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SUMMARY

Recently, methods for detecting unit roots in autoregressive and autoregressive-
moving average time series have been proposed. The presence of a unit root indicates
that the time series is not stationary but that differencing will reduce it to stationarity.
The tests proposed to date require specification of the number of autoregressive and
moving average coefficients in the model. In this paper we develop a test for unit roots
which is based on an approximation of an autoregressive-moving average model by an
autoregression. The test statistic is standard output from most regression programs and
has a limit distribution whose percentiles have been tabulated. An example is provided.

Some key words: Mixed model; Nonstationary; Time series; Unit root.

1. INTRODUCTION

Box & Jenkins (1970) discuss a class of models known as ARIMA (p, d, ¢) models. The
term ARIMA (p, d, q) refers to an autoregressive-moving average model of the form

Zy—oyZy oy —..—0, L=+ Pie_1+...+ By

where Z, is the order d difference of the data and e, is a white noise sequence. These have
become quite popular for modelling time series data. Methods are available for testing
the p autoregressive and ¢ moving average coefficients for significance. The value of d
indicates the amount of differencing necessary to reduce the series to stationarity. The
number d also equals the number of unit roots in the characteristic equation for the time
series.

While much has been written about estimation when d = 0, relatively little has been
written about cases with d > 0. D. A. Dickey, in his Iowa State University Ph.D. thesis,
Dickey & Fuller (1979) and Hasza & Fuller (1979) discuss cases with ¢ = 0. Dickey &
Said (1981) discuss a method for testing the hypothesis Hy: d = 1 when p and g are
known. Unfortunately, p and ¢ are usually unknown and it is necessary to determine d
before estimating p and ¢ if we use the approach described by Box & Jenkins (1970).

In the present paper we show that it is possible to approximate an ARIMA (p, 1,¢) by an
autoregression whose order is a function of the number of observations n. Using least
squares to estimate coefficients in this autoregressive approximation produces statistics
whose limit distributions are the same as those tabulated by Dickey and listed by Fuller
(1976, p. 373). Thus it is possible to test the null hypothesis Hy: d = 1 without knowing p
or gq.
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The development is illustrated for p = ¢ = 1 and normal errors then extended to the
general p, g case with independent identically distributed errors.

2. ESTIMATION PROCEDURE

We first consider the model described by
Y.=pY,_1+Z, (t=1,2,..),
t p t—1 t ) (2.1)
Zy=0Z,_ +e+Pe_y (t=.. —2,—1,0,1,2,..),

where it is assumed that [a| < 1,|f| <1, Y, = 0 and {e,} is a sequence of independent
identically distributed random variables which, for the moment, we will assume to be
normal. If |p| <1 then, except for transitory start up effects, Y, is a stationary
ARMA (2, 1) series in the terminology of Box & Jenkins (1970). If p = 1 the series (2:1) is
an ARIMA (1,1, 1) process. We consider p = 1 as a null hypothesis to be tested. Notice
that

€ = _Zo(_ﬂ)j(zt—j—azt—j-—l)
j=
and it follows that
Yt_Yt-l = (p_l)(Yt—1)+(°‘+ﬂ) (Zt—l_ﬁZt—2+182Zt—3_"')+et' (2'2)

Under the null hypothesis that p = 1, we see that Z, = Y,— Y,_,. This motivates us to
estimate the coefficients in (2:2) by regressing the first difference ¥, = ¥,— Y,_; on
Y-, Y, 1,..., Y,_, where k is a suitably chosen integer. To get consistent estimates of
the coefficients in (2:2) it is necessary to let £ be a function of n. We shall assume that
n~ 13k — 0 and that there exist ¢ > 0,7 > 0 such that ck > n!".

