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1 Introduction

This paper presents simple and general conditions for asymptotic normality of least squares
estimators allowing for regressors vectors which expand with the sample size. Our assumptions
include series and sieve estimation of regression functions, and any context where the regressor set
increases with the sample size.

We focus on asymptotic normality of studentized linear functions of the coefficient vector and
regression function.

Our results are general and unified, in the sense that they include as special cases the conditions
for asymptotic normality obtained in much of the previous literature. Some of the important
features include the following. We allow the number of regressors K to be fixed or changing
as a function of sample size, thus including parametric and nonparametric regression as special
cases. We allow the regressors to be unbounded, which is a typical assumption in parametric
regression but this is its first appearance in nonparmetric sieve regression. We allow for conditional
heteroskedasticity, and do not require the conditional error variance to be bounded above zero nor
below infinity. Again this is commonplace in parametric regression but new in nonparametric sieve
theory.

We present two theorems concerning asymptotic normality. The first demonstrates the asymp-
totic normality of studentized linear functions of the coefficient vector. These are centered at the
linear projection coefficients and thus represent inference on the latter. This result is similar to
standard results for parametric regression.

Our second theorem demonstrates asymptotic normality of studentized linear functions of the
regression function. These estimates have a finite sample bias due to the finite- K approximation
error. Our asymptotic theory is explicit concerning this bias instead of assuming its negligability
due to undersmoothing. We believe this to be a stronger distribution theory than one which assumes
away the bias via undersmoothing.

Ours are the first results for the asymptotic normality of sieve regression which use moment
conditions rather than boundedness. Bounded regressors and bounded variances appear as a special
limiting case. Our results show that there is an effective trade-off between the number of finite
moments and the allowable rate of expansion of the number of series terms. The previous literature
which imposed boundedness has missed this trade-off.

This paper builds on an extensive literature developing an asymptotic distribution theory for
series regression. Important contributions include Andrews (1991), Newey (1997), Chen and Shen
(1998), Huang (2003), Chen, et. al. (2014), Chen and Liao (2014), Belloni et. al. (2014), and Chen
and Christensen (2015). All of these papers assume bounded regressors and bounded conditional
variances, with the interesting exception of Chen and Christensen (2015) who allow unbounded re-
gressors but examine a trimmed least-squares estimator (which is effectively regression on bounded
regressors), and Chen and Shen (1998) whose results are confined to root-n estimable functions.
Chen and Shen (1998), Chen et. al. (2014) and Chen and Christensen (2015) allow for times series

observations (while this paper only concerns iid data), and Belloni et. al. (2014) also consider



uniform asymptotic approximations (while the results in this paper are only pointwise).

A word on notation. Let Apin (A) and Amax (A) denote the smallest and largest eigenvalue of a
positive semidefinite matrix A. Let ||A]| = (Amax (A A))l/ 2 denote the spectral norm of a matrix
A. Note that if A > 0 then ||A|| = Amax (A). When applied to a K x 1 vector let ||a|| = (a'a)'/?
denote the Euclidean norm. For p > 1, let ||z, = (E|z” )1/ P denote the LP norm of a random

variable, vector, or matrix.

2 Least Squares Regression

Let (yi, zi), i = 1,...,n be a sample of iid observations with y; € R. Define the conditional
mean g(z) = E(y; | z; = z), the regression error e; = y; — g(z;), the conditional variance o?(z) =
E (€7 | z = z), and its realization o7 = 02(z;).

Consider the estimation of g(z) by approximate linear regression. For K = K(n) let zx(z) be
a set of K x 1 transformations of the regressor z. This can include a subset of observed variables
z, transformations of z including basis function transformations, or combinations. For example,
when z € R a power series approximation sets xx(z) = (l,z, vy 2K *1). Construct the regressors
Tri = Tr(2;).

We approximate the conditional mean g(z) by a linear function 2’ (z)8k for some K x 1

coeflicient vector Bx. We can write this approximating model as
Yi = TriBK + exi (1)
The projection approximation defines the coefficient by linear projection
Br = (B (zrihe;)) " B (zrivi) - (2)

This has the properties that a-(z)Bk is the best linear approximation (in L?) to g(z), and that
E (:rKieKi) = 0.
A vector-valued parameter of interest

6 =a(g) e R’ 3)

may be the regression function g(z) at a fixed point z or some other linear function of ¢ including
derivatives and integrals over g. Linearity inplies that if we plug in the series approximation

i (z) Bk into (3), then we obtain the approximating (or pseudo-true) parameter value
Ok = a(gK) = axPr (4)

for some K X d matrix ax. For example, if the parameter of interest is the regression function g(z),

then ax = vx(2).



The standard estimator of (2) is least-squares of y; on x g;:
. n -1 n
Bk = (Z wKﬂC';g) >z (5)
i=1 i=1

The corresponding estimator of g(z) is

and that of 8 is
Ok = a(Ji) = axBk- (6)

Define the covariance matrices
!/
Qr =E (zkizk;)
! 2

Vi = Qi Sk Q%'

!
VQK = aKVKaK.

Thus Vx and Vyi are the conventional asymptotic covariance matrices for the estimators BK and
é\K for fixed K.

The standard estimators for the above covariance matrices are
n
~ 1 ,
Qr = - E TKiTk;
1=1

Il 1 = -~
Sk = - mem[ﬁem
i=1
Vi = @ngKQ\E(I
Vo = CZIK‘/}KCZK

where €x; = y; — :L‘/KZB\  are the OLS residuals.

3 Matrix Convergence Theory

In this section we describe an important convergence result for sample design matrices. Unlike
the existing literature, our convergence result does not require bounded regressors nor trimming.

Let u;, i = 1,...,n be a sequence of independent K x 1 vectors for K > 2, and set ]\/Zn =
% S uul and M, = % o Bugul.



Theorem 1. Suppose that for some s > 2 and some sequence of constants £k and px that

Juilly < €k, (7)
|Buiui]| < px,
and 28/(s-2)
T log K
K
= =90(1).
- o(1) (®)
Then
EHMH—Mn :o(,/1+MK>. 9)
Furthermore, if s > 4 then
. . 25/(372)1 K
EHMH—MH ~0 \/%(Hw) . (10)

The proof of Theorem 1 builds on Theorem 1 of Rudelson (1999) and Lemma 6.2 of Belloni,
Chernozhukov, Chetverikov, and Kato (2014) which treat the case of the deterministic bound ||u;|| <
£%- Existing convergence theory similarly require deterministic bounds. When the regressors are
basis transformation of a random variable z; with bounded support then the rates for {7 are known
for common sieve transformations, for example, &% = O(K) for power series and &, = O(K/2) for
splines. In these cases we can set s = oo and £k = &} and (8) simplifies to n™1¢% log K = o(1),
which is identical to that obtained by Lemma 6.2 of Belloni, Chernozhukov, Chetverikov, and Kato
(2014) and the in-probability analog of Lemma 2.1 of Chen and Christensen (2015).

