy of the aggregate.\footnote{This result is based on the lag length of 2 suggested by the F-test.} We find that the indirect forecast based on a VAR including subcomponents with no lags as chosen by the SIC exhibits higher forecast accuracy than all other indirect forecast methods. This model represents a random walk with drift for prices for each of the components and for the aggregate and is selected by the SIC for the VAR\textsubscript{sub}, the VARagg,sub and the VARint. However, the direct forecast using a simple AR model does lead to the highest forecast accuracy 12 months ahead overall.

For a 12 months ahead horizon the VARagg,sub(1) outperforms the VARagg,sub\textsubscript{Getis} in contrast to the one-month ahead result. Furthermore, note that the ARSIC performs better than the ARAIC for one and twelve months ahead forecasts.\footnote{See e.g. Inoue & Kilian (2005) for a comparison of the SIC and the AIC with respect to forecast model selection.}

Although perfect collinearity between aggregate and components does not pose a problem due to annually changing weights in price indices, we present additional results where different subsets of price components are selected. Comparing forecast accuracy of the VARagg,i,s,pf, the
and the VAR we find that selection from disaggregate variables seems to improve the forecast accuracy. When we exclude processed food inflation from the VAR, the lower dimensional VAR does perform worse than the VAR, in particular for $h = 12$. Therefore, the decline in collinearity of the excluded variable and the variables in the system does matter for the forecast accuracy of the method.

Figure 5 shows the relevance of the differences in the forecasts for $h=12$ discussed above from a monetary policy viewpoint, i.e., a difference between 0.2 up to almost 2 percentage points for some methods in some periods of the forecast period is clearly relevant in this context. Tests to compare the significance of the difference in forecast accuracy of forecasting the aggregate versus aggregating component forecasts (such as West (1996) and Diebold & Mariano (1995)) are not carried out due to their poor size (and power) properties in small forecast samples as considered here (for simulation evidence see e.g. Harvey, Leybourne & Newbold (1997) and Clark (1999)).

Change in component weights and correlation structure In Section 4 we have analysed theoretically the effects of different types of changes influencing forecast accuracy of the aggregate model including disaggregate components. We now analyse two of those changes in the context of forecasting euro area inflation: a change in component weights and a change in collinearity of disaggregate regressors.

There is some change in (consumer spending) weights of euro area price components: Weights decline between -3.9 % and -1.3 % annually on average over the previous year over the forecast evaluation period for unprocessed food, processed food and industrial goods prices, where in one year for example the decline is almost -9% for unprocessed food. For energy prices weights decline by -6.5% in 1999 and then increase by 3.4% and 5.6 %, respectively. Service price weights increase by 3% on average per year over the forecast evaluation period. These changes in weights mean that the relevance of the changes of, say, unprocessed food prices for the aggregate declines over the forecast evaluation period so that positive shocks to unprocessed food prices do affect the aggregate less, whereas the positive shocks to energy prices will affect the aggregate more in the future.

Second, we analyse the change in the correlation structure between the aggregate and the

15 Another issue is that we are comparing forecast methods not forecast models (see e.g. Giacomini & White (2003)).

16 The indirect forecast of the aggregate by aggregating the component forecasts is also affected since the weights are used for aggregation.
components over the forecast evaluation period. Table 2 presents the correlation matrix, where the upper triangle represents the correlation for the first estimation sample until 1998(1) and the lower triangle represents the correlation for the last forecast sample up to 2001(12). Most of the time correlations between aggregate and components, particularly large declines are observed between Δp^{agg} and Δp^s. Overall, correlations between the aggregate and the components decline. Including the respective component(s) in the forecast model might then lower forecast accuracy by increasing estimation uncertainty. This might help explaining that selection pays according to the results in Table 1 where the VAR$^{agg,sub}_{Gefs}$ outperforms all other models one month ahead. Furthermore, correlation among disaggregate components included in the models decline, i.e. collinearity is lower between the regressors. This will affect forecast accuracy. A particularly large decline in correlation can be found in Δp^{uf} and Δp^f, as well as Δp^e and Δp^s. In some cases even the sign switches: Δp^{uf} and Δp^f, Δp^{uf} and Δp^i as well as Δp^e and Δp^s, with low negative correlation between those components for the longest sample. This increases the costs of omission of the respective components, as is apparent in the lower forecast accuracy of the more parsimonious model VAR$^{agg,e,uf}_{(1)}$ in comparison with VAR$^{agg,e,uf,pf}_{(1)}$.

