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This paper establishes stochastic equicontinuity for classes of mixingales. Atten- 
tion is restricted to Lipschitz-continuous parametric functions. Unlike some 
other empirical process theory for dependent data, our results do not require 
bounded functions, stationary processes, or restrictive dependence conditions. 
Applications are given to martingale difference arrays, strong mixing arrays, 
and near-epoch dependent arrays. 

1. INTRODUCTION 

In the past few years, we have seen many applications of empirical process 
theory in econometrics and statistics. For recent reviews of this literature, see 
Andrews (1993) and Wellner (1992). The origin of empirical process theory 
was in the study of the empirical distribution function, where the assump- 
tion that the summands were bounded and independent across observations 
was natural, and therefore the theory of empirical processes was built around 
these assumptions. For many recent applications, however, both bounded- 
ness and independence can be overly restrictive. As a result, we have seen in 
recent research an effort to generalize the existing empirical process theory 
to handle both dependent and unbounded functions. 

Several authors have demonstrated results for bounded functions of strong 
mixing random variables. These include Philipp (1982), Massart (1988), and 
Andrews and Pollard (1994). In a recent contribution, de Jong (1993) pro- 
vided a result for unbounded strong mixing processes.' 

Other authors have used alternative dependence conditions. Leventhal 
(1988) introduced an empirical process theorem valid for bounded martingale 
differencese2 Andrews (1991) provided results for smooth classes of near- 
epoch dependent random functions. Arcones and Yu (1994) studied bounded 
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V-C classes of functions of stationary absolutely regular (P-mixing) processes. 
Perhaps the most impressive results are those of Doukhan, Massart, and 
Rio (1996), whose results apply to unbounded functions of stationary abso- 
lutely regular processes under weak bracketing conditions. 

This paper extends this literature by presenting a proof of stochastic equi- 
continuity for classes of mixingale arrays. This is the first paper to do so. The 
results are shown to apply to martingale difference arrays, strong mixing 
arrays, and near-epoch dependent arrays. For each of these applications, the 
restrictions on moments and mixing decay rates are mild. The allowable func- 
tion classes, however, are restrictive, only applying to Lipschitz-continuous 
functions. As a consequence, these results are complementary to existing 
results and are not a strict improvement. 

Interestingly, the proof is not particularly demanding, combining a sim- 
ple moment inequality for mixingales based on Hansen (1991) with the proof 
technique of Andrews and Pollard (1994). The paper is organized as follows. 
Section 2 presents the main results. The function space of interest and the 
concept of mixingale classes are defined. The new results are a moment 
inequality and stochastic equicontinuity for mixingale classes. Section 3 con-
tains applications to three special cases: martingale difference arrays, mixing 
arrays, and near-epoch dependent arrays. Section 4 contains a brief conclu- 
sion. The proofs are left to the Appendix. 

2. MAIN THEORY 

2.1. Function Class and Stochastic Equicontinuity 

Let (Xni :  i 5 n;  n = 1,2,. . . ) be a triangular array of X-valued random 
vectors defined on a probability space (Q,T,P) .  Let (7,;)be an array of 
sub-a-fields of 7 ,  such that, for each n, (7,;)is nondecreasing in i. 

Let G denote the class of real functions on X. Let F C  G be a class of para- 
metric functions f (x, 0 ) , where x € X,  0 € 8 ,  and 8 is a bounded subset of 
RU.The elements f E F satisfy the Lipschitz condition 

for some function b( . ):X -+ R and some X > 0. We will sometimes index the 
class of functions as f E Fand sometimes by 0 E 8 ,  depending on which is 
more convenient. 

Define the empirical process operator v, by 

It is well-understood that the empirical process v, f converges weakly to 
a Gaussian process over f E Fif the finite-dimensional distributions satisfy 
a central limit theorem, the functions f are totally bounded under an appro- 
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priate seminorm, and a stochastic equicontinuity condition is satisfied (see 
Theorem 10.6 of Pollard, 1990, for an elegant statement of this result). We 
are concerned with stochastic equicontinuity over the class F. Let the Lr  
norm for a random matrix Z be denoted IIZll, = (EIZIr)'". 

