THE ASYMMETRIC DISTRIBUTION OF UNIT ROOT TESTS OF UNSTABLE AUTOREGRESSIVE PROCESSES

BY BENT NIELSEN

1. INTRODUCTION

UNIT ROOT TESTING has been developed through numerous papers since the work of Dickey and Fuller (1979). The idea is to test the hypothesis that the differences of an observed time series do not depend on its levels, or in other words, the levels of the time series have a unit root that can be removed by differencing. While it is in general possible to have multiple unit roots, only the hypothesis of exactly one unit root is considered here. The available tests therefore hinge on two assumptions: (i) the levels of the time series have exactly one unit root which can be removed by differencing, and (ii) the remaining characteristic roots of the time series are stationary roots. In this paper it is proved that for the likelihood ratio test and a number of other likelihood-based statistics the assumption (ii) is redundant whereas (i) is necessary. It is also shown that for some tests that are not likelihood based it is indeed necessary to assume that the differences have stationary roots.

The consequences of the result are perhaps best understood from the implications of condition (i). For autoregressive models of order two or higher, that condition is not satisfied in the entire parameter space and the asymptotic distribution of the likelihood ratio test for a unit root depends on unknown nuisance parameters. In this situation the test statistic is not pivotal; hence the test is not similar, and this complicates the testing. For non-likelihood based tests the necessity of condition (ii) implies an additional similarity problem. The practitioner is therefore faced with a trade off between likelihood based tests with fewer similarity problems and other tests that may have other advantageous properties. There are thus two empirical implications of the result. First, when analyzing time series with stationary roots that have modulus close to one so that condition (ii) is nearly violated, then the likelihood based tests are preferable and other tests should be used cautiously. Secondly, if explosive roots are found in an application, most of the statistical analysis is actually valid and should not necessarily be disregarded because of the presence of explosive roots.

Section 2 presents a Gaussian autoregressive model along with its statistical analysis and the result showing that condition (ii) is redundant for likelihood based tests. Robustness with respect to innovations that are martingale difference is also discussed. The results of Section 2 are given for a model without deterministic trends. In Section 3 these are generalized to models with deterministic terms. The mathematical proofs following in two Appendices are based on the work of Lai and Wei (1983) and Chan and Wei (1988).

1 Comments from K. Abadir, N. Shephard, and the referees are gratefully acknowledged.
2. A MODEL WITHOUT DETERMINISTIC COMPONENTS

Consider the statistical model given by the autoregressive equation,

\[\Delta X_t = \alpha X_{t-1} + \sum_{j=1}^{p} \beta_j \Delta X_{t-j} + \epsilon_t \quad (t = 1, \ldots, T), \]

conditional on \(X_0 \) and \(\Delta X_0, \ldots, \Delta X_{t-p} \). The innovations are independently identically Gaussian distributed with zero mean and variance \(\sigma^2 \) and the parameters \(\alpha, \beta_1, \ldots, \beta_p, \sigma^2 \) vary freely. The unit root hypothesis is given by \(\alpha = 0 \).

The likelihood is maximized in two steps. First, \(\Delta X_t \) and \(X_{t-1} \) are corrected for the remaining terms of equation (2.1) by least squares regression, which gives the residuals \(R_{0,t} \) and \(R_{1,t} \), respectively:

\[(R_{0,t}, R_{1,t}) = (\Delta X_t, X_{t-1} | \Delta X_{t-1}, \ldots, \Delta X_{t-p}). \]

The likelihood ratio test statistic for the hypothesis is then computed as \(LR = -T \log(1 - \hat{\lambda}^2) \) where \(\hat{\lambda} \) is the sample correlation of \(R_{0,t} \) and \(R_{1,t} \), given by

\[\frac{\sum_{t=1}^{T} R_{0,t} R_{1,t}}{\left(\sum_{t=1}^{T} R_{0,t}^2 \sum_{t=1}^{T} R_{1,t}^2 \right)^{1/2}}. \]

When the alternative is one-sided it is preferable to apply the signed version of the likelihood ratio test statistic, which is given by \(w = \text{sign}(\hat{\alpha}) LR^{1/2} \) where \(\hat{\alpha} \) is the maximum likelihood estimator for \(\alpha \) given by \(\sum_{t=1}^{T} R_{0,t} R_{1,t} / \sum_{t=1}^{T} R_{0,t}^2 \).

