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Abstract

Criterion-based tests include the F test, the LR test, the GMM distance test, the GMM test for overi-

dentification, the minimum distance test, and the Anderson-Rubin test. Conventional inference with

these statistics requires a strong form of correct specification, including the absence of conditional het-

eroskedasticity, serial correlation, and clustered dependence. More generally, their asymptotic distri-

bution is weighted chi-square, where the weights depend on the eigenvalues of the matrix ratio of the

correct asymptotic covariance matrix to the classical (misspecified) covariance matrix. This asymptotic

distribution is non-pivotal, but can be consistently estimated, and algorithms are available for its nu-

merical evaluation. We call this implementation the estimated weighted chi-square distribution, and

show through a variety of examples that it can be used successfully for accurate asymptotic inference.
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1 Introduction

Criterion-based test statistics include the likelihood ratio test, GMM test for overidentification, min-

imum distance tests, F tests in linear regression, GMM distance (LR-like) tests, and the Anderson-Rubin

test. These statistics have several strong advantages. Criterion-based statistics are invariant to parametriza-

tion and the algebraic formulation of the null hypothesis. Theoretical and numerical evidence suggests

that under correct specification they have superior finite sample performance relative to Wald (delta-

method) statistics in nonlinear contexts. For example, Park and Phillips (1988) show that the Edgeworth

expansion of the Wald statistic depends on its algebraic formulation, with nonlinearities inducing a non-

linear departure from a leading chi-square approximation, while Hansen (2006) shows that the Edge-

worth expansion of the GMM distance statistic is free of the nonlinear terms.

Under correct specification, criterion-based statistics have asymptotic chi-square distributions un-

der the null hypothesis, permitting straightforward inference decisions. However, as we document in

Sections 2 and 4, criterion-based tests have the disadvantage that they have non-pivotal asymptotic null

distributions under certain forms of misspecification, including heteroskedasticity, clustering, and serial

dependence. In contrast, Wald statistics are relatively straightforward to robustify to heteroskedasticity,

clustering, and serial dependence. As a consequence, Wald tests dominate applied econometric practice.

As we document in Sections 2 and 4 (and is well-known to specialists), the asymptotic distributions of

criterion-based tests in general can be written as weighted sums of chi-square random variables, where

the weights are the eigenvalues of (in most examples) a matrix ratio of two covariance matrices. This

means that the asymptotic distribution is non-pivotal, but consistently estimable. An asymptotic p-value

can be calculated by evaluating the weighted chi-square distribution function at a consistent estimate of

the eigenvalues. The resulting p-value is asymptotically U [0,1] distributed as appropriate for accurate

inference. Consequently, criterion-based inference using the estimated weighted chi-square distribution

is feasible and asymptotically valid.

An alternative to the weighted chi-square distribution is the bootstrap. That is, the bootstrap distri-

bution is in general consistent, permitting asymptotically valid inference. While this is true there are two

arguments for considering the weighted chi-square distribution. First, in many cases there are multi-

ple implementations of the bootstrap, leading to potentially contradictory test results. One such issue is

how to impose the null hypothesis on a bootstrapped criterion-based test statistic, as there can be mul-

tiple methods. Another such issue arises under clustered and time series dependence, where multiple

methods are available for bootstrap replication of the serial dependence. In contrast, implementation

of the weighted chi-square distribution only requires estimation of asymptotic variance matrices, which

is relatively simpler. Second, while the bootstrap distribution is consistent it will not achieve an asymp-

totic refinement since the asymptotic distribution is non-pivotal. In contrast, the bootstrap applied to

our estimated weighted chi-square p-value is a prepivoting statistic as recommended by Beran (1988),

which has the potential to achieve an asymptotic refinement. We do not provide a formal theory for such

refinements as this would require asymptotic expansions beyond the scope of the present paper. We do,

however, include bootstrap methods for comparison in our simulation analysis.

The organization of this paper is as follows. Section 2 describes the structure of the problem and its
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solution, using the classical Anderson-Rubin test statistic for illustration. Section 3 discusses numerical

calculation of the weighted chi-square cumulative distribution function. Section 4 provides the asymp-

totic distributions of the following criterion-based statistics: the F statistic, the likelihood ratio statis-

tic, the GMM test for overidentification, the GMM distance statistic, the minimum distance statistic,

and the Anderson-Rubin statistic. Section 5 provides a simple simulation experiment for the Anderson-

Rubin statistic. Section 6 concludes. Mathematical derivations are presented in the Appendix. Code for

computation of the weighted chi-square distribution and all numerical results presented in the paper is

posted on the author’s webpage.

2 Criterion-Based Inference

Consider the Anderson-Rubin statistic (Anderson and Rubin, 1949) with no included exogenous re-

gressors. The model is Y1 = Y ′
2θ+ e with E [e | X ] = 0 where X is q ×1. In standard matrix notation the

model for a sample of n observations is Y 1 = Y 2θ+ e. The Anderson-Rubin statistic, scaled as a Wald

statistic, is

ARn(θ) = (Y 1 −Y 2θ)′ P (Y 1 −Y 2θ)

(Y 1 −Y 2θ)′ (I n −P ) (Y 1 −Y 2θ)/(n −q)
(1)

where P = X
(

X ′X
)−1 X ′. A test of H0 : θ = θ0 against H1 : θ 6= θ0 rejects for large values of ARn = ARn(θ0).

This is a criterion-based statistic because the LIML estimator minimizes ARn(θ).

Under the classical assumption e | X ∼ N(0,σ2), ARn/q has an exact F distribution under H0. More

broadly, if E
[
e2 | X

] = σ2 then the asymptotic null distribution of ARn is χ2
q . However, when the ho-

moskedasticity assumption fails then the asymptotic distribution changes. Indeed, if the observations

are i.i.d with finite fourth moments

ARn −→
d

Z ′H−1Z

σ2 =U ′V −1
0 U

where Z ∼ N(0,Ω), Ω = E
[

X X ′e2
]
, H = E

[
X X ′], U ∼ N(0,V ), V = H−1ΩH−1, and V0 = σ2H−1. We can

write U ′V −1
0 U as ζ′Bζ where ζ ∼ N(0, Iq ), B = C ′V −1

0 C , and V = CC ′ is the Cholesky decomposition of

V . Apply the spectral decomposition to the matrix B . This yields B = PΛP ′ where P is orthonormal and

Λ= diag{λ1, ...,λq } contains the eigenvalues of B . Setting T = P ′ζ∼ N(0, Iq ) we find the above expression

equals
∑q

j=1λ j Q j where Q j = T 2
j are independent χ2

1 random variables. This is a special case of the

following distribution.