The moment bound (7) is an important generalization of the deterministic bound, and in par-
ticular allows for regressors with unbounded support. An example for (7) is when the regressors
have a uniformly bounded p* moment. Suppose that u; = (u1;, ..., ux;) and lujil|, < C < 0.
Then an application of Minkowski’s inequality implies (7) with {x = CK 1/2 " This is the same rate
as obtained, for example, by splines with bounded regressors.

The rate (8) shows that there is a trade-off between the number of finite moments and the
allowable rate of divergence of the dimension K. As s | 2 the allowable rate (8) slows to fixed
K, and as s — oo, the allowable rate increases. The moment bounds (9) and (10) imply that

H]\/Zn — M,|| = Op(ay), with a, a function of the rate in (8) when s > 4. The difference when

s > 4 is that the latter calculation involves the variance of the sample mean ]\/4\n (which requires
finite fourth moments) which is able to exploit standard orthogonality properties. When s < 4 the
bound uses a more primitive calculation and hence obtains a less tight rate.

The bounds (9) and (10) depend on the norm of the covariance matrix Eu;u}. In most appli-
cations this is either assumed bounded or the bounds (9) and (10) are applied to orthogonalized
sequences so i is bounded and can be omitted from these expressions.

Convergence results are often applied to the inverses of normalized moment matrices. Our next



result provides a simple demonstration that inverses and square roots of normalized matrices inherit

the same convergence rate.

Theorem 2. Let ]\/fn be a sequence of positive definite K x K matrices. If H]\/fn — IKH = Op (ay),
and a, = o(1), then for any r,
|3 = Iic| = Oy (an)

4 Assumptions

We now list the assumptions which are sufficient for asymptotic normality of the studentized

estimators.

Assumption 1. For some g >4 and p > 2 such that 1/g+1/p =1/t <1/2,

|z kil
1 ————— < (g
\V Amin (QK)
2. Fither

(a) leill, < oo

or

(b) limp_oosup, B (e21 (¢? > B) |z; = 2) =0

(2

5. inf e l9(z0) — @B, < 6xc = O(1)
4. n*lgff/(t‘” log K = o(1)
5 nt (C%&K)QQ/(‘]_AL) log K = O(1)

6. Amin (@ VkGr) > C > 0 where ag = ag (CL’KQ;{laK)fl/2 and ag 1is defined in (4).

Assumption 1.1 states that the regressors are bounded in the L? norm. The bound (x is
increasing as the regressor set expands (typically at rate K 12 or K ) and this rate will in part
determine the allowable rate of divergence for K. Assumption 1.1 normalizes the L? norm of the
regressor by the square root of the smallest eigenvalue of the design matrix so that the assumption
is invariant to rescaling.

Assumption 1.2 bounds the regression error e; using either the unconditional p*”* moment, or
a conditional uniform square integrability bound. A sufficient condition for the latter is that
E (\ei\%" ]a:1> is uniformly bounded for some 1 > 0.

Assumption 1.3 bounds the approximation error in the LP norm. The LP norm is weaker than
the uniform norm which is conventional in the sieve literature. The LP norm allows the regressors
to have unbounded support. For the bound in Assumption 1.3 to exist, a sufficient condition is
P

E|g(z)|P < oo, for which a sufficient condition is E |y;|¥ < oo, which also implies Assumption

1.2(a). Explicit rates for the approximation error dx will be derived in Section 6.



Assumption 1.4 controls the rate of growth of the number of regressors K. The allowable rate
is increasing in t. Note that when ¢ = p then ¢t = ¢/2. As ¢ and p diverge to infinity the rate
simplifes to n~1¢% log K = o(1) which is the rate obtained by Chen and Christensen (2015) under
the assumption of bounded regressors (¢ = oo) and uniform approximation error bounds (p = o).
As p — o0, the rate in Assumption 1.4 simplifies to n*lgfg/(q‘” log K = o(1), and similarly when
q — oo it simplifies to n_lg“?f/(pd) log K = o(1).

Assumption 1.5 also controls the rate of growth of K, and trades off both the rate of growth in the
regressor norms (x and approximation errors d0x . A simple sufficient condition for Assumption 1.5
is p < 4. (For then n~! (C%&K)Qq/(q%) log K <O (nilgf(q/(q_@ log K) <O (nilg‘%/(t_m log K) =
o(1) by Assumption 1.4.). Another simple condition is n_lC;q/(qdl) log K = O(1) (a strengthening
of Assumption 1.4 which avoids conditions on dx). A third simple condition is (xdx = O(1) and
p > q for then n! (¢26x)* /" og K <O ( ~1¢2a/(a=4) 1ogK) <0 (n—lgﬁ/“*” log K) — o(1)
by Assumption 1.4. A fourth simple condition is dxn'/?2 = o(1), the undersmoothing condi-
tion used in the existing nonparametric regression literature, for then n~! ((%(5 K)2q/ (9=4) log K =
0 <<nIC[Q(Q/(q_Q)y(q_Q)/(q_M log K) = o(1) by Assumption 1.4. The undersmoothing condition
requires, however, K — oo, unlike Assumption 1.5 which does not require K to diverge.

Assumption 1.6 bounds the asymptotic covariance matrix ayVkax away from singularity. A
sufficient (but not necessary) condition for Assumption 1.6 is )\min( I_(l/ 2SKQ;(1/ 2) > C. A
sufficient condition for the latter is O'ZZ > g2 > 0, which is the standard assumption in the previous

nonparametric sieve literature. Assumption 1.6 is much more general, allowing, for example for

2

0? = z? (which is not bounded away from 0), for o7 = 1(|z;| > 1) (Whlch allows 02 = 0 with

positive probability), and allows for components of B & (those not in a3 K) to converge at a faster

1/2 " The statement of Assumption 1.6 is not elegant but it is much milder, only requiring

~1/2.

than n™~

that the linear combination a'KE k does not converge faster than n

5 Distribution Theory

Our first distribution result is for the least-squares coefficient estimate B from (5).

Theorem 3. Under Assumption 1,
Vil ae (Bic = Bic) = ViVt Paic (Bic = Bic) + 0,(1)
—q N(0, Iy).