The characteristic polynomial of the process \(X \) is important for the distributional analysis of the test statistic. Under the hypothesis this is given by \(\psi(z) = (1-z)(1 - \sum_{j=1}^{p} \beta_j z^j) \). Correspondingly, the characteristic polynomial for the differenced process, \(\Delta X \), is \(\psi(z)/(1-z) \). Usually two conditions are associated with the latter polynomial:

(i) The differenced process \(\Delta X \) has no unit roots, or equivalently,

\[\sum_{j=1}^{p} \beta_j \neq 1. \]

If this is satisfied define \(\delta = 1/(1 - \sum_{j=1}^{p} \beta_j) \).

(ii) The process \(\Delta X \) can be given a stationary initial distribution, or equivalently, the characteristic polynomial for \(\Delta X \) has its roots outside the complex unit circle.

In the following it is shown that the second condition is redundant for the distributional analysis of the test statistic.

Theorem 1: Suppose the model is given by (2.1) and that the hypothesis \(\alpha = 0 \) and the condition (2.3) are satisfied. Then, as \(T \to \infty \) and with \(W \) being a standard Brownian Motion,

\[w = \text{sign}(\hat{\alpha}) LR^{1/2} \to \frac{1}{2} \int_{0}^{\infty} W_u dW_u \quad \frac{1}{\int_{0}^{\infty} W_u^2 du}^{1/2}. \]

The convergence result fails if the condition (2.3) is not satisfied. The asymptotic density and distribution functions are given by Abadir (1995).

The necessity of the assumption (2.3) was, for instance, encountered by Pantula (1989). Consequently, the test is not even asymptotically similar. This lack of similarity seems
closely related to the problem that the asymptotic distribution can give poor approximations in finite samples; see Nielsen (1998) who also proved Theorem 1 for a second order model, $p = 1$.

Results like Theorem 1 have been discussed extensively in the literature under the additional assumption that ΔX only has stationary roots. White (1958) essentially proved the result for a first order model, $p = 0$. For the purely nonexplosive case the result can be derived from Chan and Wei (1988). This is, for instance, done by Ghysels, Lee, and Noh (1994) in connection with seasonal time series. They considered a model of order four or higher with one characteristic root at each of the quarterly frequencies, 1, i, $-i$, -1, and assumed that the remaining roots are stationary.

The result of Theorem 1 is shared by a number of test statistics. Examples are the Wald statistic $W = T \hat{\lambda}^2/(1 - \hat{\lambda}^2)$ and the Lagrange multiplier statistic $LM = T \hat{\lambda}^2$ discussed by Evans and Savin (1981), as well as the t-type statistic $\hat{\tau} = ((T - 1)\hat{\lambda}^2/(1 - \hat{\lambda}^2))^{1/2}$ suggested by Dickey and Fuller (1979), which is in one-one relation with w. Using the results of Appendix A it also follows that the maximum likelihood estimator for α is consistent and that $T\hat{\delta}\hat{a}$ converges in distribution to a variable that resembles that given in (2.4).

Other statistics, such as the first order estimator for α that is given by $\Sigma_{t=1}^T X_{t-1} \Delta X_t/\Sigma_{t=1}^T X_{t-1}^2$ is consistent for any lag length whenever ΔX has stationary roots; see Phillips (1987). That estimator is computed without regressing on the lagged differences and the nonstationary components of the time series are therefore not eliminated. Consequently, the estimator is not consistent in the generality described in Theorem 1. One of the simplest counterexamples is when ΔX is a first order process with a root equal to minus one. This problem also applies to the t-type statistics constructed in the same way and is discussed in further detail by Perron (1996).

Robustness of the result with respect to innovations that are not independently, identically normal distributed has also been discussed extensively in the literature. For instance, Phillips (1987) discussed testing when the innovations are strongly mixing and Chan and Wei (1988) considered the case of innovations that are martingale differences. Here it will be proved that the result of Theorem 1 is robust in the case of martingale difference innovations.

Assumption: Let $\{e_t\}$ be a martingale difference and let \mathcal{F}_t be the σ-field generated by the innovations, so that $E(e_t|\mathcal{F}_{t-1}) = 0$ and $E(e_t^2|\mathcal{F}_{t-1}) = \sigma^2$. Further, assume that the innovations have bounded conditional moments of order $2 + \gamma$ for some $\gamma > 0$, that is, with probability one, $\sup E(|e_t|^{2+\gamma}|\mathcal{F}_{t-1}) < \infty$.

Theorem 2: Suppose the process is given by (2.1) where $\alpha = 0$, the condition (2.3) is met, and the innovations satisfy the martingale difference assumption. Then the statistic w converges in distribution as described in Theorem 1.