Definition 1 For j = 1, ..., q, let λ j be non-negative real numbers, and Q j be mutually independent χ2
1

central chi-square random variables. We call

Q (λ) =
q∑

j=1
λ j Q j

a weighted chi-square and write its distribution function as G (x |λ), where λ= (λ1, ...,λq ).
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Our label “weighted chi-square” is a slight simplification of the more common name “weighted sum

of chi-squares”. More generally, a weighted chi-square can be defined with arbitrary degrees of freedom

and non-centrality parameters, but this is not necessary for our development.

We demonstrated above that a quadratic form in normal variables has the distribution Q(λ). We state

this formally for reference. It is useful to observe that the eigenvalues of the matrix B =C ′V −1
0 C are equal

to those of the matrix V −1
0 CC ′ =V −1

0 V , which is a less cumbersome expression.

Lemma 1 If Q = Z ′V −1
0 Z where Z ∼ N(0,V ) then Q ∼ Q(λ) where λ = (λ1, ...,λq ) are the eigenvalues of

V −1
0 V .

The above derivation shows that the Anderson-Rubin statistic has a weighted chi-square asymptotic

null distribution for i.i.d samples with conditionally heteroskedastic errors. It simplifies to a chi-square

under homoskedasticity, or a scaled chi-square when q = 1, but not otherwise. Our derivation used

the assumption of independent observations, but extends to clustered and time series dependence, if

the covariance matrix Ω is adjusted to incorporate dependence. The statistic (1) could be robustified to

heteroskedasticity by altering the central weight matrix, but as argued by Guggenberger, Kleibergen, and

Mavroeidis (2019) this has limited value since this robustified statistic is difficult to extend to allow for

subvector inference.

The chi-square weights λ j which appear in the distribution Q(λ) are the eigenvalues of the matrix

V −1
0 V , which is a “matrix ratio” of the correct asymptotic covariance matrix V to the “incorrect” asymp-

totic covariance matrix V0 which holds under homoskedasticity. Thus the chi-square weightsλ j measure

the discrepancy between the correct covariance matrix and its homoskedastic cousin. This feature of the

asymptotic distribution is common to all criterion-based tests, as will be shown in Section 4.

This result implies that under heteroskedastic or dependent errors the Anderson-Rubin test will have

incorrect asymptotic size if conventional critical values are used. To see the magnitude of the distortion,

take the case q = 2 with E
[
e2 | X

] = X 2
1 where (X1, X2) are mutually independent, mean zero, unit vari-

ance, E
[

X 3
1

] = 0, and E
[

X 4
1

] = µ4. Under these assumptions ARn is asymptotically Q(λ) with λ = (1,µ4).

In Table 1 we display the asymptotic Type I error of nominal 5% tests which use the χ2
2 critical value of

6.0. As we can see, this test has correct asymptotic size when µ4 = 1, but not for µ4 6= 1. When µ4 = 3 (as

when Z1 is standard normal) the rejection probability is 0.22. When µ4 = 6 (as when X1 has a scaled stu-

dent t distribution with 6 degrees of freedom), then the rejection probability is 0.37. When µ4 = 12 (the

standardized fourth moment of log(N(0,1/3))), then the rejection probability is 0.53. These are enor-

mous distortions from the nominal level 0.05. It is worth emphasizing that these are not finite sample

distortions but rather are asymptotic.

Table 1: Asymptotic Type I Error of Anderson-Rubin Test

µ4 1 3 6 12
Asymptotic Size of Nominal 5% Test 0.05 0.22 0.37 0.53

We have used the Anderson-Rubin statistic for illustration due to its simplicity but analogous results

apply to all criterion-based statistics. In general, their asymptotic distributions are chi-square under
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correct specification and are weighted chi-square under misspecification, heteroskedasticity, clustering,

and/or serial dependence. We present details in Section 4.

Correct asymptotic inference can be implemented using the Q(λ) distribution if the weights are

known, or by replacing the unknown weights with a consistent estimator λ̂. For the Anderson-Rubin

statistic with independent observations we can set λ̂ to equal the eigenvalues1 of V̂ −1
0 V̂ where V̂0 =

Ĥ−1σ̂2 and V̂ = Ĥ−1Ω̂Ĥ−1, with

Ĥ = n−1
n∑

i=1
Xi X ′

i ,

Ω̂= n−1
n∑

i=1
Xi X ′

i

(
Y1i −θ′0Y2i

)2 ,

σ̂2 = (n −q)−1
n∑

i=1

(
Y1i −θ′0Y2i

)2 .

The estimators Ω̂ and σ̂2 may alternatively be constructed using a consistent estimator of θ rather than

the hypothesized value. Under serial dependence, Ω̂ should be replaced by a long-run (Newey-West,

1987a) covariance matrix estimator. Under clustering, Ω̂ should be replaced by a cluster-robust (Arel-

lano, 1987) covariance matrix estimator. Given λ̂ = (
λ̂1, ..., λ̂q

)
, the estimated asymptotic p-value is

p̂ = 1−G
(
ARn | λ̂)

where G (x |λ) is the weighted chi-square distribution function. Since V̂ −1
0 V̂ −→

p
V −1

0 V ,

it follows that p̂ −→
d

1−G (Q(λ) |λ) which has a U [0,1] distribution.

We state a general property for reference, which is a special case of prepivoting as discussed in Beran

(1988). The following result follows from the continuous mapping theorem, the fact that Q(λ) is contin-

uous in λ, and the probability integral transformation.

Theorem 1 Suppose that Dn −→
d

Q(λ) where λ = (λ1, ...,λq ) are the eigenvalues of a matrix A. Given an

estimator Â of A, let λ̂ = (λ̂1, ..., λ̂q ) be the eigenvalues of Â, and set p̂ = 1−G
(
Dn | λ̂)

. If Â −→
p

A then

p̂ −→
d

U [0,1].

Theorem 1 shows that a criterion-based statistic can be used with heteroskedastic or dependent er-

rors, if the p-value is calculated using the estimated weighted chi-square distribution. This combines the

advantages of a criterion-based test with the robustness of a Wald statistic.

3 The Weighted Chi-Square Distribution

In this section we discuss numerical computation of the weighted chi-square cumulative distribution

function.

In most cases the best numerical implementation is the series representation due to Ruben (1962)

and Farebrother (1984). Define λmin = min(λ1, ...,λq ), the coefficients am = ∑q
j=1

1
2

(
1−λmin/λ j

)m , the

1For computation, it is better to first apply the Cholesky decomposition V̂ −1
0 =CC ′ and then calculate the eigenvalues of the

symmetric matrix C ′V̂ C . Equivalently, λ̂ can be computed as the generalized eigenvalues of V̂ with respect to V̂0.
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initial condition b0 =
q∏

j=1

(
λmin/λ j

)1/2, and the recursion

bm = 1

m

m−1∑
`=0

b`am−`. (2)

Ruben’s formula for the CDF is

G(x |λ) =
∞∑

m=0
bmGq+2m (x/λmin) . (3)

This is a convergent infinite series, written as a weighted sum of chi-square distribution functions.