Theorem 3 shows that linear functions of the least-squares estimate BK are asymptotically
normal. The asymptotic distribution is centered at the projection coefficient Sx and the linear
combination O/KB\ i has the conventional asymptotic variance Vyg . This theorem includes paramet-
ric regression (fixed K') and nonparametric regression (increasing K') as special cases. The theorem

allows unbounded regressors and regression errors (¢ < oo and p < 00) as is typical in parametric



theory as well as bounded regressors and variances (¢ = oo and p = o0) as has previously been
assumed in the nonparametric theory. Theorem 1 shows that the assumption of boundedness is
unnecessary for asymptotic normality. Instead, conventional moment bounds can be used, with the
interesting implication that there is a trade-off between the number of finite moments ¢ and p and
the permitted number of regressors K.

Theorem 3 also shows that the asymptotic distribution is unaffected by estimation of the co-
variance matrix, and the assumptions for the theorem are unaffected.

Another new feature of Theorem 3 is that the distributional result concerns the projection errors
ex;, rather than the regression errors e;. This is an important distinction which has previously
separated the existing parametric and non-parametric literatures. By establishing a CLT using the
projection errors we are able to provide a foundation for a unified distribution theory.

Our second distribution result is for the plug-in parameter estimate fx from (6).

Theorem 4. Under Assumption 1,

~

Nl (§K —0+a (rK)) = Vv (aK —0+a (TK)) +0p(1)
—q N(0, Iy).

Theorem 4 shows that least-squares estimates of linear functionals are also asymptotically nor-
mal. The theorem includes parametric regression (fixed K) and nonparametric regression (in-
creasing K') as special cases. This is in contrast to the current literature on nonparametric sieve
estimation which invariably imposes the nonparametric assumption K — o0o. Theorem 4 provides a
richer distribution theory, by smoothly nesting the parametric and nonparametric cases. Theorem
4 shows that the appropriate asymptotic variance is Vo = a’KQ;(lE (x Kix'Kie%ﬁ) Ql}la & which de-
pends on the projection error eg;. This is an improvement on nonparametric sieve approximations
which use the smaller asymptotic variance a’KQI_(lE (a: sz’Kzef) Q;(la K Wwhich is only valid under
the nonparametric assumption K — oo and is a poorer finite sample approximation.

More importantly, Theorem 4 shows that the asymptotic distribution of the estimate éK is
centered at @ —a (7 ), not at the desired parameter value 6. The term a (rg) is the (finite-sample)
bias of the estimator §K. This bias decreases as K increases, but not in the parametric case of
fixed K. Conventional sieve asymptotic theory ignores the bias term a(rx) by imposing an under-
smoothing assumption such as /ndx — 0 or \/ﬁVQ;(l/ % (rg) — 0. An undersmoothing assumption
such as this is typical in the nonparametric sieve literature and allows the asymptotic distribution
in Theorem 4 to be written without the bias term a(rg). This is a deterioration in the asymptotic
approximation, not an improvement. Theorem 4 is a better asymptotic approximation, as it char-
acterizes the (asymptotic) bias in the nonparametric estimator due to inherent approximation in
nonparametric estimation.

The presence of the bias term a(rx) in Theorem 4 is identical to the common inclusion of bias
terms in the asymptotic distribution theory for nonparametric kernel estimation. Theorem 4 shows

that the bias term can similarly be included in nonparametric sieve asymptotic theory.



Theorem 4 also shows that the asymptotic distribution is unaffected by estimation of the co-

variance matrix.

6 Approximation Rates

In this section we give primitive conditions for the approximation in Assumption 1.3, which we

re-state here as

Bielﬂng l9(2i) — 2'kiB|,, < 0xc (11)

6.1 Series Moment Bound

Suppose that the regression function satisfies the series expansion g(z) = Z;’;l Bjz;(z) with
H:vj(zi)Hp < C < oo and |Bj| < Aj7° for a > 1. Set By = (b1, ..., BK) so that g(z) — @x;Bx =
> i k+1Bjwj(2i). Then by Minkowski’s inequality

nf [lo(z0) — B, < [lo(zi) — ok,

= > Bwi(z)

j=K+1

<C > |8l
j=K+1

C

a—1

p

<

K—(I

which is (11) with dx ~ K%,

6.2 Weighted Sup Norm

Let Z C R% denote the support of z;. Suppose that for some weight function function w : Z —

Rt
inf sup 9(:) = wc(2)'B <Y (12)
BERK sz w(z)
and
Jw(z)]l, < C. (13)

It is fairly straightforward to see that (12) and (13) imply (11) with 0x = Ck.

The norm in (12) is known as the weighted sup norm.

If Z is bounded and w(z) = 1 then (12) is the conventional uniform approximation and (13) is
automatically satisfied.

Chen, Hong and Tamer (2005) use (12) with w(z) = (1 + ||z]|*)“/2 to allow for regressors with
unbounded support. They do not discuss primitive conditions for (12). A theory of approximation

in weighted sup norm with this weight function is given in Chapter 6 of Triebel (2006).



We use (12)-(13) to provide a set of sufficient conditions for spline approximations with un-

bounded regressors in Section 6.5 below.

6.3 Polynomials

There is a rich literature in approximation theory (but apparantly unknown in econometrics)
giving conditions for polynomial weighted LP approximations which can be used to establish (11).
Assume d = 1 and let 2 (2) = (1,2,22,...,2571)

the monograph of Mhaskar (1996)

be powers of z. The following theorem is from

Proposition 1. (Mhaskar) If for some integers 1 < p < oo and s > 0, and for some a > 1 and

1/
A >0, g¢~Y(2) is absolutely continuous and (f ‘g(s)(z)’p exp (—A |z|a)>
is a ¢ < 00 such that for every integer K > s+ 1,

P
< C < 0, then there

1/p
inf </ |9(2) — 2% (2)B]" exp (A |2|*) dz) < cKs0=1e),
BERK

Mhaskar’s theorem can be used to directly imply a sufficient condition for (11).

Theorem 5. If z; has a density f(z) which satisfies f(z) < Cexp(—A|z|Y) for some C <
oo, a > 1, and A > 0, and for some integers s and p, 9(571)(2,) 18 absolutely continuous and
i {g(s)(z)}p e A" dz < C < o0, then (11) holds with 6x = O (K‘S(l_l/o‘)).

Theorem 5 requires the regressor z; to have a density with tails thinner than exponential, which
includes the Gaussian case (a = 2). The faster the decay rate a of the density, the faster the
rate of decay of the bias bound dx. In the limiting case & — oo (bounded regressors) we obtain
0 = O (K~*) which is the rate known for bounded polynomial support. However as o — 1 the rate
becomes arbitrarily slow. The intermediate Gaussian case (o = 2) yields the rate 6 = O (K s/ 2).

In the polynomial case we expect (x = O(K) so to satisfy Assumption 1.5 we need s(1—1/a)) >
1, or s > 2 in the case of Gaussian z;.