The maximum likelihood estimators for the remaining parameters are consistent. This consistency is also robust with respect to innovations that satisfy martingale difference assumptions. For β, this was discussed by Lai and Wei (1983) and for σ^2 this follows from the equation (A.6) below. Further, Chan and Wei (1988) discussed the asymptotic distribution of β_j in the purely nonexplosive case. A recent account on the purely explosive case is given in Monsour and Mikulski (1988). Finally, asymptotic normality of the estimator for σ^2 can be proven under moment assumptions on the martingale difference sequence $e_t^2 - 1$.
3. Extensions to Models with Deterministic Trends

In most applications it would be convenient to include deterministic components in the model. There is a great variety of such augmented unit root tests in the literature. Two cases are considered, a model with a constant level and a model with a linear trend.

The model with a constant level is given by the autoregressive equation

\[(3.1) \quad \Delta X_t = (\alpha, \alpha_1) \left(\begin{array}{c} X_{t-1} \\ 1 \end{array} \right) + \sum_{j=1}^{p} \beta_j \Delta X_{t-j} + \epsilon_t. \]

In this model the unit root hypothesis can be formulated as either \(\alpha = 0 \) or \(\alpha = \alpha_1 = 0 \); see Dickey and Fuller (1979, 1981). For simplicity only the latter hypothesis is considered. The reason is two-fold. First, the latter hypothesis only questions the behavior of the stochastic component of time series and not that of the deterministic component. Secondly, the asymptotic distribution of the likelihood ratio test statistics does not depend on the parameter related to the deterministic component.

The case of linear trend is correspondingly given by the equation

\[(3.2) \quad \Delta X_t = (\alpha, \alpha_1) \left(\begin{array}{c} X_{t-1} \\ t \end{array} \right) + \mu + \sum_{j=1}^{p} \beta_j \Delta X_{t-j} + \epsilon_t, \]

where the hypothesis of interest is given by \(\alpha = \alpha_1 = 0 \).

In both cases the statistical analysis is similar to that of the model without deterministic components. For notational convenience define \(X_{t-1}^* \) as the vectors \((X_{t-1}, 1)' \) and \((X_{t-1}, t)' \), respectively. The likelihood is then maximized by first correcting \(\Delta X_t \) and \(X_{t-1}^* \) for the remaining components of the relevant model and then finding the sample multiple correlation \(\lambda \), say, of the residuals. In both cases the levels of the process are corrected for a constant either through a linear transformation of \(X_{t-1}^* \) or by the initial regression on the remaining components of the model. This shows that \(X_{t-1}^* \) could equivalently be chosen as \((\sum_{j=1}^{p-1} \Delta X_{t-j}, 1)' \) or \((\sum_{j=1}^{p-1} \Delta X_{t-j}, t)' \) and hence the null distribution of the sample multiple correlation does not depend on the initial level \(X_0 \). The following result therefore applies.

Theorem 3: Suppose the model is given by either (3.1) or (3.2) and that the hypothesis \(\alpha = \alpha_1 = 0 \) is satisfied. Then the distribution of the likelihood ratio test statistic, \(LR \), does not depend on \(X_0 \). If, in addition, (2.3) is satisfied, then, as \(T \to \infty \),

\[
LR = -T \log(1 - \lambda^2) \overset{\mathcal{D}}{\to} \int_0^1 dW_u F_u \left(\int_0^1 F_u F_u' du \right)^{-1} \int_0^1 F_u dW_u,
\]

where \(F_u \) is a two-dimensional process given by \((W_u, 1)\) and \((W_u - \int_0^u W_v dv, u - 1/2)\), respectively.

The result is robust with respect to innovations that satisfy the martingale difference assumption.

This result is, for instance, proved by Johansen (1995, Theorem 6.1) under the additional assumption that \(\Delta X \) has stationary roots. Corresponding results hold for other likelihood-based tests suggested in the literature. For the constant levels model (3.1) an example is the \(F \)-type statistic, \(\Phi_1 = (T/2 - 1)\lambda^2/(1 - \lambda^2) \), suggested by Dickey and Fuller (1981). When it comes to testing the hypothesis \(\alpha = 0 \) rather than \(\alpha = \alpha_1 = 0 \) the
asymptotic distribution of the likelihood based tests depends on the value of \(\alpha \).

