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1 Introduction

This paper presents simple and general conditions for asymptotic normality of least squares

estimators allowing for regressors vectors which expand with the sample size. Our assumptions

include series and sieve estimation of regression functions, and any context where the regressor set

increases with the sample size.

We focus on asymptotic normality of studentized linear functions of the coefficient vector and

regression function.

Our results are general and unified, in the sense that they include as special cases the conditions

for asymptotic normality obtained in much of the previous literature. Some of the important

features include the following. We allow the number of regressors  to be fixed or changing

as a function of sample size, thus including parametric and nonparametric regression as special

cases. We allow the regressors to be unbounded, which is a typical assumption in parametric

regression but this is its first appearance in nonparmetric sieve regression. We allow for conditional

heteroskedasticity, and do not require the conditional error variance to be bounded above zero nor

below infinity. Again this is commonplace in parametric regression but new in nonparametric sieve

theory.

We present two theorems concerning asymptotic normality. The first demonstrates the asymp-

totic normality of studentized linear functions of the coefficient vector. These are centered at the

linear projection coefficients and thus represent inference on the latter. This result is similar to

standard results for parametric regression.

Our second theorem demonstrates asymptotic normality of studentized linear functions of the

regression function. These estimates have a finite sample bias due to the finite- approximation

error. Our asymptotic theory is explicit concerning this bias instead of assuming its negligability

due to undersmoothing. We believe this to be a stronger distribution theory than one which assumes

away the bias via undersmoothing.

Ours are the first results for the asymptotic normality of sieve regression which use moment

conditions rather than boundedness. Bounded regressors and bounded variances appear as a special

limiting case. Our results show that there is an effective trade-off between the number of finite

moments and the allowable rate of expansion of the number of series terms. The previous literature

which imposed boundedness has missed this trade-off.

This paper builds on an extensive literature developing an asymptotic distribution theory for

series regression. Important contributions include Andrews (1991), Newey (1997), Chen and Shen

(1998), Huang (2003), Chen, et. al. (2014), Chen and Liao (2014), Belloni et. al. (2014), and Chen

and Christensen (2015). All of these papers assume bounded regressors and bounded conditional

variances, with the interesting exception of Chen and Christensen (2015) who allow unbounded re-

gressors but examine a trimmed least-squares estimator (which is effectively regression on bounded

regressors), and Chen and Shen (1998) whose results are confined to root-n estimable functions.

Chen and Shen (1998), Chen et. al. (2014) and Chen and Christensen (2015) allow for times series

observations (while this paper only concerns iid data), and Belloni et. al. (2014) also consider
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uniform asymptotic approximations (while the results in this paper are only pointwise).

A word on notation. Let min () and max () denote the smallest and largest eigenvalue of a

positive semidefinite matrix . Let kk = (max (
0))12 denote the spectral norm of a matrix

. Note that if  ≥ 0 then kk = max (). When applied to a  × 1 vector let kk = (0)12
denote the Euclidean norm. For  ≥ 1, let kk = (E kk)1 denote the  norm of a random

variable, vector, or matrix.

2 Least Squares Regression

Let ( )  = 1   be a sample of iid observations with  ∈ R. Define the conditional
mean () = E ( |  = ), the regression error  =  − (), the conditional variance 

2() =

E
¡
2 |  = 

¢
 and its realization 2 = 2()

Consider the estimation of () by approximate linear regression. For  = () let () be

a set of  × 1 transformations of the regressor . This can include a subset of observed variables
, transformations of  including basis function transformations, or combinations. For example,

when  ∈ R a power series approximation sets () =
¡
1   −1

¢
. Construct the regressors

 = ().

We approximate the conditional mean () by a linear function 0() for some  × 1
coefficient vector  . We can write this approximating model as

 = 0 +  (1)

The projection approximation defines the coefficient by linear projection

 =
¡
E
¡


0


¢¢−1 E ()  (2)

This has the properties that 0() is the best linear approximation (in 2) to (), and that

E () = 0

A vector-valued parameter of interest

 =  () ∈ R (3)

may be the regression function () at a fixed point  or some other linear function of  including

derivatives and integrals over . Linearity inplies that if we plug in the series approximation

()
0 into (3), then we obtain the approximating (or pseudo-true) parameter value

 =  () = 0 (4)

for some × matrix  . For example, if the parameter of interest is the regression function (),

then  = ().
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The standard estimator of (2) is least-squares of  on :

b = Ã X
=1


0


!−1 X
=1

 (5)

The corresponding estimator of () is

b() = ()
0b

and that of  is b =  (b) = 0 b  (6)

Define the covariance matrices

 = E
¡


0


¢
 = E

¡


0


2


¢
 = −1 

−1


 = 0 

Thus  and  are the conventional asymptotic covariance matrices for the estimators b andb for fixed 

The standard estimators for the above covariance matrices are

b =
1



X
=1


0


b = 1



X
=1


0
b2

b = b−1 b b−1b = 0 b
where b =  − 0

b are the OLS residuals.

3 Matrix Convergence Theory

In this section we describe an important convergence result for sample design matrices. Unlike

the existing literature, our convergence result does not require bounded regressors nor trimming.

Let ,  = 1   be a sequence of independent  × 1 vectors for  ≥ 2, and set c =
1


P
=1 

0
 and  =

1


P
=1 E

0
.
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Theorem 1. Suppose that for some   2 and some sequence of constants  and  that

kk ≤   (7)°°E0°° ≤  

and


2(−2)
 log


= (1) (8)

Then

E
°°°c −

°°° = 
³p

1 + 

´
 (9)

Furthermore, if  ≥ 4 then

E
°°°c −

°°° = 

⎛⎝
s


2(−2)
 log


(1 + )

⎞⎠  (10)

The proof of Theorem 1 builds on Theorem 1 of Rudelson (1999) and Lemma 6.2 of Belloni,

Chernozhukov, Chetverikov, and Kato (2014) which treat the case of the deterministic bound kk ≤
∗ . Existing convergence theory similarly require deterministic bounds. When the regressors are
basis transformation of a random variable  with bounded support then the rates for 

∗
 are known

for common sieve transformations, for example, ∗ = () for power series and ∗ = (12) for

splines. In these cases we can set  = ∞ and  = ∗ and (8) simplifies to −12 log = (1),

which is identical to that obtained by Lemma 6.2 of Belloni, Chernozhukov, Chetverikov, and Kato

(2014) and the in-probability analog of Lemma 2.1 of Chen and Christensen (2015).

The moment bound (7) is an important generalization of the deterministic bound, and in par-

ticular allows for regressors with unbounded support. An example for (7) is when the regressors

have a uniformly bounded  moment. Suppose that  = (1  )
0 and kk ≤   ∞.