The assumptions require the st derivative of g(z) to satisfy the weighted L? bound J ‘ gt (z)‘ e~ AlEl" <
C. If the derivative is bounded, e.g. !g(s)(z)} < B < oo, then this requirement holds for all p, so
(11) holds with the uniform norm. The weighted LP bound is much weaker, allowing for functions
g(x) with unbounded derivatives. For example, Theorem 5 applies to the exponential regression

function g(z) = exp(az)

6.4 Multivariate Polynomials

Assume d > 1 and write z = (21,...,24). For integer m set K = m? and set zx(z) to be

the K x 1 vector of tensor products of (1,z;, 23, ...,z;-n_l). Write ¢(®)(2) = —azslasazsdg(z) where
Sy
s=(s1,"-+,8q) and set [s| = s1 + -+ s4. Let |z], = |z1]|" + -+ |z4]™.



Proposition 2. (Maioriv-Meir) If for some integers 1 < p < oo and s > 0, and for some o > 2
1/
and A >0, <f !g(s)(z)‘pexp(—A \z]a)) ! < C < oo for all s| < s then there is a ¢ < 0o such that

for every integer K,

1/p
inf (/\9(2)—x%(Z)B}pexp(—AIZIa)dZ> < cK—s(=1/a)/d
BERK

Theorem 6. If z; has a density f(z) which satisfies f(z) < Cexp(—Al|z|,) for some C < oo,
1/

a>2and A >0, and for some integers s and p, (f ‘g(s)(z)}p exp (—Alz|,) dz) 8 < C < o for

all |s| < s, then (11) holds with §x = O (K—s(1=1/a)/d),

6.5 Splines

Assume d = 1.

An s order polynomial takes the form p(z) = Py coz? 1. An s order spline with K + 1
evenly spaced knots on the interval [—b, b] is an sth order polynomial on each interval I i = [1j-1,75]
for j =1,..., K where 7; = —b + 2jb/K are called the knots, and the spline is constrained to have
continuous s — 2 derivatives. The spline is a piecewise polynomial.

There is a rich approximation literature for splines on bounded intervals [—b, b] but none (to my
knowledge) on unbounded sets such as R. We make such an extension. For each K we define the
spline as follows. For some A > 0 and a > 1 set b = BKY* and the knots 7; = —b 4 2jb/K. Then
an s order spline on R is an s*" order polynomial on each interval I i =I1j—1, 7] forj =0,..., K+1

where [y = (—o0, 9] and Ix 41 = [Tk, 00), and is contrained to have continuous s — 2 derivatives.

Theorem 7. Ifsup, !g(s)(z)} < C, sup, }g(sfl)(z)} < C and | zil| o5, < C < 00 then (11) holds with
S =0 (K—s(l—l/a))‘

This result complements that for polynomial approximation. The polynomial approximation
theorem impose weaker conditions on the regression function g(z) (it does not require boundedness
of the s derivative) but stronger moment conditions on the regressor z;. The latter are because a
polynomial necessarily requires that all moments of the regressor are finite, unlike a spline which
is only an s order power. The weaker derivative condition on the regression function is allowed
because of the rich literature on weighted polynomial approximation, while no analogous literature

appears to exist for spline approximations.

7 Matrix Convergence Proofs

In this section we provide the proofs for the matrix convergence results of Section 3. Our proofs
will making frequent use of a trimming argument which exploits the following simple (and classic)

inequality

10



Lemma 1. For any s > v and b > 0 such that E |U;|* < oo,

v E Uis
B (UL (U > 8) < 21

Proof

U‘S - S—vU U‘S - S—vU ]EUS
(010l > ) =5 (L o> ) <m (D o > ) < BEL

We now establish Theorem 1. We extend the convergence result for bounded matrices estab-
lished by Rudelson (1999) and Belloni, Chernozhukov, Chetverikov, and Kato (2014) to allow for
unbounded regressors, using a trimming argument. The trimming error is bounded off using an
L? bound when the regressors have four or greater moments, and using an L' bound when the

regressors have less than four moments.

Proof of Theorem 1. Set

I 1/(2s—2)
= s . 14
b < KlogK> (14)
(8) implies
- (s=2)/(s—1)
b log K 207D 160 K
L <§K o8 = o(1). (15)
n n
Define
—~ 1<
Mip = — ;Uiﬂél (uill < bx) (16)
— 1 <&
Moy = — ;uiug (J|ug]| > brc) . (17)
By the triangle inequality
E(Wn—ﬁn SEHMM—EMM +EHJ\72H—E]\/4\% . (18)
Take the first term on the right side of (18). Since |lu;1 (||uil| < br)|| < bx,
st sl < o) = sl (sl < b)) < B (19)

11



The assumption ||Eu;u}|| < px implies that

A

1 n
1Ml < ~ > Buuit (Jfuil] < bx)||
=1

-3 é%ﬁg]@ ((o/ui)2 L (JJuill < bK>)

n <
1 Zn 2
= E =1 (X’Oéa:)(l E (a ul)

1 n
= S [ Bui| < px. (20)
=1

Equations (15), (19), and (20) establish the conditions for Theorem 1 of Rudelson (1999) (or Lemma
6.2 of Belloni, Chernozhukov, Chetverikov, and Kato (2014)), which states

SO<J@%?Eu+um) 1)

= o (VT +7r) (22)

E HMM _ EMy,

by (15).
Now take the second term on the right side of (18). By the triangle inequality, Lemma 1, (7)
and (14),

1 n
< =S Bt (Juill > )|
=1

= 2 2B (P 1 sl > b))

12”:15\\%\\8
—2
nim Uk
Eie
= 752

b

s—2)/(2s—2
_(fﬁ/(s_2)logK>( )/(25—-2)

E H]/\Z%L - E]/\ZQH

IN

- =o(1) (23)
by (8) and s > 2.
Equations (18), (22), and (23) show (9).

To establish (10), again make the decomposition (18) but with bg = ;’(/(572)

. Equations (19),

12



(20) and (21) hold, implying

E Hﬁln - IE’]/w'\ln

25/(572)1 K
<0 \/@%(Hw) . (24)

Set
Ui = wiugd ([|uil| > b)) — B (usuil (|Jug]] > b)) -

Using the inequality ||A|]> = Amax (A’A) < tr (A’A), the fact that U; are independent and mean

zero, s > 4, Lemma 1, (7), and bg = §S/ - 2),

— — 2 — — — —
E HM2n — EM,| <Btr ((M2n - EM%) (MQn - EM%))

n

:% ZEtr (U:U;)

8 (ful 1l > b1)

| A

»
= Xn:Etr U;Us)
-

€k
nbi{4
5?(8/ (s—2)

IN

n

Using Liapunov’s inequality we conclude that

o 1/2 2s/(s—2)
) <y (25)

n

E HMQTL - EM2n

< <E HJ/\IQn - E]/\IQTL
Equations (18), (24), and (25) show (10). |

Proof of Theorem 2. Take any € > 0. For some 0 < 7 < 1 define the event
o= ([ 1] 25 <1}

The assumptions that H]\//T — IKH = Op (an) and a,, = o(1) imply that we can pick B < oo and n

sufﬁmently large so that P (E,) > 1 —e.
Since M is positive definite we can write Mn = H'AH where H'H = I and A = diag (A1, ..., Ax).