3. DEFINITIONS AND NOTATION
Let dy = p—1 and d; = (x4 f) (—B)' "' (i > 0) be the coefficients in (2:2). Let
Xi=(Z-1,. s Zyy), U= (Y, 1 X3)
and d' = (dy,d, ...,d;). Now consider a truncated version of (2-2)
Y,=(p——l) Yt—1+ O(+,B {Z,_l—ﬂZt_z-l-ﬂZZt 37 +(_ﬁ)k_lzt k}+etk (3'1)

Notice that e, is not a white noise series. In fact e, = Y,— U’d. Define & = (oco, Qyyenny Bly)
to be the vector of estimated coefficients in the regression of ¥, on Y,_, Y,_y,..., Y,_,,
hereafter referred to as regression (3:1). Further, define a sum of squares and cross-
products matrix R, and a normalizing matrix D, by

n LY., XVY,_, X
U U’= t—1 t—1 tjl) 32
2, U [z Y. X, XX 2
D, =diag{(n—k)" ', (n—k) "%, ..., (n—k) "}

We shall develop the limit distribution of

Dn_l(a’_d) = (DnRODn)_an Z Utetk' (33)

t=k+1
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The first step will be to show that D, R, D,— R converges to zero, where R is a block
diagonal matrix. Let y,(i—j) = E(Z,_;Z,_;) be the autocovariance function of the
stationary series Z,, I';; = y,(i— j), where I is a k x k matrix, and y' = {y,(1), ..., y,(k)}. It
is well known (Fuller, 1976, p. 239), that

(n—k)~* Z XX;->T, (n—k* Z XiZ; >y,
t=k+1 t=k+1

where the convergence is in probability. Finally, let W, = e, + ... + ¢, and define the block
diagonal matrix R by

R =diag{(1—a) 21 +B)*(n—k) 2T WL, , T} (3-4)
The ideas presented in the next section follow the lines of Berk (1974). He uses the
standard Euclidean norm, |z || = (#'x)}, of a column vector = to define a matrix norm

| B| and defines
I Bl =sup{ll Bx|l: || <1}.

Notice that | B||? is bounded by the sum of squares of the elements of B and that | B | is
bounded by the largest modulus of the eigenvalues of B. Using this norm we investigate
the convergence of R,,.

4. ASYMPTOTIC EQUIVALENCE OF D, Ry D, AND R

In this section, we let @ = D, R, D,— R and show that || @ | converges in probability to
0. Let the (i, j)th element of @ be denoted by g;;.

Levmma 4-1. Under the assumptions in §3, if p=1 and n~ 3k — 0 then k*| Q|
converges in probability to 0.

Proof. First,
g1 =n—k)"HZ Y2 | —(1—-0) 21+ B> Z W2}

Forp=1wehave Y, =Z,+...4Z,_, so that

-1
Yioy—aY, = '21 (ej+ Bej—1) +aZg
I=
and thus
t-1
(I-0) Y, y+aZ,_, = (1+) _Zl ej+Pleo—e—y) +0aZg (41)
=
or

Yt—l = (1_0‘)_1(1 +ﬂ) Wt—1+0p(1)‘
Dickey & Fuller (1979) show that X W2, = 0,(n?). Their arguments show that
(n—k) E(q},) < C,, where O, is some constant.
Berk (1974) shows that for some C,,
(n=k) E{(n—k) ' 22, Z:_;=7.(j))}* < C2 (j=1,.... k).

For¢>1, j> 1, we note that ¢;; = (n—lc)'lZZ,_,-Z,_j—yz(i—j).
We now consider ¢;; for 1 =1, j>1. The vector of these g¢;; from (32) is
(n—k)"**Z Y,_; X,. Now for some C},

(n_k)E((Iizj) = (n_k)_zzsztE(Yt—IZt—j Ys—lzs—j) < (.
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This follows from the facts that

o0

';Vz(s—j)‘< 2. 17:04)] = C4 < o0,

= w

| E(Y, Zy)| =

B, Y)I<t Y 1%.0)] = tC,.
J= —

To finish the proof, let C' = max (Cy, C,, C3), so that (n—k) E(q?j) < (' for all 4, j; note
that C, €, and Cy do not depend on 7 or k. Since @ has dimension (k+1) x (k+ 1) we see
E([QI* < C(k+1)*/(n—k) and if k*/n — O then || Q| converges in probability to 0.
Under our assumption that k3/n — 0 we have k¥ || Q || converging to 0 also.

Lemwma 4-2. Under the assumptions of model (2:1) with p = 1

n -1
{“‘“)_2“+ﬁ)2‘""“)_2,:kZHW'Z—1} = 0,(1).