The above effects favour an aggregate model, in particular for longer forecast horizons like a year, in the sense that an aggregate only including lags of the aggregate might be a more robust forecasting device when the effect of changing weights and collinearity on the trade-off between the costs of estimation and those of omission in forecast model selection is unknown a priori.

5.3.3 Disaggregate information in dynamic factor models

We also employ factor models averaging away idiosyncratic variation in the disaggregate series, then including the factors in the aggregate model. Little is known so far how the size and the composition of the data affect the factor estimates. Some results indicating that more data are not always better for factor analysis can be found in Boivin & Ng (2005). In this paper we are concerned with how factors from disaggregate information affect forecast accuracy of the aggregate economic variable. As discussed in 5.2 we estimate the factors by maximum likelihood. The following sections present the forecast accuracy comparison for euro area and US inflation in terms of RMSFE ratio over the AR^{SIC} of different factor models based on disaggregate prices for the euro area as well as regression models with one disaggregate component as a predictor, respectively. Please note that these results are not directly comparable across all horizons with the previous table since here direct multi-step ahead forecasts are carried out and
forecast accuracy is evaluated for annualised inflation (instead of year on year inflation as in the previous tables). We compute the direct h-step DFM forecasts as

\[\pi_{h,t}^h = \hat{\alpha} + \sum_{i=1}^{p} \hat{\phi}_i \pi_{t-i} + \sum_{j=1}^{q} \hat{\theta}_j \hat{F}_{t-j+1} \]

where \(\pi_{h,t}^h \) denotes the rate of inflation over the period \(t \) to \(t + h \), \(\hat{F}_t \) are the estimated factors, and the direct forecasts based on a single predictor \(Z_t \) as

\[\pi_{h,t}^h = \hat{\alpha} + \sum_{i=1}^{p} \hat{\phi}_i \pi_{t-i} + \sum_{k=1}^{l} \hat{\theta}_k Z_{t-k+1} \]

We also consider forecast combination of all single predictor models based on the respective disaggregate component with equal weights.

Euro area inflation Table 3 presents the forecast accuracy comparison in terms of RMSFE ratio over the AR(SIC) for euro area inflation. A result to note for the 1 month ahead forecast is that the difference between the RMSFE based on the AR(SIC) model presented in Table 3 (RMSFE 0.183) and the results in Table 1 (RMSFE 0.137) is due to the annualised representation of the underlying model. The forecast model based on annualised inflation seems to perform worse than the month on month forecast evaluated on the basis of the year-on-year transformation of the forecast. A further result of interest is that the direct multi-step ahead forecast of aggregate euro area inflation 12 months ahead (see Table 3), where it is comparable in terms of the underlying transformation with the iterative procedure, is somewhat worse than the iterative 12 months ahead forecast based on the AR(SIC) model (see Table 1). This result suggests that in the context of forecasting euro area inflation the loss of efficiency by not using all information available in direct multi-step ahead forecasts is dominating the potentially higher bias due to mis-specification in the iterative procedure.\(^{18}\)

Only some models improve over the AR\(^{SIC}\) at 1 to 12 months horizons and only the regression model with unprocessed food, \(p^{uf} \), as a predictor outperforms the AR\(^{SIC}\) over all horizons. A simple average combination of the five model forecasts based on one disaggregate component, respectively, does not improve over the AR model.

Table 4 presents the forecast accuracy of the different models relative to the AR model for an extended sample period up to 2004(12). For the extended sample period disaggregate

\(^{17}\)See e.g. Stock & Watson (1999).

\(^{18}\)The issue of multi-step horizon forecasts is investigated in more detail in e.g. Chevillon & Hendry (2005) and Marcellino, Stock & Watson (2005).
information is even less useful. Hardly any of the models outperform the AR model on that sample. The respective graphs of realisation and forecasts for \(h = 12 \) are depicted in Figures 6 and 7. They show that the different models do perform similarly in forecasting aggregate euro area inflation. They all miss the upturn in inflation in 1999 and do better from 2001 onwards.

To summarise the results for the euro area, we find no strong support that disaggregate information helps in forecasting euro area aggregate year-on-year inflation, only for a one month horizon for some factor models and regression models with unprocessed food as a predictor.