Nonetheless, asymptotic results corresponding to that of Theorem 3 can be proven for tests such as the \(t \)-type statistics, \(\hat{\tau}, \hat{\tau}^* \), suggested by Dickey and Fuller (1979). That proof would require a modification of the Lemma B1 in the Appendix due to the nuisance parameter \(\alpha \); see also Chan (1989).

Department of Economics, University of Oxford, and Nuffield College, Oxford OX1 1NF, UK; bent.nielsen@nuf.ox.ac.uk; http://www.nuff.ox.ac.uk/users/nielsen.

Manuscript received March, 1999; final revision received October, 1999.

APPENDIX A: PROOFS OF THEOREMS 1 AND 2

Theorem 1 follows from Theorem 2. The proof of Theorem 2 has two parts. First, Lemma A1 describes the residuals in detail. Next, the asymptotic analysis follows in Lemmas A2–A4.

Lemma A1: Suppose equation (2.1), the hypothesis \(\alpha = 0 \), and the condition (2.3) are satisfied. Define

\[
\delta = \left(1 - \sum_{j=1}^{p} \beta_j \right)^{-1}, \quad e_0 = X_0/\delta + \sum_{j=0}^{p-1} \Delta X_{j-1} \sum_{k=j+1}^{p} \beta_k, \quad S_t = \sum_{j=0}^{t} e_j.
\]

Then, the residuals (2.2) can be written as

\[
(R_{0,1}, R_{1,1}) = (e_1, \delta S_{t-1} | \Delta X_{t-1}, \ldots, \Delta X_{t-p}).
\]

Further, for any \(p \)-dimensional process \(Z_{t-1} \) found by a nonsingular linear transformation of \((\Delta X_{t-1}, \ldots, \Delta X_{t-p}) \)

\[
(R_{0,1}, R_{1,1}) = (e_1, \delta S_{t-1} | Z_{t-1}).
\]

Proof: Under the hypothesis the model equation (2.1) is given by \(\Delta X_t = \sum_{j=1}^{p} \beta_j \Delta X_{t-j} + e_t \), and the expression for \(R_{0,1} \) follows immediately. This equation can be rewritten as \((1 - \sum_{j=1}^{p} \beta_j) \Delta X_t = e_t - \sum_{j=0}^{p} \Delta^j X_{t-j} \sum_{k=j+1}^{p} \beta_k \). Under the assumption (2.3) the parameter \(\delta \) is well-defined and cumulation of the latter equation gives \(X_t = \delta S_{t-1} - \Delta S_{t-1} \Delta X_{t-1} \sum_{k=1}^{p} \beta_k \). The expression for \(R_{1,1} \) then follows.

Q.E.D.

The sample correlation, \(\hat{\lambda} \), is invariant with respect to scaling of \(R_{0,1} \) or \(R_{1,1} \) by \(\sigma \) and \(\sigma \delta \) respectively. Thus for asymptotic purposes it suffices to assume \(\sigma^2 = \delta = 1 \).

Lemma A2: Suppose \((e_t) \) satisfy the martingale difference assumption and \(\sigma^2 = \delta = 1 \). Then

\[
\frac{1}{T} \sum_{t=1}^{T} e_t^2 \overset{p}{\rightarrow} 1,
\]

and

\[
\left(T^{-1/2} \sum_{t=1}^{T} e_t, T^{-1} \sum_{t=1}^{T} S_{t-1} e_t, T^{-3/2} \sum_{t=1}^{T} S_{t-1}, T^{-2} \sum_{t=1}^{T} S_{t-1}^2 \right) \overset{D}{\rightarrow} \left(W_1, \int_0^1 W_2 dW_2, \int_0^1 W_2 dW_2, \int_0^1 W_2^2 dW_2 \right).
\]
The next lemma shows that for asymptotic purposes the residuals R_0 and R_1 can be replaced by e_t and δS_{t-1}, respectively. The main idea is to choose the regressor Z conveniently. Follow Lai and Wei (1983, equation (4.2)) and Chan and Wei (1988, equation (3.2)) and decompose $\Delta X_{t-1}, \ldots, \Delta X_{t-p}$ into processes A_i, B_j, C_i, D_i with characteristic roots at one, at $\exp(it)$ and $\exp(-it)$ but $\exp(it) \neq 1$, outside the unit circle, and inside the unit circle, respectively. Further, the processes A_i, B_j, C_i, D_i can be normalized so that the normalized process $Z_{t-1} = (a_1, b_1, \ldots, b_i, c_i, d_i)$, say, satisfies
\[
\sum_{t=1}^{T} Z_{t-1} Z_{t-1}^{-1} \Rightarrow F,
\]
where F is a symmetric block-diagonal random matrix that is positive definite with probability one. The Lemmas A3–A5 show that expressions of the type $T^{(\xi-1)/2} \sum_{t=1}^{T} Z_{t-1} Z_{t-1}^{-1} \Rightarrow 0$ converge to zero in probability. Due to (A.4) it suffices to prove that $T^{(\xi-1)/2} \sum_{t=1}^{T} Z_{t-1} Y_{t}$ converges to zero whenever Z_t is given by either of its components a_1, b_1, c_1, d_1.