Condition 1 (Stochastic Equicontinuity). For some q r 1, some seminorm 
p ( . ) ,  and each E > 0, there exists a 6 > 0 such that 

lim sup sup/ /
fl-rn p ( f'-f")<S, f '€F ,  ~ " E F  

2.2. Lv Mixingale Classes 

The concept of L~ mixingales was introduced by McLeish (1975) and gen- 
eralized to Lq mixingales by Andrews (1988). We generalize their concept to 
classes of random variables. 

DEFINITION 1 .  [ f (X,;),Tni, Q )  is an Lq-mixingale class if there exist 
nonnegative finite functions (cni ( f )  :i 5 n )  and constants [ Grn:m r 0)  such 
that f o r a l l n  r 1, i s n ,  allf E Q, a n d a l l m  r 0 

and 

Note that (4) is satisfied trivially whenever X,; is 'Fni-measurable (which 
is true in many applications). The "mixingale numbers" grncontrol the tem- 
poral dependence of the random variables f (Xni ) ,  and the "mixingale 
norms" cni ( f )  control their magnitude. 

Let Fdenote the class of functions formed by linear combinations of the 
elements of F: 

Assumption 1. For some q z 2, ( ~(x , ; ) ,T ,~ ,F )  is an L9-mixingale class 
with 

Assumption 1 specifies that linear combinations of elements of F consti-
tute a mixingale class. Part 1 states that the mixingale norms equal a power 
of the Ls norm. The use of this particular norm is not essential to the theory 
that follows, but it simplifies the analysis and all our applications satisfy this 
restriction. Part 2 of Assumption 1 is a standard summability restriction on 
the mixingale numbers. 
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Now define an asymptotic average of the mixingale norms: 

where r r 1 and 02 1 .  In particular, consider 

~ , ( f )= ~ s ( f , 2 ~ ) ,  (7) 

where s and y are defined in Assumption 1. Note that p,  ( f )  is defined for 
all f E G. Let F* denote the class of functions for which p,( f )  is finite: 

F* = ( f  E G : p , ( f )  < m ) .  

We assume that F C FQnd b E F * .  

Assumption 2. For all f E F, p,  ( f ) < m. In addition, p,(b) < m. 

It is easy to verify that p,( . )  is a seminorm on F*, which is important for 
our theory, as we later set the seminorm p of Condition 1 equal to p,. 

2.3. Results 

Stochastic equicontinuity (Condition 1) depends on the choice of seminorm. 
We find p ,  convenient, as it arises in the following moment bound, whose 
proof is quite similar to that of Lemma 2 of Hansen (1991). 

LEMMA 1 ,  Under Assumptions 1 and 2, for all f E F, 

l l ~ n f, Kq~ , ( f ) - ' ,I 5 

where K, = 72q\k. 

We now state our main result. The proof is analogous to that of Andrews 
and Pollard (1994), except that moment inequality (8) is used instead of their 
Lemma 3.1. 

THEOREM 1. Under Assumptions 1 and 2 with q > a / ( h y ), Condition 1 
holds with p ( a )  = p , ( . ) .  

Theorem 1 establishes stochastic equicontinuity for the Lipschitz class F. 
This is the first empirical process stochastic equicontinuity result for mixin- 
gales. The requirement q > a / ( h y ) implies a trade-off between the smooth- 
ness of the functions f ( x ,O)  with respect to 0, the dimensionality of 0,  and 
the strength of the norm p,. 

3. APPLICATIONS 

3.1. Martingale Difference Arrays 

Assumption 3. For some q 2 2 and each f E F, ( f (Xn i ) ,Tn i ]is a martin- 
gale difference array (MDA), 
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and 

Note that linear combinations f (X,,, 0) -f (X,;, 0 ')  are still MDA's, so 
( f(Xni),T,, i ,F] is an MDA class. Equation (3) holds with J/, = 0 for m r 1 
and cni( f )  = 11 f (XRi)(I,, and (4) holds trivially because Xnj  is Tni-measurable, 
so ( f (x,,) ,T ,~ ,F)  is a mixingale class. Indeed, Assumption 1 holds with 
s = q, y = 1, and \Zr = 1. Assumption 2 with pq(f )  = pq(f,2) is equivalent 
to (9) and (lo), respectively. Hence, Assumption 3 implies Assumptions 1 
and 2. 