US inflation The results for US year-on-year inflation are presented in Tables 5 and 6. The results for the same short sample period as for the euro area, i.e. starting in 1990(1) and evaluating the forecast accuracy over the years 1998 to 2004, do confirm the euro area findings that disaggregate information might help in forecasting the aggregate in some situations. For this sample, disaggregate information does help forecasting aggregate US inflation one month ahead, but not for higher horizons. However, if we extend the estimation sample backwards starting in 1980(1), we find that disaggregate information does also help for 12 months ahead forecasts. Notably, for this longer horizon all factor models and single predictor models do improve over the AR model. The longer estimation sample including the eighties does contain more information on the disaggregates that is useful for forecasting aggregate inflation. Comparing the forecasts in Figures 9 and 10 shows that the forecasts of all models based on the longer estimation sample starting in 1980 do capture the increase in US inflation in 1999 better than the same models estimated on the shorter sample. These results suggest that the longer estimation sample contains information on disaggregate components that is relevant for forecasting the aggregate and therefore improve forecast accuracy.

To investigate this issue, we examine the correlation of the components with the aggregate and how much of the variability in the data is explained by the estimated factors.

The correlations of the CPI components with the aggregate in terms of year-on-year changes are higher for the US for the longer sample from 1980 onwards, in particular for industrial goods CPI, indicating in-sample predictive content of the disaggregates for the aggregate in an \(R^2 \) sense.

For the sample 1980 to 2004 the first factor of the year-on-year changes in CPI components explains 75% of the variability in the data, the second factor explains 15% and third factor 6%. For the sample starting in 1990 the first three factors explain 57, 26, 13% of the variation in the data, respectively, and therefore much less than in the longer sample. For the euro area
sample 1992-2004 the first, second and third factor explain 52, 24 and 16 % of the variability in the data, similar to the US for the comparable sample. Less of the variation in the data can be explained by disaggregate based factors for the shorter sample.

To analyse the robustness of our forecast results, we extend the sample backward as far as data are available, i.e. starting the sample in 1967(1). The result that disaggregate information improves the forecast of the aggregate does not change qualitatively. The results do not change substantially either when extending the forecast evaluation period from 6 to 10 years.

Comparing the forecast accuracy in RMSFE terms of the AR model for aggregate annualised inflation for different horizons, we find that the AR forecast accuracy is similar for different length of the estimation samples for one month horizons, but is more accurate based on the shorter estimation sample when forecasting 12 months ahead. Comparing the absolute RMSFE of the AR model, factor models and regression models for forecasting 12 months ahead, we find that disaggregate information in factor models and regression models improves forecast accuracy for the longer sample in comparison with the aggregate model only including lags of the aggregate. However, all models provide more accurate predictions based on the shorter sample. A characteristic to note of the shorter sample is that the variance of the aggregate is considerably lower than for the longer sample. Therefore, there is less variability to be explained by disaggregates.

6 Conclusions

In this paper, we show theoretically that a forecasting model including both aggregate and disaggregate variables in the predictor set should lower the prediction mean squared error in population relative to a model that includes only lags of the aggregate or to first forecasting the disaggregates and then aggregating those forecasts. However, we find that it does not always do so when forecasting euro area and US inflation and analyse reasons for this discrepancy between theoretical predictions and the empirical results.

There are many steps between predictability in population and ‘forecastability’. Predictability need not translate into forecastability in finite samples when the forecast model differs from the data generation process. The predictability concept that we consider in this paper refers to a property of the variable of interest in relation to the information set. In contrast, forecastability refers to the improvement in forecast accuracy related to sample information. The predictive value of disaggregate information can be off-set by model selection uncertainty, estimation un-
certainty, changing collinearity, structural breaks over the forecast horizon and measurement errors.

In the context of forecasting euro area inflation, we find that changing weights in the price index and changing collinearity between disaggregate prices undermine the performance of disaggregate-based models. The following conclusions can be drawn from our empirical analysis: Overall, we find that there is little cost or benefit from model selection in VAR models including disaggregate components at short horizons, although the model chosen by PcGets is best at a forecast horizon of $h = 1$. More stringent selection pays as h grows when comparing AR models based on the SIC versus AIC. Indirect forecasts, i.e., forecasting the disaggregates and aggregating those forecasts, usually perform worst, although the selection procedure does play a role. Furthermore, including aggregates as robust predictors in the disaggregate models might pay, again depending on the lag order selection procedure applied. Dynamic factor forecasts, where the factors are derived based on disaggregate price variables only, improve over the AR model only in some cases when forecasting euro area inflation.