I 7‘00’. Now
W 2_ = e’Ae,

where ¢’ = (e, ...,e,_;) and the (i, j)th element of 4 is n—max (s, 7). Thus
n—1
e,Ae = z yinZiZ’
i=1

where {Z;} is an independent N(0, %) sequence, and (Dickey & Fuller, 1979)

Yin=4"'sec?{2n—1)"'n—i)n} (I=1,...,n).

2

Also, for any fixed i,n"?y;, > 4{(2i—1)n} %> > 0 as n > o0, so that, given ¢ > 0, we

can find M, such that

n -1
pr {n2< ZZ W?-1> > M} <pr(nyy Zi*> M) =pr(n 2y Z} < M) <e.
A

The ability to find M, follows from the fact that n~2y,,Z? converges to a nonzero
multiple of a y} variate. This proves the result through a direct application of the
definition of 0,(1).

In the following lemma we show that the norm of R™! is bounded in probability.

Lemma 4-3. Under the assumptions of model (2:1) with p=1, || R™! || = 0,(1).

Proof. Since the matrix R is block diagonal with invertible diagonal blocks, R~ ! is
block diagonal and || R™! || is bounded by the sum of the norms of the diagonal blocks of
R™!'. The lower right-hand corner block of R™! is I'"!, which is the inverse of the
autocovariance matrix of a stationary invertible series, and thus || ™! || is bounded. By
Lemma 42 the upper left-hand corner element of R™' is also bounded in probability.

The main result of this section is proved next.
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TurorREM 4'1. Under the conditions of model (2:1) with p = 1, n~ 2k — 0, we have that
k*| Dy ' RyY D,y — R~ | converges in probability to 0.
Proof. Let R* = D,Ry,D,, q = | R*1—R !'|andp=| R !|. Nowp= 0,(1) and
g=R* Y R—R*)R™'| <|B* ' || R—R*|| R
<@+olely
=p*QI+aepl Q1. (42)

and since k%[ Q| converges in probability to 0 we find, upon rearranging (4-2),
g<kA—p|Q) 'p* Q| — 0. Here we have used the fact that pr (|| Q| > 1) can
be made arbitrarily small by choice of n since p | @ || — O.

5. CONSISTENCY OF LEAST SQUARES ESTIMATORS

In §2 we propose the use of least squares autoregression to estimate p in model (2-1).
We estimate p—1 by the first element of a vector a given by expression (3:3). In §4 we
looked at D, Ry, D,, so it remains to consider D,X U,e,. We show that this vector
converges to 0 and thus prove consistency.

|

LeMMA 51. Asn —» o©

D, Y Ufey— =0,(n"1).

t=k+1

Proof. We have

Since {Z,} is a stationary invertible ARMA process, we can use (3:1) and (3-2) to see that

2

l)n E: LC %k

t=k+1

(n—k)"2{Z, Y,_((ex—e) >+ (n—Fk)~ Z {3,Z,_jleq—e)}. (51)

|:(n k)~ Z {2,2Z,_j(eq—e )}{l < ck(n—k) Y d?,
=1 i=k+1

where c is a constant. Further, there exists 4 with | §| < A < 1 such that | d;]| is bounded
by a constant multiple of A Thus k(n—k)(d?+,+dis,+...) = O(n~?) under our
assumption that £ is bounded below by a positive multiple of n'/" for some r > 0.

The order of the first term in (5:1) is established by expressing Y,_; and e, —e, in terms
of {Z;} and the proof is thereby completed.

At this point we will establish the probability order of

)

”Dn Y Ue

t=k+1

which, in combination with Lemma 5'1 and Theorem 4-1, will establish consistency.
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LEMMA 52. Asn — o0,

= 0,(k*).