Then
|32, — Iic| = 11" (A = Tr0) H| = 1A = I = max, |3, —1].
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Thus the event FE,, implies

- — 1| < B <n.
11;%{\% | < Ban, <1

Combined with a Taylor expansion we find

Pl < e (1= )Pt 1 <l (1 =) Ba,.
max A7 —1] < Jr| (=)™ max A — 1] <r| (1 —n)"""" Bay

This implies that on event E,,

|35~ || = Nl (A = 1) ]| = m 35— 1] < Il (1= )™ B

Since P (E,) > 1 — ¢ this means H]\/i\,’; - IKH = Op (an) as claimed. [ |

8 Structure of Proofs of Theorems 3 and 4

We start by replacing the regressor vector x; with the orthogonalized vector z7%.,; = Ql_{l/ 2 Kis

and similarly replace ag with aj, = Ql}l/QaK, ax with @}, = aj (a%a*K)flﬂ, Sk and Vi with
Sk = }UQSKQI_{IM, Br with BF = }{/26;( and BF = }(/QBK. With this replacement, the
statistics of Theorems 3 and 4 remain unaltered. The only parts of Assumption 1 affected are parts

1 and 6. Since E (z7,z};) = Ik, we see that

=%l
VPmin (B (5,23,

and thus Assumption 1.1 for x; implies the same bound for z7j,. Since

lzkill, <¢
K

V >\min <QK) N

< ||| Neeill, =

QR SKkQy ax (%{Q}lal{)ilﬂ

EIKVKEK = (a’KQ;(laK)
= (ajlai) " aftSkai (ajlai)

—k/ Qk —x%
= axSkay

we see that Assumption 1.6 is unaffected by this replacement. Hence there is no loss of generality in
making this replacement, or equivalently in simply assuming that Qx = Ix. We will thus impose
this normalization for the remainder of the argument.

Now consider the statistics from Theorem 3. Define

and
Vak = Ay VicAg .

14



This is convenient normalization for then A} VxAx = I;. We find that
ViV Pl (Bic = Bic) = VAV Ak (Bi - B )
= VA (Bic = Bxc) + (V> = I ) Vadic (B — Bic) -

Since B = (X1 X)) ' X3V and Y = Xk Bk + ek,

Vi (Bre = Bic) = Vil (XiXi) ™ Xige
= A’K@[}lnfl/QX}(eK
= n"V2AL X eg + Al <@;<1 - IK> n Y2 X ex.

The results of Theorem 3 then follow from the following

nY2A X e —q N(0, 1) (27)
A (Qi! = i) ™ Xcerc = 0,(1) (28)
HVA Y2 _ IKH = 0,(1). (29)

These are shown in Lemmas 3, 4, and 5 below.

Now consider the statistic from Theorem 4. Since g = gx + 7k, then by linearity and (4)
0=a(gx)+a(rg)=axBr +alrg).
Thus
Ok — 0 = axfx — akBr — a(rk)

and

Vil (B = 0+ a(ri)) = ViV Pai (Bi - Bx)

which is identical to the statistic in Theorem 3. It follows that Lemmas 3-5 are sufficient to establish
both Theorems 3 and 4.
To establish these results, it will be convenient to establish a set of intermediate results, which

we list and prove here. We start by decomposing the projection error eg;. Define the projection

15



approximation error, the LP best approximation coefficients, LP approximation error, and differences

pii = 9(zi) — 2k () Br

B% = argmin ||g(z;) — l‘lmﬁup
BERK

rii = 9(2) — 33/Kz'5?<

*
Tki = PKi — TKi-

Then we have the decompositions

*
€Ki = € T PKi = € T TKi + Tk

Next, define the following vectors and matrices

n
~1/2
Ty =n"Y E TKi€
i1

n
~1/2
Ty =n~Y E TKiDKi
i—1

n
< -1 / 2
Sk =n E TKiTR;O;
i=1

1 n

o /2
Sk = " E TKiTKi€Ki
i=1

n

Z ’ /
=1

1

Qux = —
n

Lemma 2. Under Assumption 1 and Qg = I

1. |Ag|P < C!

2. lpxilly < lrkilly < llrkill, < 0k

8. il < llzkall 6x

b @i ] = 0, [ fEEE ) ant ] 0,0
~ 20/62) o0 K¢ _

A R e R e

6. |E(TinT},12)] = [Bxc]| = 0, (/7))

where Z = (21, ..., zn]

16



7 |8k =0n ()
8. HA’KS*'KAK - IKH =0,(1)

20/(4-2) |0 | —(9—4)/2q
g

n

o o =0 (6

Proof of Lemma 2.1. Recall from Assumption 1.6 the definition ax = ax (a’KaK)_I/Q. Then
since ||A'A| = [|AA|| and @y ax = Iy,

1
HAKH2 = ||lag (G,IKVKCLK) a’KH

= |lag (E/KVKEK) -1 E/K H

= | (@ Viax) " @heax (a}{VKaK)’l/QH

— | @k viar) |
= 1/>\min (E/KVKEK)
<c,

the final inequality using Assumption 1.6. |

Proof of Lemma 2.2. The first inequality holds since the projection coefficient Sx minimizes

the approximation error in L2. The second inequality is Liapunov’s. The final is Assumption 1.3.
|

Proof of Lemma 2.3. Since y; = @, 85 + €; + ki and E (x5 e;) = 0,

Tki = fB,Kz (Bi — Bk)
= o' (5}} - E (xKix/Ki)_l E (zKiyi))

-1
= 2B (zxivl)  B(wgirki) -

17



Thus by the Schwarz inequality, B (zk;2;) = Ik, the projection inequality, and Lemma 2.2

. -1 -1 1/2
7kl < M|z kil ‘E (rivi;) B (exity;)  B(vrirh)  B(zrirk)
/ r 1 1/2
= ||:EK1|| ‘E (rKisnKi)E(xKixKi) E(:EKiTKi)
1/2

<okl (Bri;)

< okl 0x
as stated. |
Proof of Lemma 2.4. Setting u; = x4, s = ¢ > 4, and {x = (k, and noting ||Exg;2’;|| = 1

we can apply Theorem 1 and Markov’s inequality to establish the bound for H@ xk—1 KH By
Assumption 1.4 and g > ¢ this bound is 0,(1). Then by the triangle inequality

HQKH < |k + HQK IKH <1+0, <\/52q/q 2 logK/n> = 0,(1)

as stated. |

Proof of Lemma 2.5. Since the bound in Lemma 2.4 is 0,(1), Theorem 2 establishes the bound

for @]}1 — IKH. The bound for @?H follows the same argument as for @KH |
Proof of Lemma 2.6. The first equality holds since
E(TlnT1n|Z ZZQ?[QJ}K] (eiej|Z) = Z:ﬂmazmo = Sk.