All methods perform quite similar at forecast horizons of one month. At the forecast horizon of one year, differences between the forecasts from the different methods are larger and are relevant from a monetary policy perspective.

The theoretical prediction that disaggregate information should increase forecast accuracy, is not strongly supported for forecasting euro area inflation, where only a short sample can be considered due to data availability. We find that including disaggregate variables in the aggregate model does rarely improve forecasts of the euro area aggregate, in particular at longer forecast horizons. The forecasting model based on lags of the aggregate seems to be a more robust forecasting device in this context.

However, the theoretical result on predictability that disaggregate information does help is supported for forecasting US inflation, in particular for a longer sample period from 1980 to 2004. We find that for the US CPI inflation and its components, disaggregates clearly help forecasting the aggregate at short horizons for a sample excluding the 1980s. Based on a longer, more informative estimation sample including the 1980s disaggregates help forecasting the aggregate at all horizons.

We find that the differences between the theoretical results on predictability and the empirical results for different forecasting methods, countries and sample periods can be attributed to changes in collinearity between disaggregate price components that affect the bias-variance trade-off in forecast model selection, to changes in the extent that the variance of disaggregate
price components can be explained by their common factors, as well as changes in the unconditional moments of the aggregate variable to be predicted. Estimation samples with sufficient variability in the aggregate and the components are necessary for disaggregate variables to improve forecast accuracy of the aggregate. Our results suggest that model selection does play an important role in whether disaggregate information helps in forecasting. More research is necessary on how to select a good forecasting model, in particular in the presence of changing collinearity that affects the bias-variance trade-off in model selection.

We conclude that disaggregate information might help for forecasting the aggregate in line with our theoretical results on predictability in population, but the scope of such an improvement has to be assessed depending on the particular forecasting situation.

References

Figure 1: First differences of euro area HICP (sub-)indices (in logarithm)
Figure 2: Euro area year-on-year HICP inflation (in %), aggregate and subindices
Figure 3: US year-on-year CPI aggregate inflation (in %)
Figure 4: Euro area year-on-year inflation rate and forecasts in %, upper panels: 1 month ahead, lower panels: 6 months ahead, solid line: actual, Fdir: direct forecast of aggregate, Find: indirect forecast of aggregate
Figure 5: Euro area year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual, Fdir: direct forecast of aggregate, Find: indirect forecast of aggregate
Figure 6: Euro area year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual, slashed lines: Factor model and AR model forecast of the aggregate, sample 1990(1) - 2001(12)
Figure 7: Euro area year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual, slashed lines: Factor model and AR model forecast of the aggregate, sample 1990(1) - 2004(12)
Figure 8: US year-on-year inflation rate and forecasts in %, 1 month ahead, solid line: actual, slashed lines: forecasts of the aggregate from factor and AR model and aggregate model including services prices, sample 1980(1)-2004(12)
Figure 9: US year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual, slashed lines: forecasts of the aggregate from factor and AR model and aggregate model including energy prices, sample: 1990(1)-2004(12)
Figure 10: US year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual, slashed lines: forecasts of the aggregate from factor and AR model and aggregate model including energy prices, sample 1980(1)-2004(12)
Table 1: RMSFE of euro area year-on-year inflation in percentage points, Recursive estimation samples 1992(1) to 1998(1),...,2000(12)