Then an application of Minkowski’s inequality implies (7) with  = 12. This is the same rate

as obtained, for example, by splines with bounded regressors.

The rate (8) shows that there is a trade-off between the number of finite moments and the

allowable rate of divergence of the dimension . As  ↓ 2 the allowable rate (8) slows to fixed
, and as  → ∞, the allowable rate increases. The moment bounds (9) and (10) imply that°°°c −

°°° = (), with  a function of the rate in (8) when  ≥ 4. The difference when

 ≥ 4 is that the latter calculation involves the variance of the sample mean c (which requires

finite fourth moments) which is able to exploit standard orthogonality properties. When   4 the

bound uses a more primitive calculation and hence obtains a less tight rate.

The bounds (9) and (10) depend on the norm of the covariance matrix E0. In most appli-
cations this is either assumed bounded or the bounds (9) and (10) are applied to orthogonalized

sequences so  is bounded and can be omitted from these expressions.

Convergence results are often applied to the inverses of normalized moment matrices. Our next
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result provides a simple demonstration that inverses and square roots of normalized matrices inherit

the same convergence rate.

Theorem 2. Let c be a sequence of positive definite  × matrices. If
°°°c − 

°°° =  () 

and  = (1), then for any , °°°c
 − 

°°° =  () 

4 Assumptions

We now list the assumptions which are sufficient for asymptotic normality of the studentized

estimators.

Assumption 1. For some   4 and   2 such that 1 + 1 = 1  12,

1.
kkp
min ()

≤ 

2. Either

(a) kk ∞
or

(b) lim→∞ sup E
¡
2 1

¡
2 ≥ 

¢ | = 
¢
= 0

3. inf∈R k()− 0k ≤  = (1)

4. −12(−2) log = (1)

5. −1
¡
2

¢2(−4)
log = (1)

6. min (
0
) ≥   0 where  = 

¡
0

−1
 

¢−12
and  is defined in (4).

Assumption 1.1 states that the regressors are bounded in the  norm. The bound  is

increasing as the regressor set expands (typically at rate 12 or ) and this rate will in part

determine the allowable rate of divergence for . Assumption 1.1 normalizes the  norm of the

regressor by the square root of the smallest eigenvalue of the design matrix so that the assumption

is invariant to rescaling.

Assumption 1.2 bounds the regression error  using either the unconditional 
 moment, or

a conditional uniform square integrability bound. A sufficient condition for the latter is that

E
³
||2+ |

´
is uniformly bounded for some   0.

Assumption 1.3 bounds the approximation error in the  norm. The  norm is weaker than

the uniform norm which is conventional in the sieve literature. The  norm allows the regressors

to have unbounded support. For the bound in Assumption 1.3 to exist, a sufficient condition is

E |()|  ∞, for which a sufficient condition is E ||  ∞, which also implies Assumption
1.2(a). Explicit rates for the approximation error  will be derived in Section 6.
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Assumption 1.4 controls the rate of growth of the number of regressors . The allowable rate

is increasing in . Note that when  =  then  = 2. As  and  diverge to infinity the rate

simplifes to −12 log = (1) which is the rate obtained by Chen and Christensen (2015) under

the assumption of bounded regressors ( =∞) and uniform approximation error bounds ( =∞).
As →∞, the rate in Assumption 1.4 simplifies to −12(−2) log = (1) and similarly when

 →∞ it simplifies to −12(−2) log = (1).

Assumption 1.5 also controls the rate of growth of, and trades off both the rate of growth in the

regressor norms  and approximation errors   A simple sufficient condition for Assumption 1.5

is  ≤ 4. (For then −1
¡
2

¢2(−4)
log ≤ 

³
−14(−4) log

´
≤ 

³
−12(−2) log

´
=

(1) by Assumption 1.4.). Another simple condition is −14(−4) log = (1) (a strengthening

of Assumption 1.4 which avoids conditions on ). A third simple condition is  = (1) and

 ≥  for then −1
¡
2

¢2(−4)
log ≤ 

³
−12(−4) log

´
≤ 

³
−12(−2) log

´
= (1)

by Assumption 1.4. A fourth simple condition is 
12 = (1) the undersmoothing condi-

tion used in the existing nonparametric regression literature, for then −1
¡
2

¢2(−4)
log =



µ³
−12(−2)

´2(−2)(−4)
log

¶
= (1) by Assumption 1.4. The undersmoothing condition

requires, however,  →∞, unlike Assumption 1.5 which does not require  to diverge.

Assumption 1.6 bounds the asymptotic covariance matrix 0 away from singularity. A

sufficient (but not necessary) condition for Assumption 1.6 is min

³

−12
 

−12


´
≥ . A

sufficient condition for the latter is 2 ≥ 2  0, which is the standard assumption in the previous

nonparametric sieve literature. Assumption 1.6 is much more general, allowing, for example, for

2 = 2 (which is not bounded away from 0), for 2 = 1(|| ≥ 1) (which allows 2 = 0 with

positive probability), and allows for components of b (those not in 0 b) to converge at a faster
than −12. The statement of Assumption 1.6 is not elegant but it is much milder, only requiring
that the linear combination 0 b does not converge faster than −12.

5 Distribution Theory

Our first distribution result is for the least-squares coefficient estimate b from (5).

Theorem 3. Under Assumption 1,

√
b −12 0

³b − 

´
=
√


−12
 0

³b − 

´
+ (1)

−→ (0 )

Theorem 3 shows that linear functions of the least-squares estimate b are asymptotically

normal. The asymptotic distribution is centered at the projection coefficient  and the linear

combination 0 b has the conventional asymptotic variance   This theorem includes paramet-
ric regression (fixed ) and nonparametric regression (increasing ) as special cases. The theorem

allows unbounded regressors and regression errors ( ∞ and  ∞) as is typical in parametric
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theory as well as bounded regressors and variances ( = ∞ and  = ∞) as has previously been
assumed in the nonparametric theory. Theorem 1 shows that the assumption of boundedness is

unnecessary for asymptotic normality. Instead, conventional moment bounds can be used, with the

interesting implication that there is a trade-off between the number of finite moments  and  and

the permitted number of regressors .

Theorem 3 also shows that the asymptotic distribution is unaffected by estimation of the co-

variance matrix, and the assumptions for the theorem are unaffected.

Another new feature of Theorem 3 is that the distributional result concerns the projection errors

, rather than the regression errors . This is an important distinction which has previously

separated the existing parametric and non-parametric literatures. By establishing a CLT using the

projection errors we are able to provide a foundation for a unified distribution theory.