H D, i U,e,

t=k+1

Proof. Now

k n—k 2
E|D,X, Ue, ”2 = (n_k)_zE(Z Y., et)2+(n—k)_1 z E( Zt—jet> .
=1 \i=1
Since Z, is a stationary invertible autoregressive-moving average process

(n—k)~! zk: E<
=1

Here we have used the independence of Z,_; and ¢, for j > 0. This same fact shows that

EZ Y, et)2 = o'ZZtE’(Ytz—l) = O(nz)-

n—k

2
Zl Z,_ je,> = ky,(0) a2.

t=

Combining Lemmas 51 and 52, we see that
” Dn 2t Ut €1k ” = Op(k%) (52)
and we thus are in a position to prove our main result.
THEOREM 5'1. Under the assumptions of model (2:1) with p =1, |a—d || converges in
probability to 0.
Proof. We write
Dn_l(&,—d) = (R*_l*R_l)Dnzt Uceg+R™! D, %, Utet+R_1Dnzt Uilea—e,). (53)

Taking norms of the three terms above we obtain, respectively, 0,(1), OI,(lc%) and O,(n"~ 1
so that | D, "(a—d)| = O,(k*). Since | D, | = O(n—k) and k = O(n'/®) the proof is
complete.

6. LIMIT DISTRIBUTION OF UNIT ROOT TEST STATISTICS

Having shown that D, '(a—d) = 0,(1) we now develop the limit distribution of
D, *(4—d) which, by (53), is the same as that of R~' D, X, U,e,. The first element of
D, Y(a—d) is

(n—k)(p—1) = {(n—k) 2T Y2} (n—k) ' TV, e,
By Lemma 41,

(n—k) 2ZY:, =(1—a) 2(1+B)2Z WL, +0,n%). (6:1)
By the arguments of Lemma 51,

(n—k) 'ZY,_jeu=(n—k)'ZY,_1e+0,n"") (6:2)
and, if we use result (4:1),
(m—k) 'ZY,_ e=(m—k) {(1-) "1+ B)Z W,_, 6+ 0,(n"%).
Dickey & Fuller (1979) define random variables (I', £) and show that
(6 2n 22X Wi, 6 %n 1ZW,_je)
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converges in law to (I, £). If we use (6-1) and (6:2), the distribution of I' "1 ¢ is the same as
the limit distribution of

(1—a) Y (1+B) (n—k) (6o —do) = (1 —a) (1 +B) (n—Fk) (p—1).

If we use the results of Hasza & Fuller (1979) the above limiting distribution is
unchanged if the e, sequence is taken to be independently and identically distributed
with zero mean and variance 2. Further, since R is block diagonal, the results of Berk
(1974) apply to the coefficient vector (&; —d;, ..., &, —d;). That is, the limit distribution of
this part of a—d is the same whether or not we include Y,_; on the right-hand side in
regression (3-1). Thus, for large n, significance tests for these coefficients are not affected
by including Y,_, in the regression.

Since the distribution of n(p —1) involves the unknown parameters o and 8 we would
be unable to use p as a test for unit roots at the identification stage of analysis. We
now show that the limit distribution of the studentized ¢ statistic associated with p
does not depend on any unknown parameters.

TuroREM 6'1. Under the assumptions of Theorem 4-1, define t = (C, 62) " 3(p—1), where
Cy1 s the wpper left-hand corner element of Ry, p—1 = dq—d, and 62 is the error mean
square from regression (3:1). T'hen the limit distribution of t is the same as the distribution of
r-#¢

Proof. By our previous consistency results, 6> converges in probability to a2. Using the
arguments of Lemma 41 we see that

t—{n?6*(Z Y2 ) 1} tnp—1) - 0.
If we use (6-1) and (6-2) it follows that
TYEWE ) TEEW,_ e, > 0
and thus t - T3¢,

Percentiles of the distribution of T are given by Fuller (1976, p. 373) and can be used to
test the null hypothesis of a unit root. An illustration is given in §8.