<table>
<thead>
<tr>
<th>horizon</th>
<th>1</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>direct</td>
<td>indirect</td>
<td>direct</td>
</tr>
<tr>
<td>AR<sub>SIC</sub></td>
<td>$\Delta_{12}\hat{p}_{agg}$</td>
<td>0.137</td>
<td>0.139</td>
</tr>
<tr>
<td>AR<sub>AIC</sub></td>
<td>$\Delta_{12}\hat{p}_{agg}$</td>
<td>0.139</td>
<td>0.141</td>
</tr>
<tr>
<td>VAR<sub>sub</sub><sup>(2)</sup></td>
<td>$\Delta_{12}\hat{p}_{agg}$</td>
<td>0.151</td>
<td>0.670</td>
</tr>
<tr>
<td>VAR<sub>agg,sub</sub><sup>(0)</sup></td>
<td>$\Delta_{12}\hat{p}_{agg}$</td>
<td>0.138</td>
<td>0.448</td>
</tr>
<tr>
<td>VAR<sub>agg,sub</sub><sup>(1)</sup></td>
<td>$\Delta_{12}\hat{p}_{agg}$</td>
<td>0.143</td>
<td>0.451</td>
</tr>
<tr>
<td>VAR<sub>agg,sub</sub><sup>Gets</sup></td>
<td>$\Delta_{12}\hat{p}_{agg}$</td>
<td>0.134</td>
<td>0.465</td>
</tr>
<tr>
<td>VAR<sub>agg,i,s,pf</sub><sup>(1)</sup></td>
<td>$\Delta_{12}\hat{p}_{agg}$</td>
<td>0.141</td>
<td>0.444</td>
</tr>
<tr>
<td>VAR<sub>agg,e,uf,pf</sub><sup>(1)</sup></td>
<td>$\Delta_{12}\hat{p}_{agg}$</td>
<td>0.138</td>
<td>0.435</td>
</tr>
<tr>
<td>VAR<sub>agg,e,uf</sub><sup>(1)</sup></td>
<td>$\Delta_{12}\hat{p}_{agg}$</td>
<td>0.138</td>
<td>0.439</td>
</tr>
</tbody>
</table>

Note: super and subscripts indicate model selection procedure, SIC: Schwarz criterion, AIC: Akaike criterion, VAR_{sub}: VAR only including subcomponents, lag order, $p = 2$, VAR_{agg,sub}: VAR with aggregate and subcomponents $p = 0$ (SIC), $p = 1$ (AIC), VAR_{agg,sub}^{Gets}: VAR with aggregate and subcomponents selected by PcGets, liberal strategy Hendry & Krolzig (2001)

Table 2: Correlation matrix of first differences of euro area log aggregate and subcomponent prices: upper triangle sample until 1998(1), lower triangle sample until 2001(12)

<table>
<thead>
<tr>
<th>Δp_{agg}</th>
<th>Δp_{uf}</th>
<th>Δp_{pf}</th>
<th>Δp_{i}</th>
<th>Δp_{s}</th>
<th>Δp_{e}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp_{agg}</td>
<td>1</td>
<td>0.27931</td>
<td>0.43579</td>
<td>0.63135</td>
<td>0.70929</td>
</tr>
<tr>
<td>Δp_{uf}</td>
<td>0.3229</td>
<td>1</td>
<td>-0.22429</td>
<td>-0.1362</td>
<td>-0.13113</td>
</tr>
<tr>
<td>Δp_{pf}</td>
<td>0.34893</td>
<td>0.028023</td>
<td>1</td>
<td>0.41859</td>
<td>0.52704</td>
</tr>
<tr>
<td>Δp_{i}</td>
<td>0.53733</td>
<td>0.044988</td>
<td>0.28777</td>
<td>1</td>
<td>0.61273</td>
</tr>
<tr>
<td>Δp_{s}</td>
<td>0.49376</td>
<td>-0.06515</td>
<td>0.51041</td>
<td>0.45057</td>
<td>1</td>
</tr>
<tr>
<td>Δp_{e}</td>
<td>0.7071</td>
<td>0.0076403</td>
<td>-0.078966</td>
<td>0.039373</td>
<td>-0.06116</td>
</tr>
</tbody>
</table>
Table 3: Euro area, RMSFE ratios of direct forecast of annualised inflation; Factor and single predictor models based on disaggregate prices; Sample up to 2001(12)