For implementation, the infinite series is truncated with a finite number of terms. A useful feature of

(3) is that the accuracy of this truncation can be bounded, so the accuracy of the CDF calculation is

controlled.

An implementation of (3) is available in the R function farebrother in the package CompQuadForm.

See Duchesne and Micheaux (2010) for documentation. A Matlab implementation is available on the

author’s website.

In the special case q = 2 the coefficients bm satisfy the explicit expression

bm =
(
λmin

λmax

)1/2 (
1− λmin

λmax

)m Γ
(1

2 +m
)

Γ
(1

2

)
m!

. (4)

The expression (4) can be verified from (2) by induction. Numerical evaluation of (3) with (4) is con-

siderable faster than the recursion (2) and is thus an improvement upon Farebrother’s algorithm, but is

limited to the case q = 2.

While (3) is exact it can be computationally costly in certain extreme situations. These situations

arise when the initial condition b0 is below machine tolerance, or when the number of series terms in

(3) needed for convergence is excessive2. The latter can occur when λmin/λmax is exceedingly small, or

when the intial condition b0 is extremely small.

In these cases an approximate implementation can be substituted. There is a long literature of com-

putational approximations to G(x | λ) based on moment matching, including Welch (1938), Satterwaite

(1946), Hall (1983), Buckley and Eagleson (1988), and Wood (1989). The most recent and accurate of

these approximations is known as LPB4, due to Lindsay, Pilla, and Basak (2000), and is

G(x |λ) '
p∑

m=1
πmGk

(
x/βm

)
(5)

where (k,β1, ...,βp ,π1, ...,πp ) are free parameters satisfying π1 +·· ·+πp = 1. The parameters are selected

to match the first 2p moments of Q(λ). In principle the accuracy of the approximation can be improved

by selecting p large, but there is no specific bound on the approximation error, and the authors recom-

mend p = 4 (thus matching the first eight moments). The specific method for determining the parame-

2For reference, the calculation (3) can be executed with 5000 series terms in about 0.02 seconds, and with 50,000 series terms
in less than 2 seconds.
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ters is quite detailed so we do not present this here. For a description, see Bodenham and Adams (2015).

An implementation of (5) with p = 4 is available in the R function lpb4 in the package momentchi2. A

Matlab implementation is available on the author’s website.

Bodenham and Adams (2015) provide a thorough examination of the computation speed and accu-

racy of a variety of the above computational implementations, plus that of Imhof (1961). Bodenham-

Adams find that the Farebrother algorithm is the benchmark for computation accuracy. They find that

the LPB4 algorithm is somewhat less computationally demanding and somewhat less accurate than the

Farebrother algorithm, but is sufficiently accurate for p-value computation. In contrast, they find that

for q < 10 the Sadderwaithe-Welch, Hall-Buckley-Eagleson, and Wood algorithms are insufficiently ac-

curate for reliable p-value computation. One complication is that they also observed that for q < 4 the

LPB4 implementation failed to produce a solution in certain parameterizations.

For our numerical implementation, we use a two-step approach. We first attempt the Farebrother (3)

series representation3. If this fails to converge quickly we switch to the LPB4 algorithm (5). If the LPB4

algorithm fails to produce a solution we re-try the Farebrother algorithm with a larger4 number of series

terms.

4 Examples

The following examples assume a sample of n observations. In each example the parameter is θ ∈
Θ⊂RK , whose true value θ0 is presumed to lie in the interior ofΘ. The F, likelihood ratio, GMM distance,

and minimum distance statistics concern a test of a hypothesis H0 : r (θ0) = 0 against the alternative H1 :

r (θ0) 6= 0 given a function r :Θ→Rq . The function r (θ) is assumed continuous in θ ∈Θ, has continuous

derivative R(θ) = ∂
∂θ r (θ)′ in a neighborhood of θ0, and R = R(θ0) has full rank q .

For each example we state the asymptotic distribution under high-level conditions. We do this in

order to allow for a wide range of conditions, including independent, clustered, and serially dependent

observations.

The asymptotic distributions in the following sections are straightfoward to derive by standard meth-

ods, but to my knowledge have not been presented in the econometrics literature. We state the results

compactly, and present sketches of their proofs in the Appendix.

4.1 F Statistic

Take the model Y = X ′θ+ e with E [X e] = 0 and E
[
e2

]=σ2 <∞. The best linear predictor coefficient

is θ0 =
(
E
[

X X ′])−1
E [X Y ].

The sum of squared errors function is Sn(θ) =∑n
i=1

(
Yi −X ′

iθ
)2. The unrestricted and restricted least

squares estimators are θ̂ = argmin
θ∈Θ

Sn(θ) and θ̃ = argmin
θ∈Θ:r (θ)=0

Sn(θ). The Wald form of the F statistic for H0

3We cap the number of series terms at 100,000 for the case q = 2, and at 5000 otherwise.
4100,000.
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against H1 is

Fn = Sn(θ̃)−Sn(θ̂)

σ̂2 .

where σ̂2 = (n −K )−1 ∑n
i=1

(
Yi −X ′

i θ̂
)2

.

Under homoskedasticity and no serial or cluster dependence, Fn −→
d
χ2

q . Under broader conditions

the asymptotic distribution is a weighted chi-square.

Set Zn = n−1/2 ∑n
i=1 Xi ei and define its asymptotic covariance matrix Ω. Let Ω̂ be an estimator of Ω.

Set Ĥ = n−1 ∑n
i=1 Xi X ′

i , V̂0 = Ĥ−1σ̂2, V̂ = Ĥ−1Ω̂Ĥ−1, and R̂ = R(θ̂). Let λ̂= (λ̂1, ..., λ̂q ) be the eigenvalues

of
(
R̂ ′V̂0R̂

)−1 (
R̂ ′V̂ R̂

)
and set p̂F = 1−G

(
Fn | λ̂)

.

Theorem 2 Assume that (a) H0 holds; (b) Ĥ −→
p

H > 0; (c) Zn −→
d

N(0,Ω); (d) σ̂2 −→
p
σ2; and (e) Ω̂−→

p
Ω.

Then Fn −→
d

Q (λ) where λ = (λ1, ...,λq ) are the eigenvalues of
(
R ′V0R

)−1 (
R ′V R

)
, V0 = σ2H−1, and V =

H−1ΩH−1. Furthermore, p̂F −→
d

U [0,1].

The matrix V is the asymptotic covariance matrix for θ̂ under the stated conditions, and allows for

heteroskedasticity, clustering, and serial correlation. The matrix V0 is the classical asymptotic covariance

matrix, which holds under conditional homoskedasticity, no clustering, and no serial dependence.