We state our findings formally. 

THEOREM 2. Assumption 3 with q > a/h implies Condition 1 with p (.) = 
~ ~ ( - 9 2 ) .  

One application of Theorem 2 is to the asymptotic distribution of test sta- 
tistics when nuisance parameters are not present under the null hypothesis. 
The score functions considered as a function of the unidentified nuisance 
parameter (in the context of maximum likelihood estimation) and regression 
scores (in nonlinear regression) constitute classes of MDA's. For recent dis- 
cussions of this testing problem, see Andrews (1993), Andrews and Ploberger 
(1994), and Hansen (1996). 

3.2.Mixing Arrays 

Set Tni= a (Xw:j 5 i )  and 7;= u(Xnj:j > i ) .  The strong mixing coeffi- 
cients are defined as 

The array (X,,) 0 as m -+ w.is said to be strong mixing if a, , -+ 

Assumption 4. For some r > q r 2, 

and all f E F 





UNBOUNDED DEPENDENT HETEROGENEOUS ARRAYS 353 

Equation (14)is a standard summability condition on the underlying mix- 
ing numbers. Equations ( 1 5 )  and (16)are uniform moment bounds on the 
bounding functions b (X,,) and the functions f  ( X n ,  , 8 ) .  

We will consider both high-level and primitive conditions regarding the 
NED. 

Assumption 6. For all i, n ,  there exist finite constants q,, such that for all 
f € F  

and for some I y < 1 

where q is given in Assumption 5 .  

Equation (17)states that the class f  ( X n i )  is uniformly Lq NED with re- 
spect to Yni.Equation (18) is a standard summability condition on the NED 
and mixing numbers. We can show that these assumptions are sufficient for 
the application of Theorem 1. 

THEOREM 4. Assumptions 5 and 6 with q > a / (?h ) imply Condition 1 
with p ( . )  = pr( . ,2y) .  

In some cases, it might be possible to verify Assumption 6 directly; in other 
cases, it may not be straightforward. It is of interest to find a more primi- 
tive condition. We can do so when f  ( x ,  8 )  is differentiable with respect to x. 
Let 

D(O,x' ,x")= sup l -a f (x ,O) I , (19)
x E R ( x  , x " )  ax 

where R(a ,b)  is the cube containing all points between a and 6.  Let X;: = 
E ( X n i1 Th?!!!,). 

Assumption 7. For all i, n ,  there exist finite constants c p ,  such that for 
some $ 5 y < 1 

and 

D = sup sup sup sup I (  D(8 ,  X,,, Xl i )  1 I z q  < a, 
BEO in n l c i s n  

where q is given in Assumption 5 .  
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Assumption (20) states that Xni is L * ~NED with respect to Yniwith NED 
numbers p,. This replaces (17),which directly assumed that the functions 
f ( X n i )  were Lq NED with respect to Y,,. Equation (22)is a uniform bound 
on the derivative function ( a / a x )  f  ( x ,6 ) .  The following theorem is proved 
by showing that (16),  (20),  and (22) imply (17)with q,, = 2Dp,,, and, thus, 
F is an L4 NED class. 

THEOREM 5 .  Assumptions 5 and 7 with q > a / (  y A) imply Condition 1 
with p ( . )  = p,.( . ,2y).  

In Theorems 4 and 5 ,  the choice of y implies a trade-off between the NED 
decay rate ((18) or (21))and the moment requirement q > a / ( y A ) .  If y = $, 
then the decay rate for p,, is quite mild, but we need q > 2a/A.  On the 
other hand, if p, 4 0 exponentially fast, then we can let y be arbitrarily 
close to 1 and only require that q > a /A .  

4. CONCLUSION 

This paper has presented empirical process limit theory applicable to depen- 
dent random functions. The conditions are weak in two dimensions: The 
functions are not required to be bounded, and the dependence restrictions 
are mild. The cost is that the results are restricted to Lipschitz-continuous 
function classes. Many applications involve differentiable functions and, 
thus, can satisfy the conditions. Other applications involve discontinuous 
functions (such as threshold models; see Hansen, 1993) for which the results 
of this paper are not appropriate. 