<table>
<thead>
<tr>
<th>horizon</th>
<th>1</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSFE AR^{SIC}</td>
<td>0.183</td>
<td>0.404</td>
<td>0.779</td>
</tr>
<tr>
<td>RMSFE ratios over AR^{SIC}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM(f1)</td>
<td>1.028</td>
<td>1.113</td>
<td>1.093</td>
</tr>
<tr>
<td>FM(f2)</td>
<td>0.986</td>
<td>1.062</td>
<td>1.039</td>
</tr>
<tr>
<td>FM(f3)</td>
<td>1.056</td>
<td>1.038</td>
<td>1.045</td>
</tr>
<tr>
<td>FM(f4)</td>
<td>1.061</td>
<td>1.083</td>
<td>1.094</td>
</tr>
<tr>
<td>DFM(f1)^{SIC}</td>
<td>1.044</td>
<td>1.196</td>
<td>1.117</td>
</tr>
<tr>
<td>DFM(f2)^{SIC}</td>
<td>0.993</td>
<td>1.163</td>
<td>0.998</td>
</tr>
<tr>
<td>DFM(f3)^{SIC}</td>
<td>1.067</td>
<td>1.119</td>
<td>0.927</td>
</tr>
<tr>
<td>DFM(f4)^{SIC}</td>
<td>1.132</td>
<td>1.256</td>
<td>1.156</td>
</tr>
<tr>
<td>p^uf</td>
<td>0.995</td>
<td>0.960</td>
<td>0.955</td>
</tr>
<tr>
<td>p^pf</td>
<td>0.988</td>
<td>1.056</td>
<td>1.060</td>
</tr>
<tr>
<td>p^i</td>
<td>1.052</td>
<td>1.052</td>
<td>1.053</td>
</tr>
<tr>
<td>p^s</td>
<td>1.042</td>
<td>1.062</td>
<td>1.052</td>
</tr>
<tr>
<td>p^e</td>
<td>1.016</td>
<td>1.023</td>
<td>1.014</td>
</tr>
<tr>
<td>p^{comb}</td>
<td>1.010</td>
<td>1.016</td>
<td>1.018</td>
</tr>
</tbody>
</table>

Note: RMSFE (not annualised) for AR^{SIC} model in percentage points, Recursive estimation samples 1992(1) to 1998(1),...2000(12), Super and subscripts indicate model selection procedure, SIC: Schwarz criterion, pre-test: 5% sign. level, based on Newey-West adjusted heteroscedastic-serial consistent least-squares regression, FM(f): factor models with 1,2,3,4 factors, DFM(f)^{SIC}: dynamic factor models with 1,2,3,4 factors with factor lag lengths chosen by SIC, p^uf, p^pf, p^i, p^s, p^e: models with respective subcomponent as predictor, p^{comb}: simple average of the forecasts with the five disaggregate component models.
Table 4: Euro area, RMSFE ratios of direct forecast of annualised inflation; Factor and single predictor models based on euro area disaggregate prices; Sample up to 2004(12)

<table>
<thead>
<tr>
<th>horizon</th>
<th>1</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSFE AR<sup>SIC</sup></td>
<td>0.149</td>
<td>0.328</td>
<td>0.562</td>
</tr>
<tr>
<td>RMSFE ratios over AR<sup>SIC</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM(f1)</td>
<td>1.055</td>
<td>1.077</td>
<td>1.067</td>
</tr>
<tr>
<td>FM(f2)</td>
<td>1.010</td>
<td>1.073</td>
<td>1.054</td>
</tr>
<tr>
<td>FM(f3)</td>
<td>1.129</td>
<td>1.107</td>
<td>1.111</td>
</tr>
<tr>
<td>FM(f4)</td>
<td>1.066</td>
<td>1.106</td>
<td>1.133</td>
</tr>
<tr>
<td>DFM(f1)<sup>SIC</sup></td>
<td>1.055</td>
<td>1.167</td>
<td>1.120</td>
</tr>
<tr>
<td>DFM(f2)<sup>SIC</sup></td>
<td>1.141</td>
<td>1.230</td>
<td>1.157</td>
</tr>
<tr>
<td>DFM(f3)<sup>SIC</sup></td>
<td>1.306</td>
<td>1.338</td>
<td>1.297</td>
</tr>
<tr>
<td>DFM(f4)<sup>SIC</sup></td>
<td>1.115</td>
<td>1.237</td>
<td>1.336</td>
</tr>
<tr>
<td>p<sub>uf</sub></td>
<td>1.006</td>
<td>0.964</td>
<td>0.997</td>
</tr>
<tr>
<td>p<sub>pf</sub></td>
<td>1.019</td>
<td>1.038</td>
<td>1.047</td>
</tr>
<tr>
<td>p<sub>i</sub></td>
<td>1.030</td>
<td>1.040</td>
<td>1.045</td>
</tr>
<tr>
<td>p<sub>s</sub></td>
<td>1.057</td>
<td>1.057</td>
<td>1.046</td>
</tr>
<tr>
<td>p<sub>e</sub></td>
<td>1.031</td>
<td>1.058</td>
<td>1.031</td>
</tr>
<tr>
<td>p<sup>comb</sup></td>
<td>1.013</td>
<td>1.016</td>
<td>1.021</td>
</tr>
</tbody>
</table>