The distribution in Theorem 2 deviates from the chi-square when the correct asymptotic variance V

deviates from the “homoskedastic” asymptotic variance V0. Inference based on the weighted chi-square

p-value p̂F, however, is asymptotically correct, so long as the eigenvalues are calculated from a consistent

estimator of the asymptotic covariance matrix.

Thus, to test the hypothesis H0 against H1 using an F statistic when the classical regression assump-

tions are not satisfied, it is asymptotically valid to use the weighted chi-square p-value p̂F. The hypothe-

sis is rejected at level α if p̂F <α, and is accepted otherwise.

4.2 Likelihood Ratio Statistic

Take the model X ∼ f (x | θ) for some parametric density f . The pseudo-true parameter (regardless

of correct specification) is θ0 = argmin
θ∈Θ

E [` (X ,θ)].

The negative log-likelihood function is

`n(θ) =
n∑

i=1
` (Xi ,θ)

where ` (x,θ) = − log f (x | θ). The unrestricted and restricted maximum likelihood estimators are θ̂ =
argmin
θ∈Θ

`n(θ) and θ̃ = argmin
θ∈Θ:r (θ)=0

`n(θ). The likelihood ratio statistic for H0 against H1 is

LRn = 2
(
`n(θ̃)−`n(θ̂)

)
.

Under correct specification, LRn −→
d
χ2

q . Under broader conditions the asymptotic distribution is a

weighted chi-square.
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Set Zn = n−1/2 ∑n
i=1

∂
∂θ` (Xi ,θ0) and define its asymptotic covariance matrixΩ. Let Ω̂ be an estimator

of Ω. Define Hn(θ) = n−1 ∑n
i=1

∂2

∂θ∂θ′` (Xi ,θ), Ĥ = Hn(θ̂), V̂0 = Ĥ−1, V̂ = Ĥ−1Ω̂Ĥ−1, and R̂ = R(θ̂). Let

λ̂= (λ̂1, ..., λ̂q ) be the eigenvalues of
(
R̂ ′V̂0R̂

)−1 (
R ′V̂ R

)
and set p̂LR = 1−G

(
LRn | λ̂)

.

Theorem 3 Assume that (a) H0 holds; (b) θ̂ −→
p

θ0; (c) Hn(θ) −→
p

H(θ) for some H(θ) uniformly in a

neighborhood of θ0; (d) H = H(θ0) > 0; (e) Zn −→
d

N(0,Ω); and (f) Ω̂ −→
p
Ω. Then LRn −→

d
Q (λ) where

λ = (λ1, ...,λq ) are the eigenvalues of
(
R ′V0R

)−1 (
R ′V R

)
, V0 = H−1, and V = H−1ΩH−1. Furthermore,

p̂LR −→
d

U [0,1].

The matrix V is the asymptotic covariance matrix for θ̂ under general conditions, without imposing

the information matrix equality Ω = H . The matrix V0 is the classical asymptotic covariance matrix,

and is valid under the information matrix equality. The latter fails under misspecification, clustered

dependence, or unmodeled serial dependence.

The distribution Q (λ) deviates from the chi-square when the correct asymptotic variance V devi-

ates from the classical asymptotic variance V0. Inference based on the weighted chi-square p-value p̂LR,

however, is asymptotically correct. Thus, to test the hypothesis H0 against H1 using a likelihood ratio

statistic when the information matrix equality is not satisfied, use the weighted chi-square p-value p̂LR.

The hypothesis is rejected at level α if p̂LR <α and is accepted otherwise.

4.3 GMM Overidentification Test

Take the moment model E
[
g (X ,θ0)

] = 0 for some `× 1 function g (x,θ) where ` ≥ k. The GMM

criterion is

Jn(θ) = ng n(θ)′Wn g n(θ)

g n(θ) = 1

n

n∑
i=1

g (Xi ,θ)

where Wn > 0 is an`×`weight matrix. The unrestricted and restricted GMM estimators are θ̂ = argmin
θ∈Θ

Jn(θ)

and θ̃ = argmin
θ∈Θ:r (θ)=0

Jn(θ). When `> k the GMM statistic for overidentifying restrictions (proposed by Lars

Hansen (1982)) is Jn = Jn(θ̂).

Set Zn = n−1/2 ∑n
i=1 g (Xi ,θ0) and define its asymptotic covariance matrixΩ. Let Ω̂ be an estimator of

Ω. Define Gn(θ) = n−1 ∑n
i=1

∂
∂θ′ g (Xi ,θ), Ĝ =Gn(θ̂), and

ŴG =Wn −WnĜ
(
Ĝ ′WnĜ

)−1
Ĝ ′Wn .

Let λ̂= (λ̂1, ..., λ̂`−K ) be the non-zero eigenvalues of Ω̂ŴG and set p̂ J = 1−G
(

Jn | λ̂)
.

Theorem 4 Assume that (a) θ̂ −→
p
θ0; (b) Gn(θ) −→

p
G(θ) for some G(θ) uniformly in a neighborhood of θ0;

(c) G = G(θ0) has full rank k; (d) Zn −→
d

N(0,Ω); (e) Wn −→
p

W > 0; and (f) Ω̂ −→
p
Ω. Then Jn −→

d
Q (λ)
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where λ= (λ1, ...,λ`−K ) are the non-zero eigenvalues ofΩWG where

WG =W −W G
(
G ′W G

)−1 G ′W.

Furthermore, p̂ J −→
d

U [0,1].

When W equals the efficient weight matrixΩ−1 thenΩWG = I`−G
(
G ′Ω−1G

)−1
G ′Ω−1 which has unit

eigenvalues and Q (λ) simplifies to χ2
`−K . Otherwise the distribution is a weighted chi-square.

The matrices ŴG and WG have rank `−K so the matrices Ω̂ŴG andΩWG have `−K non-zero eigen-

values.

The weighted chi-square distribution in Theorem 4 for the GMM overidentification test takes a dif-

ferent form from the hypothesis tests, as the eigenvalues λ are not based on the matrix ratios of two

covariance matrices.

Theorem 4 shows that when GMM estimation has been performed using a GMM criterion where the

weight matrix Wn is not necessarily asymptotically efficient (for example, does not take into account

clustering), then it is appropriate to use the weighted chi-square p-value p̂ J . The overidentifying restric-

tions are rejected at level α if p̂ J <α and are accepted otherwise.

4.4 GMM Distance Test

The GMM distance statistic (proposed by Newey and West (1987b)) for H0 against H1 is Dn = Jn(θ̃)−
Jn(θ̂). If Wn is consistent for the efficient weight matrix, then Dn −→

d
χ2

q . Otherwise the asymptotic

distribution is a weighted chi-square. Inference based on the weighted chi-square p-value p̂ J , however,

is asymptotically correct.