11]1

Now suppose that Assumption 1.2(a) holds. By the conditional Jensen inequality
2 p/2\ /P
loill, = (B (B (e 12))”*) " < Jlesll, < D (35)

for some D < co. Set v =2¢/(q —2) so that 1/v+1/q = 1/2, and note that since ||Exx;z’;|| =1,

18



Holder’s inequality, Assumption 1.1, and (35)

85| < |[B (exswiiot (loil < ¢/%2)) |+ B (oil 021 (ol > /7))
< YD 4 Bl (8 (071 (ol > Z2)))

oP 2/v
4/(p—2 4
<Gk (E (m))

K

2
4/(p— 2) Cr 2
= (K CIz{(w@/(pfz)D o

= (1+ D) o, (36)
Using Holder’s inequality, Assumption 1.1, and (35)
(E HfKiUth)l/t < Mlzkill, lloill, < D¢k
Theorem 1 with ug; = £xi0; and s = ¢ implies that
E[Sx — ESx]|| = o < n HE?KH) S (aa) (37)
where the final bound uses (36). Equations (36) and (37) imply that
ISkl < S — ESk| + [[ESk|| < 0p(¢" ) (38)

as claimed.
Alternatively, assume that Assumption 1.2(b) holds and thus o? < ¢2(0) where the latter is
defined in (51). Then using Lemma 2.4

HgKH < H@KH m?xa? < 0,(1) < Oy ;1(/(19—2).

as claimed. | |

Proof of Lemma 2.7. The proof is identical to that of Lemma 2.5, except that |e;| replaces o;.
Note that (35) applies to both. [

Proof of Lemma 2.8. Notice that

E (A'K§KAK) = Al SgAx = Ix.
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Suppose that Assumption 1.2(a) holds. Then

(=l akaried) " < Ikl Iz, ledl, < Dex
by Lemma 2.1, Assumption 1.1 and (35). Theorem 1 with ug; = A’Kx Ki¢; and s =t implies that
B | A Sk Ak — Iic|| = of
Markov’s inequality implies the stated result.

Now suppose that Assumpiton 1.2(b) holds. [Proof incomplete.] |

Proof of Lemma 2.9. Since zk;pk; is iid and mean zero, the definition px; = rx; + r);, and

the C, inequality

!/
1 n n
E|To|® =B |- (Z ﬂﬁKipKi) > TkjpK;
n\ix j=1
=B (lloill® v
< 28 (il ki) + 2B (lerill* ri2) (39)

We now examine the two terms on the right-side of (39). By Liapunov’s inequality, Holder’s

inequality, Assumption 1.1, and Lemma 2.2

2/t
B (lerill® i) < (B (loxil recl"))
< exill2 el
< (k% (40)

Applying the C, inequality to (33) and two applications of Lemma 2.2,
Ery2 < 2Bp%; + 2Er%,; < 40%. (41)

Then using (41), Lemma 2.3, Lemma 1, and Assumption 1.1,
* * 2 * 2
B (lloxil®ri2) = B (Jloxil®ri21 (losall < ) +B (ol rigt (lowill > 7))
2 -2 2)
<GB (132) + B (ol 1 (ol > /7)) 0%

<4 Dg2 | Y S

(C%(q_2))q_4
= 5¢/ s (42)
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Equation (39), (40), (42), and 2 < 2¢/(q — 2) imply

n

4/q-1
E || Ton||? < 1263/ P0% <O <<<8 20)/(a-2) <1ng<> )

where the second inequality uses Assumption 1.5 which implies 6% = O (C]}‘l (log K /n)4/ q71>.
Markov’s inequality establishes the result. |

Proof of Lemma 2.10. By the triangle inequality

Joue] <

Zwmm il 1 (sl < ¢i/7)

Z:ﬂm:ﬂm ||xKZ|| 1 <||$KZ|| > Cq/ q— 2)>

=1

< ¢ | Qx|
T Z ”szH 1 <||xKZ|| > Cq/(q 2) )

=1

The first term is O, (C;q/ (q72)) by Lemma 2.4. The expectation of the second term is bounded

(using Lemma 1) by C?(Q/ @2 4nd hence the term is Op ( ?(q/ (27‘1)> by Markov’s inequality. This
establishes the result. |

9 Central Limit Theory

In this section we establish equations (27) and (28) which establish asymptotic normality for the
non-studentized estimators. What is unconventional in the proof is that we apply the Lindeberg
condition separately to the three error components from the decomposition (34). This is useful as
they have differing moment properties. Also, our approach allows but does not require the number

of series terms K to diverge, and hence the approximation errors must be handled explicitly.
Lemma 3. Under Assumption 1 and Qx = I , n_1/2A’KX}(6K —q N(0, 1)

Proof: Take any n € R? such that 7'y = 1 and set ax = AgxA. By the Cramer-Wold device it is
sufficient to show that n—%/2 S dxkiexi —a N(0,1).
It will be convenient to observe that by the norm inequality ||AB| < ||A|l||B]|, |\||* = 1, and
Lemma 2.1
lac | < 1AK P [IA* < C

The Schwarz inequality then implies
2 —
(dkzri)” < O okl (43)
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Since the random variable o/ z ek is iid, mean zero, and unit variance, it is sufficient to verify

Lindeberg’s condition: that for any € > 0,
E [(O/KZL‘KZ'GKi)2 1 <(O/K:EKZ'€KZ‘)2 > 96%)} — 0.

By the C, inequality
ki <3 (e + 1 +77) -

This implies that the right-hand-side of (44) is bounded by 3 multiplied by

E [(O/KUUKZ')2 (612 + T%(i + 7”*1(21) 1 <(0/K33Kz‘)2 (612 + r%ﬁ + r}?l) > 35n>} .

The inequality
J

J J
Zaj 1 Zaj>b §2Zaj1(aj>b/J)
j=1 j=1

Jj=1

for a; > 0 shows that (46) is bounded by 2 times
B (o) et ((ofrsi) e > en)]
+E [(akxmﬁr%ﬁl <(0/me)2 T%{i > an)]
+E |:(O/I($KZ)2T;(211 ((QII(ZKZ‘)2T?<21- > gn)] i

The proof is completed by showing that (47)-(49) are op(1).