Our second distribution result is for the plug-in parameter estimate b from (6).

Theorem 4. Under Assumption 1,

√
b −12

³b −  +  ()
´
=
√


−12


³b −  +  ()
´
+ (1)

−→ (0 )

Theorem 4 shows that least-squares estimates of linear functionals are also asymptotically nor-

mal. The theorem includes parametric regression (fixed ) and nonparametric regression (in-

creasing ) as special cases. This is in contrast to the current literature on nonparametric sieve

estimation which invariably imposes the nonparametric assumption  →∞. Theorem 4 provides a
richer distribution theory, by smoothly nesting the parametric and nonparametric cases. Theorem

4 shows that the appropriate asymptotic variance is  = 0
−1
 E

¡


0


2


¢
−1  which de-

pends on the projection error  This is an improvement on nonparametric sieve approximations

which use the smaller asymptotic variance 0
−1
 E

¡


0


2


¢
−1  which is only valid under

the nonparametric assumption  →∞ and is a poorer finite sample approximation.

More importantly, Theorem 4 shows that the asymptotic distribution of the estimate b is

centered at − (), not at the desired parameter value . The term  () is the (finite-sample)

bias of the estimator b . This bias decreases as  increases, but not in the parametric case of

fixed . Conventional sieve asymptotic theory ignores the bias term () by imposing an under-

smoothing assumption such as
√
 → 0 or

√


−12
  ()→ 0. An undersmoothing assumption

such as this is typical in the nonparametric sieve literature and allows the asymptotic distribution

in Theorem 4 to be written without the bias term () This is a deterioration in the asymptotic

approximation, not an improvement. Theorem 4 is a better asymptotic approximation, as it char-

acterizes the (asymptotic) bias in the nonparametric estimator due to inherent approximation in

nonparametric estimation.

The presence of the bias term () in Theorem 4 is identical to the common inclusion of bias

terms in the asymptotic distribution theory for nonparametric kernel estimation. Theorem 4 shows

that the bias term can similarly be included in nonparametric sieve asymptotic theory.
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Theorem 4 also shows that the asymptotic distribution is unaffected by estimation of the co-

variance matrix.

6 Approximation Rates

In this section we give primitive conditions for the approximation in Assumption 1.3, which we

re-state here as

inf
∈R

°°()− 0
°°

≤  (11)

6.1 Series Moment Bound

Suppose that the regression function satisfies the series expansion () =
P∞

=1 () with

k()k ≤   ∞ and | | ≤ − for   1. Set β = (1  ) so that () − 0β =P∞
=+1 (). Then by Minkowski’s inequality

inf
∈R

°°()− 0
°°

≤
°°()− 0β

°°


=

°°°°°°
∞X

=+1

()

°°°°°°


≤ 

∞X
=+1

| |

≤ 

− 1
−

which is (11) with  ∼ −.

6.2 Weighted Sup Norm

Let Z ⊂ R denote the support of . Suppose that for some weight function function  : Z →
R+

inf
∈R

sup
∈Z

¯̄̄̄
()− ()

0
()

¯̄̄̄
≤  (12)

and

k()k ≤  (13)

It is fairly straightforward to see that (12) and (13) imply (11) with  =  .

The norm in (12) is known as the weighted sup norm.

If Z is bounded and () = 1 then (12) is the conventional uniform approximation and (13) is

automatically satisfied.

Chen, Hong and Tamer (2005) use (12) with () = (1 + kk2)2 to allow for regressors with
unbounded support. They do not discuss primitive conditions for (12). A theory of approximation

in weighted sup norm with this weight function is given in Chapter 6 of Triebel (2006).
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We use (12)-(13) to provide a set of sufficient conditions for spline approximations with un-

bounded regressors in Section 6.5 below.

6.3 Polynomials

There is a rich literature in approximation theory (but apparantly unknown in econometrics)

giving conditions for polynomial weighted  approximations which can be used to establish (11).

Assume  = 1 and let () = (1  
2  −1) be powers of . The following theorem is from

the monograph of Mhaskar (1996)

Proposition 1. (Mhaskar) If for some integers 1 ≤  ≤ ∞ and  ≥ 0, and for some   1 and

  0, (−1)() is absolutely continuous and
³R ¯̄

()()
¯̄
exp (− ||)

´1
≤  ∞, then there

is a  ∞ such that for every integer  ≥ + 1,

inf
∈R

µZ ¯̄
()− 0()

¯̄
exp (− ||) 

¶1
≤ −(1−1)

Mhaskar’s theorem can be used to directly imply a sufficient condition for (11).

Theorem 5. If  has a density () which satisfies () ≤  exp (− ||) for some  

∞,   1 and   0, and for some integers  and , (−1)() is absolutely continuous andR ¯̄
()()

¯̄
−||



 ≤  ∞, then (11) holds with  = 
¡
−(1−1)¢.

Theorem 5 requires the regressor  to have a density with tails thinner than exponential, which

includes the Gaussian case ( = 2). The faster the decay rate  of the density, the faster the

rate of decay of the bias bound  . In the limiting case  → ∞ (bounded regressors) we obtain

 =  (−) which is the rate known for bounded polynomial support. However as → 1 the rate

becomes arbitrarily slow. The intermediate Gaussian case ( = 2) yields the rate  = 
¡
−2¢.

In the polynomial case we expect  = () so to satisfy Assumption 1.5 we need (1−1) ≥
1, or  ≥ 2 in the case of Gaussian .

The assumptions require the  derivative of () to satisfy the weighted  bound
R ¯̄

()()
¯̄
−||

 ≤
. If the derivative is bounded, e.g.

¯̄
()()

¯̄
≤   ∞, then this requirement holds for all , so

(11) holds with the uniform norm. The weighted  bound is much weaker, allowing for functions

() with unbounded derivatives. For example, Theorem 5 applies to the exponential regression

function () = exp()

6.4 Multivariate Polynomials

Assume   1 and write  = (1  ). For integer  set  =  and set () to be

the  × 1 vector of tensor products of (1   2   −1 ). Write (s)() = 


1
1 ···




() where

s = (1 · · ·  ) and set |s| = 1 + · · ·+ . Let || = |1| + · · ·+ ||.
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Proposition 2. (Maioriv-Meir) If for some integers 1 ≤  ≤ ∞ and  ≥ 0, and for some  ≥ 2
and   0

³R ¯̄
(s)()

¯̄
exp (− ||)

´1
≤  ∞ for all |s| ≤  then there is a  ∞ such that

for every integer ,

inf
∈R

µZ ¯̄
()− 0()

¯̄
exp (− ||) 

¶1
≤ −(1−1)

Theorem 6. If  has a density () which satisfies () ≤  exp (− ||) for some   ∞,
 ≥ 2 and   0, and for some integers  and ,

³R ¯̄
(s)()

¯̄
exp (− ||) 

´1
≤   ∞ for

all |s| ≤ , then (11) holds with  = 
¡
−(1−1)¢.