Define V̂0 =
(
Ĝ ′WnĜ

)−1
,

V̂ = (
Ĝ ′WnĜ

)−1 (
Ĝ ′WnΩ̂WnĜ

)(
Ĝ ′WnĜ

)−1
,

and R̂ = R(θ̂). Let λ̂= (λ̂1, ..., λ̂q ) be the eigenvalues of
(
R̂ ′V̂0R̂

)−1 (
R̂ ′V̂ R̂

)
and set p̂D = 1−G

(
Dn | λ̂)

.

Theorem 5 Assume that the conditions of Theorem 4 hold, plusH0. Then Dn −→
d

Q (λ) whereλ= (λ1, ...,λq )

are the eigenvalues of
(
R ′V0R

)−1 (
R ′V R

)
, with V0 =

(
G ′W G

)−1 and

V = (
G ′W G

)−1 (
G ′WΩW G

)(
G ′W G

)−1 .

Furthermore, p̂D −→
d

U [0,1].

The matrix V is the asymptotic covariance matrix for θ̂, and the matrix V0 is the asymptotic covari-

ance matrix when W is the efficient weight matrix Ω−1. The distribution Q (λ) deviates from the chi-

square when the weight matrix W deviates from the efficient weight matrix. Inference based on the

weighted chi-square p-value p̂D , however, is asymptotically correct.
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Thus, when estimation is performed by GMM when the weight matrix Wn is not necessary asymp-

totically efficient, then the GMM distance statistic can be still used for inference if assessed using the

estimated weighted chi-square p-value p̂D . The hypothesis is rejected at level α if p̂D <α and accepted

otherwise.

4.5 Minimum Distance

Let θ̂ be a first-stage estimator with estimator V̂ of its asymptotic covariance matrix V . Let Wn > 0 be

a weight matrix. The minimum distance criterion is

MDn(θ) = n
(
θ̂−θ)′

Wn
(
θ̂−θ)

.

The minimum distance estimator under H0 is θ̃ = argmin
θ∈Θ:r (θ)=0

Jn(θ). The minimum distance statistic for H0

against H1 is MDn = MDn(θ̃).

Set R̂ = R(θ̂). Let λ̂= (λ̂1, ..., λ̂q ) be the eigenvalues of
(
R̂ ′WnR̂

)−1 (
R̂ ′V̂ R̂

)
and set p̂MD = 1−G

(
MDn | λ̂)

.

Theorem 6 Assume that (a) H0 holds; (b)
p

n
(
θ̂−θ0

) −→
d

N(0,V ); (c) Wn −→
p

W > 0; and (d) V̂ −→
p

V .

Then MDn −→
d

Q (λ) where λ= (λ1, ...,λq ) are the eigenvalues of
(
R ′W R

)−1 (
R ′V R

)
.

When the weight matrix is set as Wn = V̂ −1 then the asymptotic distribution of MDn is chi-square.

If the weight matrix is set otherwise then the asymptotic distribution of MDn is weighted chi-square.

Therefore if estimation is performed by minimum distance with a weight matrix not set to equal the

inverse of the covariance matrix, then inference can be based on the estimated weighted chi-square p-

value p̂MD. The hypothesis is rejected at level α if p̂MD <α and accepted otherwise.

4.6 Anderson-Rubin

In Section 2 we used the Anderson-Rubin statistic in a model with no exogenous regressors to illus-

trate criterion-based inference with the weighted chi-square distribution. In this section we present the

empirically-relevant case with exogenous regressors.

The model is Y1 = Y ′
2θ+X ′

1γ+e with E [e | X ] = 0 for X = [X1, X2], where the included regressors X1 are

K ×1 and the excluded instruments X2 are q×1. The Anderson-Rubin statistic, scaled as a Wald statistic,

is

ARn(θ) = (Y 1 −Y 2θ)′ PU (Y 1 −Y 2θ)

(Y 1 −Y 2θ)′ (I n −P ) (Y 1 −Y 2θ)/(n −K −q)

where P = X
(

X ′X
)−1 X ′, PU =U

(
U ′U

)−1 U ′ and U = X 2−X 1
(

X ′
1X 1

)−1 X ′
1X 2. A test ofH0 : θ = θ0 against

H1 : θ 6= θ0 rejects for large values of ARn = ARn(θ0). This is a criterion-based statistic because the LIML

estimator minimizes ARn(θ).

If the error is normally distributed then ARn/q has an exact F distribution under H0. More broadly,

under homoskedasticity and no serial dependennce then the asymptotic null distribution of ARn is χ2
q .
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The Anderson-Rubin statistic is typically motivated as a method for confidence set construction. A

confidence set for θ equals the set of parameter values such that ARn(θ) is less than a critical value. If

conventional critical values are used this is only valid under homoskedasticity and serial independence.

If weighted chi-square critical values are used then such confidence sets have broader validity.

Set Zn = n−1/2 ∑n
i=1 Xi ei and define its asymptotic covariance matrix Ω. Let Ω̂ be an estimator of Ω.

Let σ̂2 be the residual variance estimator from the regression of Y1 −Y ′
2θ on X . Set Ĥ = n−1 ∑n

i=1 Xi X ′
i ,

V̂0 = Ĥ−1σ̂2, and V̂ = Ĥ−1Ω̂Ĥ−1. Set S = (0q×K , Iq )′. Let λ̂= (λ̂1, ..., λ̂q ) be the eigenvalues of
(
S′V̂0S

)−1 (
S′V̂ S

)
and set p̂AR = 1−G

(
ARn | λ̂)

.

Theorem 7 Assume that (a) Ĥ −→
p

H > 0; (b) Zn −→
d

N(0,Ω); (c) σ̂2 −→
p
σ2; and (d) Ω̂−→

p
Ω. Then ARn −→

d

Q (λ) where λ= (λ1, ...,λq ) are the eigenvalues of
(
S′V0S

)−1 (
S′V S

)
, V0 =σ2H−1, and V = H−1ΩH−1. Fur-

thermore, p̂AR −→
d

U [0,1].

Theorem 7 shows that it is asymptotically valid to use the weighted chi-square p-value p̂AR for infer-

ence using the Anderson-Rubin statistic, allowing for violation of the classical assumptions on the errors.

This allows application to a broad set of contexts, including heteroskedastic errors, serially dependent

errors, and clustered dependence.

As mentioned above, the typical motivation for the Anderson-Rubin statistic is confidence region

construction. This can be done using the estimated weighted chi-square distribution, allowing for het-

eroskedasticity, serial correlation, and/or clustering. Given the estimated eigenvalues λ̂, an ξ level con-

fidence region for θ is the set of values such that G
(
ARn(θ) | λ̂)≤ ξ. The eigenvalues λ̂ may be calculated

based on an estimator θ̂ of θ, or could be calculated λ̂(θ) separately for each θ.