Note: RMSFE (not annualised) for AR^{SIC} model in percentage points , Recursive estimation samples 1992(1) to 1998(1),...,2003(12), Super and subscripts indicate model selection procedure, SIC: Schwarz criterion, pre-test: 5% sign. level, based on Newey-West adjusted heteroscedastic-serial consistent least-squares regression, FM(f): factor models with 1,2,3,4 factors, DFM(f)^{SIC}: dynamic factor models with 1,2,3,4 factors with factor lag lengths chosen by SIC, p^{uf}, p^{pf}, pⁱ, p^s, p^e: models with respective subcomponent as predictor, p^{comb}: simple average of the forecasts with the five disaggregate component models.
Table 5: US, RMSFE ratios of direct forecast of annualised inflation; Factor and single predictor models based on disaggregate prices; Sample 1990(1) to 2004(12)

<table>
<thead>
<tr>
<th>horizon</th>
<th>1</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSFE AR<sup>SIC</sup></td>
<td>0.229</td>
<td>0.541</td>
<td>0.781</td>
</tr>
<tr>
<td>RMSFE ratios over AR<sup>SIC</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM(f1)</td>
<td>1.014</td>
<td>1.024</td>
<td>1.011</td>
</tr>
<tr>
<td>FM(f2)</td>
<td>1.000</td>
<td>1.054</td>
<td>1.049</td>
</tr>
<tr>
<td>FM(f3)</td>
<td>0.987</td>
<td>1.021</td>
<td>1.095</td>
</tr>
<tr>
<td>DFM(f1)<sup>SIC</sup></td>
<td>1.031</td>
<td>1.038</td>
<td>1.014</td>
</tr>
<tr>
<td>DFM(f2)<sup>SIC</sup></td>
<td>1.020</td>
<td>1.114</td>
<td>1.159</td>
</tr>
<tr>
<td>DFM(f3)<sup>SIC</sup></td>
<td>1.025</td>
<td>1.008</td>
<td>1.076</td>
</tr>
<tr>
<td>p<sup>f</sup></td>
<td>0.997</td>
<td>0.999</td>
<td>1.022</td>
</tr>
<tr>
<td>p<sup>i</sup></td>
<td>0.983</td>
<td>1.021</td>
<td>1.035</td>
</tr>
<tr>
<td>p<sup>s</sup></td>
<td>1.014</td>
<td>1.006</td>
<td>1.047</td>
</tr>
<tr>
<td>p<sup>e</sup></td>
<td>0.972</td>
<td>0.982</td>
<td>1.019</td>
</tr>
<tr>
<td>p<sup>comb</sup></td>
<td>0.969</td>
<td>0.989</td>
<td>1.015</td>
</tr>
</tbody>
</table>

Note: RMSFE (not annualised) for AR^{SIC} model in percentage points, Recursive estimation samples 1990(1) to 1997(1),...,2003(12), Super and subscripts indicate model selection procedure, SIC: Schwarz criterion, pre-test: 5% sign. level, based on Newey-West adjusted heteroscedastic-serial consistent least-squares regression, FM(f): factor models with 1,2,3,4 factors, DFM(f)^{SIC}: dynamic factor models with 1,2,3,4 factors with factor lag lengths chosen by SIC, p^{comb} is a simple average of the forecasts with the four disaggregate component models
Table 6: US, RMSFE ratios of direct forecast of annualised inflation; Factor and single predictor models based on disaggregate prices; Sample 1980(1) to 2004(12)