6.5 Splines

Assume  = 1.

An  order polynomial takes the form () =
P

=1 0
−1. An  order spline with  + 1

evenly spaced knots on the interval [− ] is an  order polynomial on each interval  = [−1  ]
for  = 1  where  = −+ 2 are called the knots, and the spline is constrained to have

continuous − 2 derivatives. The spline is a piecewise polynomial.
There is a rich approximation literature for splines on bounded intervals [− ] but none (to my

knowledge) on unbounded sets such as R. We make such an extension. For each  we define the

spline as follows. For some   0 and   1 set  = 1 and the knots  = −+2. Then
an  order spline on R is an  order polynomial on each interval  = [−1  ] for  = 0 +1
where 0 = (−∞ 0] and +1 = [ ∞), and is contrained to have continuous − 2 derivatives.

Theorem 7. If sup
¯̄
()()

¯̄
≤ , sup

¯̄
(−1)()

¯̄
≤  and kk ≤  ∞ then (11) holds with

 = 
¡
−(1−1)¢.

This result complements that for polynomial approximation. The polynomial approximation

theorem impose weaker conditions on the regression function () (it does not require boundedness

of the  derivative) but stronger moment conditions on the regressor . The latter are because a

polynomial necessarily requires that all moments of the regressor are finite, unlike a spline which

is only an  order power. The weaker derivative condition on the regression function is allowed

because of the rich literature on weighted polynomial approximation, while no analogous literature

appears to exist for spline approximations.

7 Matrix Convergence Proofs

In this section we provide the proofs for the matrix convergence results of Section 3. Our proofs

will making frequent use of a trimming argument which exploits the following simple (and classic)

inequality
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Lemma 1. For any  ≥  and   0 such that E || ∞,

E (|| 1 (||  )) ≤ E ||
−

Proof

E (|| 1 (||  )) = E
µ ||
||−

1
¡||−  −

¢¶ ≤ Eµ ||
−

1
¡||−  −

¢¶ ≤ E ||
−



¥

We now establish Theorem 1. We extend the convergence result for bounded matrices estab-

lished by Rudelson (1999) and Belloni, Chernozhukov, Chetverikov, and Kato (2014) to allow for

unbounded regressors, using a trimming argument. The trimming error is bounded off using an

2 bound when the regressors have four or greater moments, and using an 1 bound when the

regressors have less than four moments.

Proof of Theorem 1. Set

 =

µ
2



log

¶1(2−2)
 (14)

(8) implies

2 log


=

Ã

2(−2)
 log



!(−2)(−1)
= (1) (15)

Define

c1 =
1



X
=1


0
1 (kk ≤ ) (16)

c2 =
1



X
=1


0
1 (kk  )  (17)

By the triangle inequality

E
°°°c −

°°° ≤ E°°°c1 − Ec1

°°°+ E°°°c2 − Ec2

°°°  (18)

Take the first term on the right side of (18). Since k1 (kk ≤ )k ≤  °°01 (kk ≤ )
°° = k1 (kk ≤ )k2 ≤ 2  (19)
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The assumption kE0k ≤  implies that

k1k ≤ 1



X
=1

°°E01 (kk ≤ )
°°

=
1



X
=1

max
0=1

E
³¡
0

¢2
1 (kk ≤ )

´
≤ 1



X
=1

max
0=1

E
¡
0

¢2
=
1



X
=1

°°E0°° ≤   (20)

Equations (15), (19), and (20) establish the conditions for Theorem 1 of Rudelson (1999) (or Lemma

6.2 of Belloni, Chernozhukov, Chetverikov, and Kato (2014)), which states

E
°°°c1 − Ec1

°°° ≤ 

Ãr
2 log


(1 + )

!
(21)

= 
³p

(1 + )
´

(22)

by (15).

Now take the second term on the right side of (18). By the triangle inequality, Lemma 1, (7)

and (14),

E
°°°c2 − Ec2

°°° ≤ 1



X
=1

E
°°01 (kk  )

°°
=
1



X
=1

E
³
kk2 1 (kk  )

´
≤ 1



X
=1

E kk
−2

≤ 

−2

=

Ã

2(−2)
 log



!(−2)(2−2)
= (1) (23)

by (8) and   2.

Equations (18), (22), and (23) show (9).

To establish (10), again make the decomposition (18) but with  = 
(−2)
 . Equations (19),
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(20) and (21) hold, implying

E
°°°c1 − Ec1

°°° ≤ 

⎛⎝
s


2(−2)
 log


(1 + )

⎞⎠  (24)

Set

 = 
0
1 (kk  )− E

¡


0
1 (kk  )

¢


Using the inequality kk2 = max (
0) ≤ tr (0), the fact that  are independent and mean

zero,  ≥ 4, Lemma 1, (7), and  = 
(−2)
 ,

E
°°°c2 − Ec2

°°°2 ≤ E tr³³c2 − Ec2

´³c2 − Ec2

´´
=
1

2

X
=1

X
=1

E tr ()

=
1

2

X
=1

E tr ()

≤ 1

2

X
=1

E
³
kk4 1 (kk  )

´
≤ 

−4

=

2(−2)





Using Liapunov’s inequality we conclude that

E
°°°c2 − Ec2

°°° ≤ µE°°°c2 − Ec2

°°°2¶12 ≤
s


2(−2)



 (25)

Equations (18), (24), and (25) show (10). ¥

Proof of Theorem 2. Take any   0. For some 0    1 define the event

 =
n°°°c − 

°°° ≤  ≤ 
o


The assumptions that
°°°c − 

°°° =  () and  = (1) imply that we can pick  ∞ and 

sufficiently large so that  () ≥ 1− .

Since c is positive definite we can write c =  0Λ where 0 =  and Λ = diag (1  ).