NOTES 

1. Although de Jong's (1993) Theorem 4 allows for unbounded arrays and weak bracket- 
ing conditions, one of his conditions effectively requires that the mixing coefficients decay expo- 
nentially, which is quite restrictive. 

2. As pointed out by a referee, Leventhal's result can be extended to handle unbounded mar- 
tingale differences. 

3. I owe this suggestion to an anonymous referee. 
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APPENDIX 

Proof of Lemma 1. Take any f E F and let f,, = f ( X n i ) .Without loss of gener- 
ality, assume that the $,, are (weakly) decreasing, and assume that Ef,, = 0. Follow-
ing McLeish (1975), define 
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SO that for each rn ( Y  7,,-,,I is an MDA. We can express f,,as the infinite sum 

which converges almost surely because, for each i, (E ( f , , ,  / T i , i - m ) ,  Tnj-,,]is a reverse 
martingale in rn,  which converges to 0 almost surely as n.1- w and ( E (  f n i /  T,!,+,,), 
T,;,,,,) is a martingale that converges a.s. to f,,- Efni as rn + a.Hence, we can 
rewrite the empirical process as 

1 " 1 " " 1 " 
v n f  = -C f n i  = -C C Ynini = C -C Yrln,,.47 i = l  4 7  i = l  m = ~  in=^ 47 i = l  

(23) 

We now show that 

I I  Ynmi I I q  5 2+ in  I I f  ( X n l )  1 1 : .  (24) 

Indeed, for rn 2 0 ,  using Minkowski's inequality, ( 3 ) ,  and Assumption I ,  part 1 ,  

11 Y7ini I I q  5 11 E ( f n i  1 T i l i - r ! )  I I q  + 11 E ( f r 1 i  I T i l i - - m - ~) IIq 5 2+n?cn i  ( f )  = 2 $ i n  IIf ( X n t )  1 1 ; .  
Similarly for rn < 0 ,  using ( 4 )  and Assumption 1 ,  

1 1  Ynm!llq 5 llfizi - E(fTzl1 T n l - n i ) I l q  + lI.fi1:- E(fn11Til1-rn-t) l l q  5 2$rn  l l . f ( X n i ) l l ~ ~  

From ( 2 3 ) ,  Minkowski's inequality, Burkholder's inequality (see, e.g., Hall and 
Hepde, 1 9 8 0 ,  Theorem 2 . 1 0 ) ,  again Minkowski's inequality, ( 2 4 ) ,  (6), and (7),  we have 

as required. 

Proof o f  Theorem 1 .  For each k = 1 , 2 ,  . . . ,sel = 2 - k X  and N ( k )  = = 2". 
Let ek= ( B ' ,  . . . , denote a set of elements of 8 with the property that for all 
O E 8 there exists some OJ E eksuch that 1 8  - 0 ' 1  5 Q 2 - ' ,  where Q < a.This is 
possible because 8 is a bounded subset of Ra. Let 01, be the function of B that selects 
OJ E Ok SO that 

By ( 1 )  and ( 2 5 1 ,  

I f ( x , i , e )  - - f ( x , l , , ~ , ~ ) l  b ( X n , ) 1 0  - O,IX 5 Q Q b ( x i i i ) &  

and p , ( Q " b ( X n l ) G k )  = Q X p , ( b ) S k ,  which show that N ( k )  are proportional to the 
bracketing numbers for F with respect to the metric p q ( . ) .  Let Fk denote the class 
F, = { f ( . , B )  :0 E e k ) .  Observe that Fkhas N ( k )  distinct elements and the sets can 
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be constructed in such a way that Fk-, c Fk.Let fk(. ,O) = f(. ,Ok), and note that 
f k  E Fk. 