(44)

(45)

First, we show (47) supposing that Assumption 1.2(a) holds. Using (43), Lemma 1, Holder’s

inequality, Assumption 1.1, and |l¢;||,, < D for some D < oo by Assumption 1.2(a), (47) is bounded

by

E (|lzill" |eil")
C (enC)t=2/2
il lleilly

T C(enC)t72)/2

C7IE [llzil? 21 (Jlzkil?e? > nC) | <

2t/(t—2)\ (t—2)/2
. Dt K/( )
— Ct/2€(t—2)/2 n

= o(1).

the final bound by Assumption 1.4. Hence (47) is op(1).
Now consider (47) supposing instead that Assumption 1.2(b) holds. Define

0?(B) =supE [6?1 (e? > B) |z; = ]

22
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which satisfies 02(B) — 0 as B — 0o. Set bx = CZQ/(qQ) log K. Then (47) equals
K

E [(O/me)? 21 ((O/me)Q 2> 571) 1 (||:;;KZ~||2 < bKﬂ (52)
+E [(a'K:vKi)2e%1 ((O/K:L‘Ki)Qe? > 5n> 1 <HZL‘K1H2 > bK)} . (53)

Using (51), the first term (52) is bounded by

B [(alake) e?1 (2 > Cen/b)| = B [(O/KW)?E <e | (e > i—i”) !zlﬂ
<E [(O/me)w <@>}

bk

Cen
~llaxl?o? (52
K

< o(1)

since B (/g xx) = o B (@ KiTl;) 0K = lax|®. The final inequality holds since Assumption 1.4
implies b /n = n~1 ?/(q_z) log K = o(1), and |lag||*> < C!. Since E (€?]z:) < 0%(0) < oo and

using Lemma 1, the second term (53) is bounded by

OB (laxil® €21 (lawil® > bic ) ) = €7 (Jlamal*1 (el > b ) B (e2]2) )
< OO (Jlexil* 1 (el > b))

< C71o?(0) Cle

- bg_2)/2

= () — 0.
C (log K’)((I*?)/2

Together, these show that (47)=(52)+(53) is o0,(1), and thus under either Assumption 1.2(a) or

(b), (47) is 0p(1).
Second, take (48). Using (43), Lemma 1, Holder’s inequality, Assumption 1.1, and Lemma 2.2,

(48) is bounded by
E (|lzill’ |rxil")
C (enC)t=2/2

_ 1 2 kil il
S G2 2

1 2t/ (t—2) \ (=2)/2
< K 6t
= Ct/2(t—2)/2 ( n ) K

< o(1) (54)

OB el il (Jlexill* i > enC) | <

where the final inequality is Assumption 1.4 and 0x = O(1). Thus (48) is op(1).
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Now take (49). Using (43), Lemma 1, Lemma 2.3 and Assumption 1.1, (49) is bounded by

B (lleill 2 r5 )
C (6nc)(f1*4)/4

2
.1 EBlex|*y
= C1/4c(a—4)/4  pla—4)/4

—4)/4
1 ((C%(éK)Qq/(q—@)(q )/

C7'E [lleiil*ridL (lasill* v > enCs) | <

< Ciliza b/ n

=o0(1)

the final inequality by Assumption 1.5. Thus (49) is o,(1).
We have shown that (44) is bounded by 6 times the sum of (47)-(49) which are op(1). This
establishes Lindeberg’s condition, completing the proof. |

Lemma 4. Under Assumption 1 and Qg = Ik,
Ay (@'~ Irc) 7P X e = 0,(1)

Proof: Using (34),
A (O~ 1) n™ 2 X feerc = Run + Ran (55)

where Ry, = A (@;{1 — IK) Ty, and Ry, = Al (Q\;{l — IK) To,.
First take Ry,. We use four algebraic inequalities: (1) that for any matrix A4, ||A|> < tr AA’,

(2) for any K x d matrix A, any conformable matrix B and symmetric matrix C
tr (A'B'CBA) = tr (AA'B'CB) < tr (AA) |B'CB| < d||A|” |B|*|IC],

(3) for any d x d positive semi-definite matrix A, tr A < d|/Al|, and (4) the norm inequality
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|AB|| < ||A||||B]|. Using these results, conditioning, Lemma 2.1, Lemma 2.4, and Lemma 2.6,

) [HRMH?\Z} < E [tr R R}, | 7]

= tr [Ay (@4 — 1) B (1T, 12) (Q

<d HA'K (@;{1 - IK) E (T1,11,|Z) (@1}1 —

< dlaxl” @l - 1 18 (ati12) |

2q/(q—2
§ 10 ( Kq/(q )1ogK> O, 4/(p_2))
- C p n P\SK

2t/ (t—2)
SOp< % logK)

= op(1).

The fifth inequality in (56) holds since

- IK> AK}

1) 4

(56)

2t

2q 4 2qp — 8 < 2qp

—"— p— >~ p—
q—2 p—2 qp—2p—2q+4 = qp—2p—2q

and the final bound in (56) is Assumption 1.4.
Markov’s inequality implies that for any € > 0

B[l Bl 2]

pn =P ([[Binll > €]2) € ———=—= = 0,(1)

2

and since p,, is bounded, it follows that
P (||Rin|| > ¢) =Ep, — 0

and hence Ry, = o0p(1).

t—2

Now take Ra,. By the norm inequality, Lemma 2.1, Lemma 2.4 and Lemma 2.9,

| Ronll < 1 Ax | QR = Q|| 172n

IN

n K
_ 2/q
o ( ?{tz/(q 2) logK>
b n

2/ 160 ¢ log K
g 4— —2) ( log
0, [ 1/ 0, (C( 9/ )< ]

)2/q1/2)

where the final bound is implied by Assumption 1.4 and g > t. Thus (55) is 0p(1) as stated. [ |
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10 Covariance Matrix Estimation

In this section we establish (29), completing the proofs of Theorems 3 and 4. The main difficulty
is handling the presence of the OLS residuals. Existing theory has dealt with this issue by imposing
sufficient conditions to ensure uniform convergence of the regression function estimate, so that
the residuals are uniformly close to the true errors and thus their substitution is asymptotically
negligible. This approach requires substantially more restrictive assumptions. We avoid these
restrictions by instead writing out the covariance matrix estimators explicitly without using uniform

convergence bounds.

Lemma 5. Under Assumption 1 and Qg = I,

HXA/AK—IKH = 0,(1) (58)
and for any r
|Vixe = x| = 0p1) (59)

In particular, (59) with r = —1/2 is (29), which is required to complete the proofs of Theorems
3 and 4.