Then °°°c − 

°°° = °° 0 (Λ− )
°° = kΛ− k = max

1≤≤
| − 1| 
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Thus the event  implies

max
1≤≤

| − 1| ≤  ≤ 

Combined with a Taylor expansion we find

max
1≤≤

¯̄
 − 1

¯̄
≤ || (1− )−|−1| max

1≤≤
| − 1| ≤ || (1− )−|−1|

This implies that on event ,°°°c 
 − 

°°° = °° 0 (Λ − )
°° = max

1≤≤
¯̄
 − 1

¯̄
≤ || (1− )−|−1|

Since  () ≥ 1−  this means
°°°c 

 − 

°°° =  () as claimed. ¥

8 Structure of Proofs of Theorems 3 and 4

We start by replacing the regressor vector  with the orthogonalized vector 
∗
 = 

−12
 ,

and similarly replace  with ∗ = 
−12
  ,  with ∗ = ∗ (

∗0


∗
)
−12

,  and  with

∗ = 
−12
 

−12
 ,  with ∗ = 

12
  and b∗ = 

12

b . With this replacement, the

statistics of Theorems 3 and 4 remain unaltered. The only parts of Assumption 1 affected are parts

1 and 6. Since E (∗
∗0
) =  , we see that

k∗kq
min

¡
E
¡
∗

∗0


¢¢ ≤ °°°−12

°°° kk =
kkp
min ()

≤ 

and thus Assumption 1.1 for  implies the same bound for 
∗
. Since

0 =
¡
0

−1
 

¢−12
0

−1
 

−1
 

¡
0

−1
 

¢−12
=
¡
∗0

∗


¢−12
∗0

∗


∗


¡
∗0

∗


¢−12
= ∗0

∗


∗


we see that Assumption 1.6 is unaffected by this replacement. Hence there is no loss of generality in

making this replacement, or equivalently in simply assuming that  =  . We will thus impose

this normalization for the remainder of the argument.

Now consider the statistics from Theorem 3. Define

 = 
−12
 (26)

and b = 0 b 

14



This is convenient normalization for then 0 = . We find that

√
b −12 0

³b − 

´
=
√
b −12 0

³b − 

´
=
√
0

³b − 

´
+
³b −12 − 

´√
0

³b − 

´


Since b = ( 0
)

−1
 0
 and  =  +  ,

√
0

³b − 

´
=
√
0

¡
 0


¢−1
 0


= 0 b−1 −12 0


= −120
0
 +0

³ b−1 − 

´
−12 0

 

The results of Theorem 3 then follow from the following

−120
0
 −→ (0 ) (27)

0
³ b−1 − 

´
−12 0

 = (1) (28)°°°b −12 − 

°°° = (1) (29)

These are shown in Lemmas 3, 4, and 5 below.

Now consider the statistic from Theorem 4. Since  =  +  , then by linearity and (4)

 =  () +  () = 0 +  () 

Thus b −  = 0 b − 0 −  ()

and √
b −12

³b −  +  ()
´
=
√
b −12 0

³b − 

´
which is identical to the statistic in Theorem 3. It follows that Lemmas 3-5 are sufficient to establish

both Theorems 3 and 4.

To establish these results, it will be convenient to establish a set of intermediate results, which

we list and prove here. We start by decomposing the projection error . Define the projection

15



approximation error, the  best approximation coefficients,  approximation error, and differences

 = ()− ()
0 (30)

∗ = argmin
∈R

°°()− 0
°°


(31)

 = ()− 0
∗
 (32)

∗ =  −  (33)

Then we have the decompositions

 =  +  =  +  + ∗ (34)

Next, define the following vectors and matrices

1 = −12
X
=1



2 = −12
X
=1



 = −1
X
=1


0


2


e = 1



X
=1


0


2


b4 = 1



X
=1


0


¡
0

¢


Lemma 2. Under Assumption 1 and  = 

1. kk2 ≤ −1

2. kk2 ≤ kk2 ≤ kk ≤ 

3. |∗| ≤ kk 

4.
°°° b − 

°°° = 

⎛⎝s
2(−2)
 log



⎞⎠ and
°°° b

°°° =  (1)

5.
°°° b−1 − 

°°° = 

⎛⎝s
2(−2)
 log



⎞⎠ and
°°° b−1 °°° =  (1)

6. kE (1 01|)k =
°°

°° = 

³

4(−2)


´
where  = [1  ]

16



7.
°°°e°°° = 

³

4(−2)


´
8.
°°°0 e − 

°°° =  (1)

9. k2k = 

⎛⎝Ã
2(−2)
 log



!−(−4)2⎞⎠
10.

°°° b4°°° = 

³

2(−2)


´

Proof of Lemma 2.1. Recall from Assumption 1.6 the definition  =  (
0
)

−12
. Then

since k0k = k0k and 0 = ,

kk2 =
°°° ¡0¢−1 0°°°

=
°°° ¡0¢−1 0°°°

=
°°°¡0¢−12 0 ¡0¢−12°°°

=
°°°¡0¢−1°°°

= 1min
¡
0

¢
≤ −1

the final inequality using Assumption 1.6. ¥

Proof of Lemma 2.2. The first inequality holds since the projection coefficient  minimizes

the approximation error in 2. The second inequality is Liapunov’s. The final is Assumption 1.3.

¥

Proof of Lemma 2.3. Since  = 0
∗
 +  +  and E () = 0,

∗ = 0 (
∗
 − )

= 0

³
∗ − E

¡


0


¢−1 E ()
´

= −0E
¡


0


¢−1 E () 

17



Thus by the Schwarz inequality, E (
0
) =  , the projection inequality, and Lemma 2.2

|∗| ≤ kk
¯̄̄
E
¡


0


¢
E
¡


0


¢−1 E ¡
0


¢−1 E ()
¯̄̄12

= kk
¯̄̄
E
¡


0


¢
E
¡


0


¢−1 E ()
¯̄̄12

≤ kk
¡
E2

¢12
≤ kk 

as stated. ¥

Proof of Lemma 2.4. Setting  = ,  =   4, and  =  , and noting kE
0
k = 1

we can apply Theorem 1 and Markov’s inequality to establish the bound for
°°° b − 

°°°. By

Assumption 1.4 and  ≥  this bound is (1). Then by the triangle inequality°°° b

°°° ≤ kk+ °°° b − 

°°° ≤ 1 +

µq

2(−2)
 log

¶
= (1)

as stated. ¥

Proof of Lemma 2.5. Since the bound in Lemma 2.4 is (1), Theorem 2 establishes the bound

for
°°° b−1 − 

°°°. The bound for°°° b−1 °°° follows the same argument as for °°° b

°°°. ¥

Proof of Lemma 2.6. The first equality holds since

E
¡
1

0
1|

¢
=
1



X
=1

X
=1


0
E ( |) =

1



X
=1


0


2
 =  

Now suppose that Assumption 1.2(a) holds. By the conditional Jensen inequality

kk =
³
E
¡
E
¡
2 | 

¢¢2´1 ≤ kk ≤  (35)

for some  ∞. Set  = 2(− 2) so that 1+1 = 12, and note that since kE
0
k = 1,

18



Holder’s inequality, Assumption 1.1, and (35)°°E

°° ≤ °°°E³
0


2
 1
³
kk ≤ 

2(−2)