5 Simulation

We illustrate the use of the weighted chi-square distribution in a simple simulation experiment. Fol-

lowing Section 2 we consider the Anderson-Rubin (1949) statistic in a linear model with heteroskedastic

errors. We compare inference based on the F, weighted chi-square, and three bootstrap distributions.

The model is Y1 = Y ′
2θ+ e with E [e | X ] = 0 where X is q × 1. There are no included exogenous re-

gressors. The Anderson-Rubin statistic for a test of H0 : θ = θ0 against H1 : θ 6= θ0 is (1). We generate the

model error as e | X ∼ N(0, X 2
1 ) to induce heteroskedasticity, vary q among (2,5,8), and vary sample size

n among (100,500). The instruments X2, ..., Xq are generated as independent N(0,1).

The instrument X1 is generated from one of four designs, constructed to create increasingly asym-

metric eigenvalues λ. The designs are:

1. X1 = 1. This is identical to specifying e as conditionally homoskedastic.

2. X1 ∼ N(0,1).

3. X1 ∼ t (6).

4. X1 ∼ exp(N(0,1/3)).
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In designs 3 & 4 the instrument X1 was re-normalized to have zero mean and unit variance.

30,000 simulated replications were made for each parameterization, the Anderson-Rubin statistic

(1) calculated, and p-values calculated by five methods: F distribution, estimated weighted chi-square

distribution, and three bootstrap methods. We calculated the finite sample size of nominal 0.05 tests and

report the results in Table 2.

The first section of Table 2 shows the size of the Anderson-Rubin statistic with critical values taken

from the F distribution. We see that the test is over-sized except in Design 1 which has homoskedastic

errors. In Designs 2, 3, and 4, the size distortion is large, with the Type I error reaching as high as 48%.

The distortion worses as the sample size increases.

Table 2: Size of Nominal 5% Tests

n = 100 n = 500
q = 2 q = 5 q = 8 q = 2 q = 5 q = 8

F
Design 1 0.050 0.051 0.049 0.049 0.051 0.051
Design 2 0.209 0.161 0.134 0.212 0.162 0.142
Design 3 0.306 0.241 0.209 0.335 0.279 0.245
Design 4 0.411 0.338 0.304 0.482 0.404 0.372
Weighted Chi-Square
Design 1 0.046 0.039 0.032 0.048 0.049 0.046
Design 2 0.038 0.029 0.020 0.047 0.042 0.040
Design 3 0.035 0.025 0.017 0.043 0.041 0.037
Design 4 0.024 0.018 0.012 0.038 0.033 0.033
Regression Bootstrap
Design 1 0.050 0.049 0.043 0.049 0.052 0.051
Design 2 0.055 0.051 0.042 0.052 0.050 0.048
Design 3 0.068 0.060 0.053 0.058 0.057 0.055
Design 4 0.087 0.079 0.068 0.070 0.063 0.064
Hall-Horowitz Bootstrap
Design 1 0.042 0.026 0.011 0.048 0.046 0.043
Design 2 0.029 0.015 0.005 0.047 0.040 0.036
Design 3 0.022 0.011 0.004 0.042 0.039 0.034
Design 4 0.014 0.007 0.002 0.036 0.031 0.028
Prepivot Bootstrap
Design 1 0.038 0.045 0.042 0.049 0.051 0.051
Design 2 0.014 0.032 0.026 0.047 0.046 0.045
Design 3 0.029 0.026 0.021 0.039 0.039 0.037
Design 4 0.019 0.017 0.014 0.028 0.026 0.026

Note: Rejection frequencies from 30,000 simulation draws.

Note: The asymptotic standard error for any entry of 0.05 is 0.001.

The second section of Table 2 shows the size of the Anderson-Rubin test using the estimated weighted
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chi-square distribution and its p-value p̂AR. To estimateΩwe use the efficient estimator

Ω̂= n−1
n∑
1

Xi X ′
i

(
Y1i −Y ′

2iθ0
)2 .

We can see that in all entries the Type I error does not exceed the nominal level of 5%. There is, how-

ever, conservative size distortion, with actual Type I error rates ranging between 1% and 5%. This size

distortion is increasing in the number of instruments q , with the severity of the design, and is decreas-

ing with the sample size n. The source of the finite sample size distortion appears to be the estimation

of the weights λ. Weight estimation can result in spurious estimated weight heterogeneity, resulting in

spuriously conservative p-values. This distortion decreases with larger samples where weight estimation

is more accurate.

An alternative to the estimated weighted chi-square distribution is the bootstrap, but there are multi-

ple implementations of the bootstrap. We focus on the standard nonparametric bootstrap which resam-

ples i.i.d. from the observations. For bootstrap testing a key issue is the need to impose the null hypothe-

sis on the bootstrap statistic. For our first bootstrap implementation we observe that the Anderson-Rubin

statistic can be written as a regression F test. Specifically, (1) equals

ARn = β̂′ (X ′X
)
β̂

σ̂2

where β̂= (
X ′X

)−1 (
X ′ (Y 1 −Y 2θ0)

)
is the least squares coefficient from the regression of Y1−Y ′

2θ0 on X ,

and σ̂2 is the associated residual variance estimator. This is a regression F test of the hypothesisH0 :β= 0

in the regression model Y1 −Y ′
2θ0 = X ′β+ e. The standard bootstrap version of this regression F statistic

is

AR∗
n =

(
β̂∗− β̂)′ (

X ∗′X ∗)(
β̂∗− β̂)

σ̂∗2

where the starred statistics are calculated on the bootstrap sample. This bootstrap statistic imposes the

null hypothesis β= 0 by centering the regression estimator β̂∗ at the sample value β̂. We calculate 1000

bootstrap simulated statistics AR∗
n for each simulation replication, and calculated the bootstrap p-value

as the percentage of the bootstrap AR∗
n which exceed the value ARn . The bootstrap test rejects at the 5%

level if the bootstrap p-value is smaller than 0.05.

The third section of Table 2 shows the size of this bootstrap test, labeled as “Regression Bootstrap”.

The size of the test is much improved relative to the F distribution, but still has considerable size distor-

tion, with actual Type I error rates ranging between 4.2% and 8.7%.

An alternative method to impose the null hypothesis was proposed by Hall and Horowitz (1996) in

the context of GMM estimation. They proposed the statistic

AR∗∗
n =

(
X ∗′ (Y ∗

1 −Y ∗
2θ0

)−X ′ (Y 1 −Y 2θ0)
)(

X ∗′X ∗)−1 (
X ∗′ (Y ∗

1 −Y ∗
2θ0

)−X ′ (Y 1 −Y 2θ0)
)

σ̂∗2 .