<table>
<thead>
<tr>
<th>horizon</th>
<th>1</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSFE ARSIC</td>
<td>0.230</td>
<td>0.623</td>
<td>0.978</td>
</tr>
<tr>
<td>RMSFE ratios over ARSIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$FM(f_1)$</td>
<td>1.010</td>
<td>0.923</td>
<td>0.888</td>
</tr>
<tr>
<td>$FM(f_2)$</td>
<td>1.057</td>
<td>0.921</td>
<td>0.885</td>
</tr>
<tr>
<td>$FM(f_3)$</td>
<td>1.042</td>
<td>0.940</td>
<td>0.926</td>
</tr>
<tr>
<td>$DFM(f_1)SIC$</td>
<td>0.928</td>
<td>0.879</td>
<td>0.802</td>
</tr>
<tr>
<td>$DFM(f_2)SIC$</td>
<td>1.038</td>
<td>0.880</td>
<td>0.765</td>
</tr>
<tr>
<td>$DFM(f_3)SIC$</td>
<td>0.965</td>
<td>0.926</td>
<td>0.891</td>
</tr>
<tr>
<td>p_f</td>
<td>1.002</td>
<td>0.982</td>
<td>0.944</td>
</tr>
<tr>
<td>p_i</td>
<td>1.006</td>
<td>0.978</td>
<td>0.985</td>
</tr>
<tr>
<td>p_s</td>
<td>0.989</td>
<td>0.937</td>
<td>0.921</td>
</tr>
<tr>
<td>p_e</td>
<td>1.011</td>
<td>0.930</td>
<td>0.886</td>
</tr>
<tr>
<td>p_{comb}</td>
<td>1.000</td>
<td>0.938</td>
<td>0.897</td>
</tr>
</tbody>
</table>

Note: RMSFE (not annualised) for ARSIC model in percentage points, Recursive estimation samples 1980(1) to 1997(1),...,2003(12), Super and subscripts indicate model selection procedure, SIC: Schwarz criterion, pre-test: 5% sign. level, based on Newey-West adjusted heteroscedastic-serial consistent least-squares regression, FM(f): factor models with 1,2,3,4 factors, DFM(f)SIC: dynamic factor models with 1,2,3,4 factors with factor lag lengths chosen by SIC, p_{comb} is a simple average of the forecasts with the four disaggregate component models.
European Central Bank Working Paper Series

For a complete list of Working Papers published by the ECB, please visit the ECB’s website (http://www.ecb.int)

544 “Forecasting the yield curve in a data-rich environment: a no-arbitrage factor-augmented VAR approach” by E. Mönch, November 2005.

549 “Eigenvalue filtering in VAR models with application to the Czech business cycle” by J. Beneš and D. Vávra, November 2005.

550 “Underwriter competition and gross spreads in the eurobond market” by M. G. Kollo, November 2005.

553 “Global bond portfolios and EMU” by P. R. Lane, November 2005.

556 “The role of real wage rigidity and labor market frictions for unemployment and inflation dynamics” by K. Christoffel and T. Linzert, November 2005.

558 “Ricardian fiscal regimes in the European Union” by A. Afonso, November 2005.

559 “When did unsystematic monetary policy have an effect on inflation?” by B. Mojon, December 2005.

564 “Forecasting the central bank’s inflation objective is a good rule of thumb” by M. Diron and B. Mojon, December 2005.

567 “Is time ripe for a currency union in emerging East Asia? The role of monetary stabilisation” by M. Sánchez, December 2005.

569 “Towards European monetary integration: the evolution of currency risk premium as a measure for monetary convergence prior to the implementation of currency unions” by F. González and S. Launonen, December 2005.

573 “Credit chains and the propagation of financial distress” by F. Boissay, January 2006.

574 “Inflation convergence and divergence within the European Monetary Union” by F. Busetti, L. Forni, A. Harvey and F. Venditti, January 2006.
“Growth in euro area labour quality” by G. Schwerdt and J. Turunen, January 2006.

“Forecasting ECB monetary policy: accuracy is (still) a matter of geography” by H. Berger, M. Ehrmann and M. Fratzscher, January 2006.

“Bank interest rate pass-through in the euro area: a cross country comparison” by C. K. Sørensen and T. Werner, January 2006.

“Public sector efficiency for new EU Member States and emerging markets” by A. Afonso, L. Schuknecht and V. Tanzi, January 2006.

“Back to square one: identification issues in DSGE models” by F. Canova and L. Sala, January 2006.

“Are specific skills an obstacle to labor market adjustment? Theory and an application to the EU enlargement” by A. Lamo, J. Messina and E. Wasmer, February 2006.

“Rational inattention, inflation developments and perceptions after the euro cash changeover” by M. Ehrmann, February 2006.