´´°°°+ E³kk2 2 1
³
kk  

2(−2)


´´
≤ 

4(−2)
 + (E kk)2

³
E
³
 1

³
kk  

2(−2)


´´´2
≤ 

4(−2)
 + 2

Ã
E

Ã





2(−)(−2)


!!2
≤ 

4(−2)
 +

2


2(−4)(−2)


2

=
³
1 +2

´

4(−2)
  (36)

Using Holder’s inequality, Assumption 1.1, and (35)

¡
E kk

¢1 ≤ kk kk ≤  

Theorem 1 with  =  and  =  implies that

E
°° − E

°° = 

µq
1 +

°°E

°°¶ = 
³

2(−2)


´
(37)

where the final bound uses (36). Equations (36) and (37) imply that°°

°° ≤ °° − E

°°+ °°E

°° ≤ (
4(−2)
 ) (38)

as claimed.

Alternatively, assume that Assumption 1.2(b) holds and thus 2 ≤ 2(0) where the latter is

defined in (51). Then using Lemma 2.4°°

°° ≤ °°° b

°°°max


2 ≤ (1) ≤ (
4(−2)
 

as claimed. ¥

Proof of Lemma 2.7. The proof is identical to that of Lemma 2.5, except that || replaces 
Note that (35) applies to both. ¥

Proof of Lemma 2.8. Notice that

E
³
0 e

´
= 0 =  
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Suppose that Assumption 1.2(a) holds. Then³
E
°°0

°°´1 ≤ kk kk kk ≤ 

by Lemma 2.1, Assumption 1.1 and (35). Theorem 1 with  = 0 and  =  implies that

E
°°°0 e − 

°°° = (1)

Markov’s inequality implies the stated result.

Now suppose that Assumpiton 1.2(b) holds. [Proof incomplete.] ¥

Proof of Lemma 2.9. Since  is iid and mean zero, the definition  =  + ∗, and

the  inequality

E k2k2 = E
⎡⎣ 1


Ã
X
=1



!0⎛⎝ X
=1



⎞⎠⎤⎦
= E

³
kk2 2

´
≤ 2E

³
kk2 2

´
+ 2E

³
kk2 ∗2

´
 (39)

We now examine the two terms on the right-side of (39). By Liapunov’s inequality, Holder’s

inequality, Assumption 1.1, and Lemma 2.2

E
³
kk2 2

´
≤ ¡E ¡kk ||

¢¢2
≤ kk2 kk2
≤ 2

2
  (40)

Applying the  inequality to (33) and two applications of Lemma 2.2,

E∗2 ≤ 2E2 + 2E
2
 ≤ 42  (41)

Then using (41), Lemma 2.3, Lemma 1, and Assumption 1.1,

E
³
kk2 ∗2

´
= E

³
kk2 ∗21

³
kk ≤ 

(−2)


´´
+ E

³
kk2 ∗21

³
kk  

(−2)


´´
≤ 

2(−2)
 E

¡
∗2

¢
+ E

³
kk4 1

³
kk  

(−2)


´´
2

≤ 42(−2) 2 +


³


(−2)


´−4 2
= 5

2(−2)
 2  (42)
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Equation (39), (40), (42), and 2 ≤ 2( − 2) imply

E k2k2 ≤ 122(−2) 2 ≤ 

Ã

(8−2)(−2)


µ
log



¶4−1!

where the second inequality uses Assumption 1.5 which implies 2 = 
³
−4 (log)4−1

´
.

Markov’s inequality establishes the result. ¥

Proof of Lemma 2.10. By the triangle inequality

°°° b4°°° ≤
°°°°° 1

X
=1


0
 kk2 1

³
kk ≤ 

(−2)


´°°°°°
+

°°°°° 1
X
=1


0
 kk2 1

³
kk  

(−2)


´°°°°°
≤ 

(−2)


°°° b

°°°
+
1



X
=1

kk4 1
³
kk  

(−2)


´


The first term is 

³

2(−2)


´
by Lemma 2.4. The expectation of the second term is bounded

(using Lemma 1) by 
2(−2)
 and hence the term is 

³

2(2−)


´
by Markov’s inequality. This

establishes the result. ¥

9 Central Limit Theory

In this section we establish equations (27) and (28) which establish asymptotic normality for the

non-studentized estimators. What is unconventional in the proof is that we apply the Lindeberg

condition separately to the three error components from the decomposition (34). This is useful as

they have differing moment properties. Also, our approach allows but does not require the number

of series terms  to diverge, and hence the approximation errors must be handled explicitly.

Lemma 3. Under Assumption 1 and  =  , 
−120

0
 −→ (0 )

Proof: Take any  ∈ R such that 0 = 1 and set  = . By the Cramer-Wold device it is

sufficient to show that −12
P

=1 
0
 −→ (0 1).

It will be convenient to observe that by the norm inequality kk ≤ kk kk, kk2 = 1, and
Lemma 2.1

kk2 ≤ kk2 kk2 ≤ −1

The Schwarz inequality then implies

¡
0

¢2 ≤ −1 kk2  (43)
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Since the random variable 0 is iid, mean zero, and unit variance, it is sufficient to verify

Lindeberg’s condition: that for any   0,

E
h¡
0

¢2
1
³¡
0

¢2
 9

´i
→ 0 (44)

By the  inequality

2 ≤ 3
¡
2 + 2 + ∗2

¢
 (45)

This implies that the right-hand-side of (44) is bounded by 3 multiplied by

E
h¡
0

¢2 ¡
2 + 2 + ∗2

¢
1
³¡
0

¢2 ¡
2 + 2 + ∗2

¢
 3

´i
 (46)

The inequality ⎛⎝ X
=1



⎞⎠ 1
⎛⎝ X

=1

  

⎞⎠ ≤ 2 X
=1

1 (  )

for  ≥ 0 shows that (46) is bounded by 2 times

E
h¡
0

¢2
2 1

³¡
0

¢2
2  

´i
(47)

+ E
h¡
0

¢2
21

³¡
0

¢2
2  

´i
(48)

+ E
h¡
0

¢2
∗21

³¡
0

¢2
∗2  

´i
 (49)

The proof is completed by showing that (47)-(49) are (1).