7. EXTENSIONS
The general ARIMA (p, 1,¢q) model is defined by

Y, =pY,_+7Z, t=1,2,...), (7-1)
P q

Zt+_zlaizt—i=et+_zlﬂjet—j: (7-2)
1= Jj=

with Y, = 0, e, a normal pure noise sequence and p = 1. We assume that Z, is stationary
and invertible. Thus there exists a sequence of real numbers {d;}, a number 0 < 1 <1
and a number M such that ¢, = Xd;Z,_; and |d;| < M}/ (Fuller, 1976, Theorem 2-7-2).
Rearranging, we can write, in analogy to (3:1),

Yt=(p_l)Yt—j_dlZt—l_"‘_det—k+etk' (7-3)

Notice that the consistency proofs in the arima (1,1,1) case depend only on the
existence of exponentially decreasing bounds on the d; and so they generalize im-
mediately to the higher order case.
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Iftp=1,2%2_;=Y,_;—Y,_;_ = Y,_J- and in regression (7-3) we will refer to the least
squares coefficient on Y,_, as p—1. Summation of (7-2) on both sides as ¢ goes from 1 to n
shows that, in analogy to (4:1) with p =1,

Qtag+...4a,) Y, = A+B+...+B) W+ 7V, (7-4)

where V, is a linear combination of a finite number of Z, and ¢, and W, =¢;+...+¢, as
before. If we use (7-4) and the arguments of §6 it follows that, for the general
ARIMA (p, 1, q) case, then in law

(I+ay+...+o,) "A+B +...+B)n(p—1) > T~1¢, (75)

as does the studentized statistic from the least squares regression (7-3).
Finally, if the series mean Y is subtracted from each Y, prior to analysis, we replace
(7-4) by

(I+ay+...+a,) (Y, —F)=A4+B+...4+8) (W,— W)+ V,, (76)

where W =n"'Z W,. We note that Z, = (Y,— ¥)—(Y,_,— ¥) = ¥, when p = 1. Using
the results of Dickey & Fuller (1979) we get distributions similar to (7-5) except that the
limit distribution percentiles now correspond to the p, and 7, tables of Fuller (1976,
p- 371-3). This follows from the fact that for fixed j, Y £ Z,_; = 0,(n*), so that the order
results following (4-1) are unchanged if the series mean Y is subtracted prior to analysis.
The limit matrix R is still block diagonal. The only difference from (3-3) is that the upper
left-hand element of R is now, if we use (6:1),

(n—k) 2 (L+oy+...+a,) 2L+ B +...+B) > Z(W,— W?),

and a similar modification in (6-2) yields results like (7-5).

8. EXxAMPLE

Box & Jenkins (1970, p. 525) list 197 concentration readings from a chemical process.
The authors conclude that an ArRmA (1, 1) or an ARIMA (0, 1, 1) model should be fitted to
the data. We use our testing procedure to test the hypothesis that the model form is
ARIMA (p, 1,q).

Using sas (Barr, Goodnight & Sall, 1979) we fit the model

Y, = —01601(Y,_, — ¥)—04941Y, , —0-2919Y,_,—0-26407,_,
—02477Y,_,—02682Y,_s—0-1888Y,_,

where the error mean square is 0:0938 and Y, = Y,— Y,_,. The coefficient standard errors
are 0-0785, 0-0963, 0-0985, 0-0947, 0-0903, 0-0858 and 0:0726. The studentized statistic
1, = (0-0785) "' (—0-1601) = —2-04 is compared to the 7, tables of Fuller (1976, p. 373).
We do not reject the unit root hypothesis using a one sided 109, significance level test.

The limit theory, of course, does not specify the value of k for any given n. To select £,
we initially fit regression (3-1) for k = 6, 7, 8, 9 and 10. Assuming that an autoregressive
order 10 model gives a sufficient approximation to the data we used the standard
regression F test that the coefficients on Y,_, to Y,_,, are simultaneously zero. The
justification for this as an approximate test is the fact from §6 that Berk’s results
hold for the coefficients on Y,_ j In regression (3-1). The sequential sums of squares
for Y,_; to Y,_;, are 0-:0279, 0-0019, 0-:0013 and 0-1341. The error sum of squares is
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16:6423 with 174 degrees of freedom and we compute F{,, = 0-43. None of the individual
¢t tests for these 4 lags was significant, even at the 209, level.

Furthermore, when regression (3-1) is fitted with k£ = 7, 8, 9 and 10, the 7, statistics are
—1931, —1-830, —1-796 and —2:013 so that our unit root test is not affected over this
range of k.

One will now want to fit a model to the differenced data. Once this has been done, unit
root tests based on known p and ¢ are available (Dickey & Said, 1981).
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