This bootstrap statistic imposes the null hypothesis E [X e] = 0 by centering the bootstrap moment X ∗′ (Y ∗
1 −Y ∗

2θ0
)

13



at the sample value X ′ (Y 1 −Y 2θ0). Otherwise the implementation of bootstrap inference is the same.

There is no theoretical reason to expect AR∗
n or AR∗∗

n to have different finite sample performance.

The fourth section of Table 2 shows the size of this bootstrap test, labeled as “Hall-Horowitz Boot-

strap”. Surprisingly, the size of the test is considerably different from the regression bootstrap test. The

Hall-Horowitz test is highly conservative, especially in the smaller sample, for larger q , and for the stronger

designs. The actual Type I error rates ranging between 0.0% and 4.8%. This highly conservative perfor-

mance means that this test will have low power relative to alternative statistics.

The fact that the size of the two bootstrap tests based on AR∗
n and AR∗∗

n are noticably different from

one another is disconcerting, pointing to a meaningful divergence between bootstrap implementations.

This is not a caution against use of the bootstrap; rather, it is pointing out that bootstrap methods are

not a panacea for finite sample inference.

Our final bootstrap implementation is Beran (1988) prepivoting applied to the estimated weighted

chi-square p-value p̂AR. On each bootstrap sample we calculated the regression bootstrap statistic AR∗
n ,

the covariance matrix ratio V̂ ∗−1
0 V̂ ∗ using the same formula as on the original observations, its eigenval-

ues λ̂∗, and the bootstrap p-value statistic p̂∗
AR = 1−G

(
AR∗

n | λ̂∗)
. The prepivot bootstrap p-value is the

percentage of the bootstrap statistics p̂∗
AR which are smaller than the sample value p̂AR. The bootstrap

test rejects at the 5% level if the bootstrap p-value is smaller than 5%. The size of this test is displayed in

the fifth section of Table 2. The results are similar to those for the non-bootstrapped weighted chi-square

distribution. The rejection rates are more conservative for q = 2, but the reverse for most entries for q = 5

and q = 8.

Comparing the five tests reported in Table 2 we can make the following conclusions. First, under

heteroskedasticity the Anderson-Rubin statistic with classical F critical values exhibits large size distor-

tions. Second, the over-rejection rates can be effectively eliminated by use of the estimated weighted

chi-square distribution. Third, the latter exhibits conservative size distortions in small samples. Fourth,

while the regression bootstrap dramatically reduces the finite sample distortions, they are not elim-

inated, and the performance of the bootstrap does not dominate the performance of the estimated

weighted chi-square distribution. Overall the estimated weighted chi-square p-values have the best per-

formance yet are computationally inexpensive.

6 Conclusion

Criterion-based tests have many advantages relative to Wald tests, but have the traditional disad-

vantage that their asymptotic distributions are difficult to robustify to misspecification, including het-

eroskedasticity, serial correlation, and clustering. In such contexts the asymptotic distribution of criterion-

based statistics is weighted chi-square. As we show, these weights are consistently estimable, and com-

bined with the Farebrother algorithm provides an asymptotically valid method for p-value calculation

and inference. This pairing – criterion-based tests with the estimated chi-square distribution function –

combines the best advantages of criterion-based and Wald-based tests.
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7 Appendix: Mathematical Proofs

Proof of Theorem 2: The unconstrained estimator θ̂ is consistent for θ0. As the set {θ : r (θ) = 0} is com-

pact and r (θ0) = 0 by assumption, it follows that the constrained estimator θ̃ is also consistent for θ0. The

restricted estimator satisfies r
(
θ̃
) = 0. Expanding each element in a first order Taylor expansion about

θ0, we find

0 = r
(
θ̃
)= r (θ0)+R ′

n

(
θ̃−θ0

)= R ′
n

(
θ̃−θ0

)
(6)

where each row of Rn equals the corresponding row of R (θ∗) for some θ∗ on the line segment joining θ̃

and θ0. We deduce from (6) that

R ′
n θ̃ = R ′

nθ0. (7)

Furthermore, since θ̃ is consistent then so is θ∗, and thus Rn −→
p

R by the continuous mapping theorem.

The constrained estimator θ̃ minimizes the Lagrangian

1

2
(Y −X θ)′ (Y −X θ)+λ′r (θ)

which has first order condition

0 =−X ′ (Y −X θ̃
)+ R̃λ̃

where R̃ = R
(
θ̃
)
. Premultiplying by

(
X ′X

)−1 we obtain

0 =−θ̂+ θ̃+ (
X ′X

)−1 R̃λ̃ (8)

and premultiplying by R ′
n and using (7) we obtain

0 =−R ′
n

(
θ̂−θ0

)+R ′
n

(
X ′X

)−1 R̃λ̃.

Solving for λ̃ and inserting into (8) we obtain

p
n

(
θ̂− θ̃)=p

n
(

X ′X
)−1 R̃

(
R ′

n

(
X ′X

)−1 R̃
)−1

R ′
n

(
θ̂−θ0

)
= Ĥ−1R̃

(
R ′

n Ĥ−1R̃
)−1

R ′
n Ĥ−1Zn .

By algebraic manipulations, we find that

Sn(θ̃)−Sn(θ̂) = (
θ̃− θ̂)′ (

X ′X
)(
θ̃− θ̂)

= Z ′
n Ĥ−1Rn

(
R ′

n Ĥ−1R̃
)−1

R̃ ′Ĥ−1R̃
(
R ′

n Ĥ−1R̃
)−1

R ′
n Ĥ−1Zn . (9)

The assumptions imply that p
nR ′

n Ĥ−1Zn −→
d

Z ∼ N(0,R ′V R).

Applied to (9) we obtain

Sn(θ̃)−Sn(θ̂) −→
d

Z ′ (R ′H−1R
)−1

Z .
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We also see that σ̂2 −→
p
σ2. Together,

Fn = Sn(θ̃)−Sn(θ̂)

σ̂2 −→
d

Z ′ (R ′V0R
)−1 Z .

By Lemma 1 this is distributed Q(λ) where λ= (λ1, ...,λq ) are the eigenvalues of
(
R ′V0R

)−1 (
R ′V R

)
.

The assumptions imply that
(
R̂ ′V̂0R̂

)−1 (
R̂ ′V̂ R̂

) −→
p

(
R ′V0R

)−1 (
R ′V R

)
. Thus by Theorem 1, p̂F −→

d
U [0,1] as stated. ■

Proof of Theorem 3: By the consistency of the estimators, a second order Taylor series expansion of `n(θ̃)

about θ̂, the fact ∂
∂θ`n(θ̂) = 0, and the assumptions on Hn(θ), we can show that

LRn = 2
(
`n(θ̃)−`n(θ̂)

)=p
n

(
θ̃− θ̂)′

H
p

n
(
θ̃− θ̂)+op (1). (10)

By a Lagrange multiplier analysis similar to that of the proof of Theorem 2, it is straightforward to show

that p
n

(
θ̃− θ̂)=−H−1R

(
R ′H−1R

)−1
R ′pn

(
θ̂−θ0

)+op (1).