First, we show (47) supposing that Assumption 1.2(a) holds. Using (43), Lemma 1, Holder’s

inequality, Assumption 1.1, and kk ≤  for some  ∞ by Assumption 1.2(a), (47) is bounded

by

−1E
h
kk2 2 1

³
kk2 2  

´i
≤ E

¡kk ||
¢

 ()(−2)2

≤ kk kk
 ()(−2)2

≤ 

2(−2)2

Ã

2(−2)




!(−2)2
= (1) (50)

the final bound by Assumption 1.4. Hence (47) is (1).

Now consider (47) supposing instead that Assumption 1.2(b) holds. Define

2() = sup

E
£
2 1

¡
2  

¢ | = 
¤

(51)
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which satisfies 2()→ 0 as  →∞. Set  = 
2(−2)
 log. Then (47) equals

E
h¡
0

¢2
2 1

³¡
0

¢2
2  

´
1
³
kk2 ≤ 

´i
(52)

+ E
h¡
0

¢2
2 1

³¡
0

¢2
2  

´
1
³
kk2  

´i
 (53)

Using (51), the first term (52) is bounded by

E
h¡
0

¢2
2 1

¡
2  

¢i
= E

∙¡
0

¢2 Eµ2 1µ2  



¶
|
¶¸

≤ E
∙¡
0

¢2
2
µ




¶¸
= kk2 2

µ




¶
≤ (1)

since E (0)
2
= 0E (

0
) = kk2. The final inequality holds since Assumption 1.4

implies  = −12(−2) log = (1), and kk2 ≤ −1. Since E
¡
2 |

¢ ≤ 2(0)  ∞ and

using Lemma 1, the second term (53) is bounded by

−1E
³
kk2 2 1

³
kk2  

´´
= −1E

³
kk2 1

³
kk2  

´
E
¡
2 |

¢´
≤ −12(0)E

³
kk2 1

³
kk2  

´´
≤ −12(0)






(−2)2


=
2(0)

 (log)(−2)2
→ 0

Together, these show that (47)=(52)+(53) is (1), and thus under either Assumption 1.2(a) or

(b), (47) is (1).

Second, take (48). Using (43), Lemma 1, Holder’s inequality, Assumption 1.1, and Lemma 2.2,

(48) is bounded by

−1E
h
kk2 21

³
kk2 2  

´i
≤ E

¡kk ||
¢

 ()(−2)2

≤ 1

2(−2)2
kk kk

(−2)2

≤ 1

2(−2)2

Ã

2(−2)




!(−2)2


≤ (1) (54)

where the final inequality is Assumption 1.4 and  = (1). Thus (48) is (1).
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Now take (49). Using (43), Lemma 1, Lemma 2.3 and Assumption 1.1, (49) is bounded by

−1E
h
kk2 ∗21

³
kk2 ∗2  2

´i
≤
E
³
kk2 |∗|2

´
 ()(−4)4

≤ 1

4(−4)4
E kk 2

(−4)4

≤ 1

4(−4)4

Ã¡
2

¢2(−4)


!(−4)4
= (1)

the final inequality by Assumption 1.5. Thus (49) is (1).

We have shown that (44) is bounded by 6 times the sum of (47)-(49) which are (1). This

establishes Lindeberg’s condition, completing the proof. ¥

Lemma 4. Under Assumption 1 and  =  ,

0
³ b−1 − 

´
−12 0

 = (1)

Proof: Using (34),

0
³ b−1 − 

´
−12 0

 = 1 +2 (55)

where 1 = 0
³ b−1 − 

´
1 and 2 = 0

³ b−1 − 

´
2.

First take 1. We use four algebraic inequalities: (1) that for any matrix , kk2 ≤ tr0
(2) for any  ×  matrix , any conformable matrix  and symmetric matrix 

tr
¡
00

¢
= tr

¡
00

¢ ≤ tr ¡0¢ °°0°° ≤  kk2 kk2 kk 

(3) for any  ×  positive semi-definite matrix , tr ≤  kk, and (4) the norm inequality
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kk ≤ kk kk. Using these results, conditioning, Lemma 2.1, Lemma 2.4, and Lemma 2.6,

E
h
k1k2 |

i
≤ E £tr101|¤
= tr

h
0

³ b−1 − 

´
E
¡
1

0
1|

¢ ³ b−1 − 

´


i
≤ 

°°°0 ³ b−1 − 

´
E
¡
1

0
1|

¢ ³ b−1 − 

´


°°°
≤  kk2

°°° b−1 − 

°°°2 °°E ¡1 01|¢°°
≤ 




Ã

2(−2)
 log



!
(

4(−2)
 )

≤ 

Ã

2(−2)
 log



!
= (1) (56)

The fifth inequality in (56) holds since

2

 − 2 +
4

− 2 =
2− 8

− 2− 2 + 4 ≤
2

− 2− 2 =
2

− 2 (57)

and the final bound in (56) is Assumption 1.4.

Markov’s inequality implies that for any   0

 =  (k1k  |) ≤
E
h
k1k2 |

i
2

= (1)

and since  is bounded, it follows that

 (k1k  ) = E → 0

and hence 1 = (1).

Now take 2. By the norm inequality, Lemma 2.1, Lemma 2.4 and Lemma 2.9,

k2k ≤ kk
°°° b−1 −−1

°°° k2k
≤ 

⎛⎝
s


2(−2)
 log



⎞⎠

Ã

(4−)(−2)


µ
log



¶2−12!

= 

⎛⎝Ã
2(−2)
 log



!2⎞⎠
= (1)

where the final bound is implied by Assumption 1.4 and  ≥ . Thus (55) is (1) as stated. ¥
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10 Covariance Matrix Estimation

In this section we establish (29), completing the proofs of Theorems 3 and 4. The main difficulty

is handling the presence of the OLS residuals. Existing theory has dealt with this issue by imposing

sufficient conditions to ensure uniform convergence of the regression function estimate, so that

the residuals are uniformly close to the true errors and thus their substitution is asymptotically

negligible. This approach requires substantially more restrictive assumptions. We avoid these

restrictions by instead writing out the covariance matrix estimators explicitly without using uniform

convergence bounds.

Lemma 5. Under Assumption 1 and  = ,°°°b − 

°°° = (1) (58)

and for any  °°°b 
 − 

°°° = (1) (59)

In particular, (59) with  = −12 is (29), which is required to complete the proofs of Theorems
3 and 4.

Proof: Since (59) follows directly from (58) by Theorem 2, the main difficult is in establishing

(58).