Fix E > 0. Take a sequence of integers k ( n )  that satisfies &2-k(n)" 0. Then, 

The first inequality is Minkowski's, the second uses (I),  and the third uses defini- 
tion (6) and property (25). Because 1 5 27 and q 5 s under Assumption 1, by the 
monotonicity properties of norms, 

where the final inequality is from Assumption 2. Thus, (26) tends to 0 as n -+ m, and 
so for n sufficiently large 

N e ~ t , l e t g ~ = f ~ - f ~ - ~ a n d l e t G ~ = ( f ( ~ , $ ' ) - f ( ~ , ~ " ) : ~ ' E ~ ~ , o " E ~ ~ _ ~ ) ~ F .  
Note that Gk has N ( k )  distinct elements (the same as Fk) because the sets Fkare 
nested. Lemma 1, (I), and (25) yield 

where A = ( 4 ~ ) " ~ , ( b ) ~< w by Assumption 2. By Pisier's inequality (Pisier, 1983) 
and (28), 

where /3 = 2(a'q-Xy). Note that /3 < 1 because h > a / (qy)  by assumption. 
Now let M = M ( E )be an integer large enough to satisfy 
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Let n be sufficiently large so that (27)holds and k ( n )> M. We now apply a chain- 
ing argument. Because f k (n )-fw C$g&+l= gk ,  we have by Minkowski's inequality, 
(291, and (301, 

k ( n )  mz 


Hsup~vn/k ,n , -vn/~Hq 5 k=M+I I l s U P ~ v n ~ k ~ ~ R 5k=M+ p i .
./ C 1 ~ ~ ~ (31) 
f 


Equations (27)and (31) together imply that 

The proof is completed by an argument identical to that of "comparison of pairs" 
of Andrews and Pollard (1994)and is omitted. w 

Proof of Theorem 4. 	Minkowski's inequality and the Rao-Blackwell theorem yield 

llf(Xni)- E ( f ( X n i )I T2L:v) llq 5 2Ilf(Xni)IIq. 


Inequalities (17)and (33)can be combined3 to yield 


I f - f I 2 )I 5 7 I f I 7 I f 1 I (34)
I 1 	 1 

where the final inequality uses the assumption that q < r a n d  the monotonicity of the 
L' norm. 

Andrews (1988, equation (2))showed that under (34) 

1 1  E ( f  (XnI ) l  - / I q  	 + 6aA'q-1"rl l f  ( x n , ) IlrTn I - zm)  E f (Xr l t )  	5 2y7k*iI l f  (Xn,)1 1 ;  
i (217!;' 1 1+ 6ak'q-1'r~1-7')f ( x n i )113, 

where C is defined in (16). He also showed that under (34) 

Ilf(xni)- 1 , 5 2'+'~!;'IIf(Xni) / I ? .E( f(Xnl)ITnI+in) 

This shows that (3)and (4)are satisfied with 

$2m = 21+yq!;"t + 6am
I/q-1/'~1-7 

and 

c n i ( f )= llf(Xni)ll>~ 


Thus, ( f  (Xi , , ) ,Tni ,F)  is an Lq-mixingale class. Assumption 1 holds with s = r and 


under (18) and (14).Assumption 2 is trivially satisfied under ( 1 5 )  and (16).Thus, 

Assumptions 5 and 6 are sufficient for Assumptions 1 and 2. Hence, Theorem 1 holds. 


w 

Proof of Theorem 5. We show next that (17) holds with 7m = ~ D P , ~Thus, 
Assumption 6 holds and Theorem 4 yields the result. The differentiability o f f  (or 
any linear combination of two elements of F) implies that 
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By Minkowski's inequality, the fact that f(X:,O) is T$Yn,-measurable, the Rao- 
Blackwell theorem, (35), Holder's inequality, (22), and (20), 

Ilf(Xn0 - E(f (Xni )  I T$ /m)  llq 

5 lIf(xni) -f(x,:')IIq + IIE(f(xni) I T$-",n) - f(XZ)Ilq 

5 2IIf(Xn1,fl) -f(X:,fl)II, 

5 2IID(fl,Xni,X,'z). /Xnl - X$/ / I q  
5 2 1 1 D ( ~ , X n i ~ X ~ ) l l ~ q ~ l X n iX,:'I12q 5- 2D~tn9 

as required. 