By a standard Taylor series argument and the assumptions,

R ′pn
(
θ̂−θ0

)=−R ′H−1Zn +op (1) −→
d

Z ∼ N
(
0,R ′V R

)
.

These three equations and H−1 =V0 combine to show that

LRn =p
n

(
θ̂−θ0

)′
R

(
R ′H−1R

)−1
R ′pn

(
θ̂−θ0

)+op (1) −→
d

Z ′ (R ′V0R
)−1 Z .

By Lemma 1 this is distributed Q(λ) where λ= (λ1, ...,λq ) are the eigenvalues of
(
R ′V0R

)−1 (
R ′V R

)
.

The assumptions imply that
(
R̂ ′V̂0R̂

)−1 (
R̂ ′V̂ R̂

) −→
p

(
R ′V0R

)−1 (
R ′V R

)
. Thus by Theorem 1, p̂LR −→

d
U [0,1] as stated. ■

Proof of Theorem 4: By a standard Taylor series expansion of the first-order-condition for θ̂ about θ0 and

standard manipulations we find that

p
n

(
θ̂−θ0

)=−(
G ′W G

)−1 G ′W Zn +op (1) −→
d

−(
G ′W G

)−1 G ′W Z (11)

where Z ∼ N(0,Ω). By a Taylor expansion of g n(θ̂) about θ0 and the above result we find

p
ng n(θ̂) = Zn +G ′pn

(
θ̂−θ0

)+op (1)

=
(
I`−G ′ (G ′W G

)−1 G ′W
)

Zn +op (1) (12)

−→
d

(
I`−G ′ (G ′W G

)−1 G ′W
)

Z .
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Hence

Jn =p
ng n(θ̂)′Wn

p
ng n(θ̂) −→

d
Z ′

(
W −W G ′ (G ′W G

)−1 G ′W
)

Z .

By Lemma 1 this is distributed Q(λ) where λ= (λ1, ...,λ`−K ) are the eigenvalues of

Ω
(
W −W G ′ (G ′W G

)−1 G ′W
)

.

The assumptions imply that Â −→
p

A. Thus by Theorem 1, p̂ J −→
d

U [0,1] as stated. ■

Proof of Theorem 5: By a Taylor series expansion of g n(θ̃) about θ̂ we obtain

p
ng n(θ̃) =p

ng n(θ̂)+G
p

n
(
θ̃− θ̂)+op (1).

Thus

Dn = ng n(θ̃)′Wn g n(θ̃)−ng n(θ̂)′Wn g n(θ̂)

= n
(
θ̃− θ̂)′

GW G
(
θ̃− θ̂)+2n

(
θ̃− θ̂)

G ′W g n(θ̂)+op (1)

= n
(
θ̃− θ̂)′

GW G
(
θ̃− θ̂)+2n

(
θ̃− θ̂)

G ′W
(
I`−G ′ (G ′W G

)−1 G ′W
)

Zn +op (1)

= n
(
θ̃− θ̂)′

GW G
(
θ̃− θ̂)+op (1).

The third equality is (12), and the fourth uses the fact G ′W
(
I`−G ′ (G ′W G

)−1 G ′W
)
= 0.

By a Lagrange multiplier analysis similar to that of the proof of Theorem 2 it is straightforward to

show that p
n

(
θ̂− θ̃)= (GW G)−1 R

(
R ′ (GW G)−1 R

)−1
R ′pn

(
θ̂−θ0

)+op (1).

(11) implies R ′pn
(
θ̂−θ0

)−→
d

Z ∼ N
(
0,R ′V R

)
. Together, we find

Dn =p
n

(
θ̂−θ0

)
R

(
R ′ (GW G)−1 R

)−1
R ′pn

(
θ̂−θ0

)+op (1)

−→
d

Z ′ (R ′V0R
)−1 Z

By Lemma 1 this is distributed Q(λ) where λ= (λ1, ...,λq ) are the eigenvalues of
(
R ′V0R

)−1 (
R ′V R

)
.

The assumptions imply that
(
R̂ ′V̂0R̂

)−1 (
R̂ ′V̂ R̂

) −→
p

(
R ′V0R

)−1 (
R ′V R

)
. Thus by Theorem 1, p̂D −→

d
U [0,1] as stated. ■

Proof of Theorem 6: By a Lagrange multiplier analysis similar to that of the proof of Theorem 2 it is

straightforward to show that

p
n

(
θ̂− θ̃)=W −1R

(
R ′W R

)−1 R ′pn
(
θ̂−θ0

)+op (1).
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The assumptions imply that R ′pn
(
θ̂−θ0

)−→
d

Z ∼ N
(
0,R ′V R

)
. Together we find

Jn = n
(
θ̂− θ̃)′

Wn
(
θ̂− θ̃)+op (1)

=p
n

(
θ̂−θ0

)′
R

(
R ′W R

)−1 R ′pn
(
θ̂−θ0

)+op (1)

−→
d

Z ′ (R ′W R
)−1 Z .

By Lemma 1 this is distributed Q(λ) where λ= (λ1, ...,λq ) are the eigenvalues of
(
R ′W R

)−1 (
R ′V R

)
.

The assumptions imply that
(
R̂ ′WnR̂

)−1 (
R̂ ′V̂ R̂

)−→
p

(
R ′W R

)−1 (
R ′V R

)
. Thus by Theorem 1, p̂MD −→

d
U [0,1] as stated. ■

Proof of Theorem 7: The statistic ARn(θ0) equals the F statistic for β2 = 0 in the linear regression Y1 −
Y ′

2θ0 = X ′
1β1 +X ′

2β2 +e with θ0 known. This can be written as

ARn = Z ′
n Ĥ−1S

(
S′V̂0S

)−1
S′Ĥ−1Zn .

The assumptions imply

S′Ĥ−1Zn −→
d

Z ∼ N
(
0,S′V S

)
where Z ∼ N

(
0,S′V S

)
. Thus

ARn −→
d

Z ′ (S′V0S
)−1 Z .

By Lemma 1 this is distributed Q(λ) where λ= (λ1, ...,λq ) are the eigenvalues of
(
S′V0S

)−1 (
S′V SR

)
.

The assumptions imply that
(
S′V̂0S

)−1 (
S′V̂ S

) −→
p

(
S′V0S

)−1 (
S′V S

)
. Thus by Theorem 1, p̂AR −→

d
U [0,1] as stated. ■
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