By the triangle inequality°°°b − 

°°° ≤ °°°0 b−1 ³b − e´ b−1 

°°° (60)

+
°°°0 b−1 e b−1  − 

°°°  (61)

Using b2 = 2 − 2
0


³b − 

´
+
³
0

³b − 

´´2
and the triangle inequality, the
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first term (60) equals°°°°°0 b−1 1



X
=1


0


¡b2 − 2

¢ b−1 

°°°°°
≤ 2

°°°°°0 b−1 1



X
=1


0


0


³b − 

´ b−1 

°°°°°
+

°°°°°0 b−1 1



X
=1


0


³
0

³b − 

´´2 b−1 

°°°°°
≤ 2

h°°°0 b−1 e b−1  − 

°°°+ 1i12
×
°°°°°0 b−1 1



X
=1


0


³
0

³b − 

´´2 b−1 

°°°°°
12

+

°°°°°0 b−1 1



X
=1


0


³
0

³b − 

´´2 b−1 

°°°°° 
The final inequality uses the norm inequality k 0

12k ≤ k1k k2k = k 0
11k12 k 0

22k12 ap-
plied to the × matrices1 and2 whose 

 rows are 0
b−1  and 

0


³b − 

´
0

b−1  ,

respectively.

The second term (61) equals°°°0 b−1 e b−1  − 

°°° ≤ °°°0 e − 

°°°+ 2°°°0 ³ b−1 − 

´ e

°°°
+
°°°0 ³ b−1 − 

´ e ³ b−1 − 

´


°°°
≤
°°°0 e − 

°°°
+ 2

°°°0 ³ b−1 − 

´ e ³ b−1 − 

´


°°°12 h°°°0 e − 

°°°+ 1i12
+
°°°0 ³ b−1 − 

´ e ³ b−1 − 

´


°°° 
To establish that (60)-(61) is (1) it is sufficient to show the following three inequalities°°°0 e − 

°°° = (1) (62)°°°°°0 b−1 1



X
=1


0


³
0

³b − 

´´2 b−1 

°°°°° = (1) (63)°°°0 ³ b−1 − 

´ e ³ b−1 − 

´


°°° = (1) (64)

Equation (62) is Lemma 2.8.
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We next show (63). Using

b −  = b−1 1



X
=1

 = −12 b−1 (1 + 2)

and the  inequality, we find³
0

³b − 

´´2
=
1



³
0

b−1 (1 + 2)
´2

≤ 2



³
0

b−1 1

´2
+
2



³
0

b−1 2

´2


Thus (63) is bounded by 2 multiplied by°°°°°0 b−1 1

2

X
=1


0


³
0

b−1 1

´2 b−1 

°°°°° (65)

+

°°°°°0 b−1 1

2

X
=1


0


³
0

b−1 2

´2 b−1 

°°°°°  (66)

Take (65). By conditioning, Lemma 2.4, Lemma 2.6, and Lemma 2.10

E

"°°°°°0 b−1 1

2

X
=1


0


³
0

b−1 1

´2 b−1 

°°°°° |
#

≤ tr
"
0 b−1 1

2

X
=1


0


0

b−1 E ¡1 01|¢ b−1 

b−1 

#

≤ tr
"
0 b−1 1

2

X
=1


0
 kk2 b−1 

#°°° b−1 °°°2 °°E ¡1 01|¢°°
≤  kk2

°°°°° 12
X
=1


0
 kk2

°°°°°

³

4(−2)


´
≤ 

Ã

2(−2)




!


³

4(−2)


´
≤ 

Ã

2(−2)




!
= (1)

where the second-to-last inequality holds under (57). As discussed in the proof of Lemma 4, this

implies that (65) is (1).
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Similarly for (66), using Lemma 2.4, Lemma 2.8, and Lemma 2.10°°°°°0 b−1 1

2

X
=1


0


³
0

b−1 2

´2 b−1 

°°°°°
≤  kk2

°°°°° 12
X
=1


0
 kk2

°°°°°°°° b−1 °°°4 k2k2
≤ 

Ã

2(−2)




!


⎛⎝Ã
2(−2)
 log



!−(−4)2⎞⎠
≤ 

⎛⎝Ã
2(−2)




!(+4)2⎞⎠
≤ (1)

This establishes (63).

To complete the proof we establish (64). By the matrix norm inequality, Lemma 2.1, Lemma

2.4, and Lemma 2.7°°°0 ³ b−1 − 

´ e ³ b−1 − 

´


°°° ≤ kk2
°°° b−1 − 

°°°2 °°°e°°°
≤ 

Ã

2(−2)
 log



!


³

4(−2)


´
≤ 

Ã

2(−2)
 log



!
= (1)

again by (57) and Assumption 1.4. This is (64) as needed. ¥

11 Proof for Spline Approximation Theory

Proof of Theorem 7. (Sketch) We show that for a properly constructed weight function ()

inf
∈R

sup
∈Z

¯̄̄̄
()− ()

0
()

¯̄̄̄
≤ −(1−1) (67)

and k()k ≤ . The result follows via the discussion of weighted sup norms.

Recall that  = 1. Let ∗ be the coefficients of the best uniform spline approximation on

the interval [− ] with the coefficients for the intervals 0 and +1 set to zero.

∗ = argmin
∈R

sup
||≤

¯̄
()− ()

0
¯̄
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Set () = ()
0∗ . Since sup

¯̄
()()

¯̄
≤ , then by the standard approximation properties of

splines (e.g. Corollary 6.21 of Schumaker (2007))

sup
||≤

|()− ()| ≤ 

µ




¶

= −(1−1)

Furthermore, for  = 0 1  

sup
||≤

¯̄̄
()()− 

()

 ()
¯̄̄
≤ 1

µ




¶−
= 1

−(−)(1−1) ≤ 

where the final inequality is for sufficiently large . This suggests that each segment of ()

in the interval [− ] is an  order polynomial with coefficients bounded across segments. The

assumption that sup
¯̄
(−1)()

¯̄
≤  also implies the function () can be globally bounded by

a  order polynomial. Together, this means that we can globally bound () and each segment

of () in the interval [− ] by a common  order polynomial () =
P−1

=0  || . Since the
coefficients of () on the segment 0 equals the coefficients on 1 and similarly the coefficients

on  and +1 coincide, it follows the the polynomial coefficients for the segments 0 and +1

are bounded by () as well.

Now set () = () ||(−1). Then

inf
∈R

sup
∈Z

¯̄̄̄
()− ()

0
()

¯̄̄̄
≤ sup

∈Z

¯̄̄̄
()− ()

0∗
()

¯̄̄̄
≤ sup
||≤

|()|−1−(1−1) + 2 sup
||

||−(−1)

≤
³
−10  + 2−(−1)

´
−(1−1)

This is (67). Finally

k()k ≤
−1X
=0



³
E ||(+(−1))

´1
≤

−1X
=0



is finite, as needed. ¥
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