Proof: Since (59) follows directly from (58) by Theorem 2, the main difficult is in establishing
(58).
By the triangle inequality
HVAK - IKH < HA/KQ\[_(l (§K - §K) @[_(1AKH (60)

+ || Ak QR Sk QR Ak — I | (61)

~ ~ 2
Using €%, = €%, — 2exi; (BK — 51{) + (m’Kz (ﬁK — BK>) and the triangle inequality, the
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first term (60) equals

1
/ 1 1
K E TriTii (€ki — €ki) QK Ag
=1

~ 1 ~ ~
1 _1
KQx - § TRiT R EKiT <5K - /8K> Qx Ak
=1

+ ;(1% iﬂszlez <33IKz <BK — /3K>>2 @;(1141{

<2 [HA QSO Ak — IKH +1] 2

1/2

X

K Qe ZHSKHJKZ (331(@ (BK ﬁK))QQ}lAK

}(@}15 ; TRiT <:E/Kz <§K — BK))Q QrtAx| -

The final inequality uses the norm 1nequahty | X1 Xl < || X1 HX2H = HX1X1H1/2 [| X5X5 Hl/2 ap-
plied to the nx K matrices X; and X5 whose i** rows are szeKZQK A and o'y, (BK 5}{) szQK Ak,
respectively.

The second term (61) equals

S ] < ] 2 (85— 1) S|
+ |5 (@' - 1) Sie (' — 1) x|
HA SiAx — IKH
ot (07— )5 (@5 ) | St 1]
+ [ s (@' - 1) Sic (Qi' — 1) ]

To establish that (60)-(61) is op(1) it is sufficient to show the following three inequalities

HA’K§KAK — Ix|| = 0p(1) (62)

/KCA?;(I% zn:H?sz’m (xlm <BK - 5K>)2 Qx Ak || = op(1) (63)
=1

HA'K (@;(1 . Ik> Sk (@;(1 . Ik> Axl| = 0,(1). (64)

Equation (62) is Lemma 2.8.

27



We next show (63). Using
~ ~ 1 & oA
Pr — Pr = QKlﬁ > wxiei = n QR (Tin + Ton)
i=1

and the C,. inequality, we find

(s (B =) -

<

N 2
(x/KiQI_(l (Tin + T2n))
2

1
n
20, AN 2/, A
o (PhQii i) 0 (#6QidTon)

Thus (63) is bounded by 2 multiplied by

~ 1 n ~_ 2
/KQKIE Z TRiTKi (x,KiQKlTln> Qx' Ak (65)
i=1
o1 <& ~ 2
+ }(Q;{lm ZxKZ:L"KZ (x}{iQ;(lTQn> Q;{lAK . (66)
i=1

Take (65). By conditioning, Lemma 2.4, Lemma 2.6, and Lemma 2.10

~ 11 A 2 5
E /KQKIE ZszfU,Kz (x}{iQKlTln) QKIAK 1Z
=1
~ .1 & ~ ~ ~
< tr %Q}lﬁ > writhth QB (T, Z) Qe kiQy Ak
=1
~ 1 & 9 A ~ 2
< tr [ QR =5 > axia ol @t Axc | | Q|| 1B (7T 2)]
=1
1\ 1/(p-2)
2 2 —2
< Ak | = D el ol )| 0p (G102
=1
2q9/(q—2)
<

0, ( K n ) O,,( ;1</(p—2)>

C2t/(t72)
<O £
n

= op(1)

where the second-to-last inequality holds under (57). As discussed in the proof of Lemma 4, this
implies that (65) is 0p(1).
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Similarly for (66), using Lemma 2.4, Lemma 2.8, and Lemma 2.10

1 & 2

! A—1 / r A1 A—1

KY¥K 3 E TKilK; (fUKiQK T2n) Qk Ak
i=1

~ 4
< d||Ax]? |@= ] 1n)®

1 n
> > wridl el
=1

2q/(q—2 2q/(q—2 —(q—4)/2q
O ( Kq/(q ))O ( Kq/(q )logK>
P n P n

C2q/(q—2) (q+4)/2q

n

IN

IN

< Op(1)~

This establishes (63).
To complete the proof we establish (64). By the matrix norm inequality, Lemma 2.1, Lemma
2.4, and Lemma 2.7

HA/K (@}1 - Ik) Sk (@}1 - Ik:) AKH < || Ax|? H@fgl - IkH2 “gK“

/(a-2)
ng log K 4/(p—2
SOp(K - Op(}{/(p ))
2t/(t—2)
o, (2
= op(1)
again by (57) and Assumption 1.4. This is (64) as needed. [

11 Proof for Spline Approximation Theory

Proof of Theorem 7. (Sketch) We show that for a properly constructed weight function w(z),

9(z) — =k (2)'B

< —8(1—1/06)
o) <CK (67)

inf sup
BERK ez

and [Jw(z;)[|, < C. The result follows via the discussion of weighted sup norms.
Recall that b = BK/®. Let B be the coefficients of the best uniform spline approximation on

the interval [—b, b] with the coefficients for the intervals Iy and Ix; set to zero.

B% = argmin sup |g(z) — zx(2)'B] .
BERK  |2|<b
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Set gk (2) = zk (2)'B);. Since sup, !g } < C, then by the standard approximation properties of
splines (e.g. Corollary 6.21 of Schumaker (2007))

S
sup |g(z) — gr(2)] < C <ﬁ> — OBSK—s(1-1/a)
|2|<b K

Furthermore, for r =0,1,..., s

T b o sp—(s—r)(1-1/a
Sup ’9 gé()(z)‘ < Cy <E> = OB K1) < o
2|<b

where the final inequality is for sufficiently large K. This suggests that each segment of gx(z)
in the interval [—b,b] is an s** order polynomial with coefficients bounded across segments. The
assumption that sup, } g(sfl)(z)‘ < C also implies the function g(z) can be globally bounded by
a s'" order polynomial. Together, this means that we can globally bound g(z) and each segment
of gk (2) in the interval [—b,b] by a common s** order polynomial g(z) = Z] “oa; ]z, Since the
coefficients of gx(z) on the segment Iy equals the coefficients on I and similarly the coefficients
on Ix and Ix coincide, it follows the the polynomial coefficients for the segments Iy and Ix 41
are bounded by g(z) as well.
Now set w(z) = g(z) |2[* Y. Then

/ — ! Q%
inf sup g(Z)—/8’ < sup Z) J:K(Z) BK
PER¥ zc2 2€Z w(z)
< sup |w(z)]—1 CBSK*S(lfl/Oé) + 2 sup ’Z‘—s(a—l)
|z<b |2|>b
< (aachS + QB*S(O‘*U) Kfs(lfl/a)'
This is (67). Finally
s—1 1
l|w(z)| Zaﬁ <E|Z|J+sa 1))p ) Z
Jj=0 =0
is finite, as needed. ]
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