LEMMA A3: Suppose $\{e_t\}$ satisfies the martingale difference assumption and that equation (2.1) and the hypothesis $\alpha = 0$ are satisfied. Then, for all $\xi < \gamma / (2 + \gamma)$,
\[
T^{(\xi-1)/2} \left(\sum_{t=1}^{T} Z_{t-1} Z_{t-1}^{-1} \right)^{-1/2} \sum_{t=1}^{T} Z_{t-1} e_t \Rightarrow 0.
\]
Note, that the condition (2.3) is not necessary for this result.

Proof (for Z nonexplosive): See Chan and Wei (1988, Theorem 3.5.1).

For Z explosive: Lai and Wei (1983, equation (4.18)) essentially prove the result for $\xi \leq 0$. For the general case note that $\|Z_{t-1}'''|d_{t-1}|e_t\| \leq \max_{1 \leq t \leq p} \|Z_{t-1}'''|d_{t-1}\|$. Using Lai and Wei (1983, Corollary 1) it follows that $\lim_{t \to \infty} T^{(\xi-1)/2} \|d_{t-1}\|$ is finite with probability one. Thus it suffices to show that e_t is of order smaller than $T^{(\xi-1)/2}$ with probability one. Using an idea of Lai and Wei (1982) this follows from the conditional Borel-Cantelli Lemma; see Freedman (1973). By Chebychev's inequality
\[
\sum_{t=1}^{\infty} P(|e_t| > T^{(\xi-1)/2}|\mathcal{F}_{t-1}) \leq \sum_{t=1}^{\infty} T^{- (1 - (\xi+\gamma)2)} E(|e_t|^2 + \gamma)|\mathcal{F}_{t-1}),
\]
where the latter series is convergent for $(1 - \xi X_1 + \gamma / 2) > 1$ and consequently e_t is of the postulated order.

LEMMA A4: Suppose $\{e_t\}$ satisfies the martingale difference assumption and that equation (2.1), the hypothesis $\alpha = 0$, and the condition (2.3) are satisfied. Then, for all $\eta > 0$,
\[
T^{-(1 + \eta)/2} \left(\sum_{t=1}^{T} Z_{t-1} Z_{t-1}^{-1} \right)^{-1/2} \sum_{t=1}^{T} Z_{t-1} S_{t-1} \Rightarrow 0.
\]

Proof (for Z having roots on the unit circle, but no roots at one): For $\eta \geq 1$ the result follows from Chan and Wei (1988, Theorem 3.4.1). Their arguments can be sharpened. A typical element of the proof is the following. Suppose the process has one negative unit root. The product sum of interest is then
\[
\sum_{t=1}^{T} b_{t,i} s_{t-1} - \frac{1}{T} \sum_{t=1}^{T} (-1)^{t-1} \sum_{j=1}^{t-1} (-1)^{j} \sum_{k=1}^{j} e_k.
\]
Define $X_n = \sum_{j=1}^n (-1)^j e_j \sum_{k=m+1}^n e_k$ and note that, for $n \geq m$,

$$|X_n - X_m| \leq \sum_{j=m+1}^n (-1)^j e_j \sum_{k=m+1}^n e_k + \sum_{j=m+1}^n (-1)^j e_j \sum_{k=1}^n e_k.$$

The order of magnitude of the sum (A.5) follows from Theorem 2.1 of Chan and Wei (1988) saying: if $\{X_j\}$ is a sequence of random variables so that (i) $E|X_j| = O(n^\alpha)$ for some $\alpha > 0$, (ii) $A_j(n, m), B_j(n, m)$ are random variables so that $E A_j^2(n, m) = O(n^\beta), E B_j^2(n, m) = O(n^\gamma)$ and $|X_n - X_m| \leq \sum_{j=1}^n A_j(n, m) B_j(n, m)$ for $\phi_j, \psi_j \geq n, n > m$, (iii) $\exp(\theta) + 1$, (iv) $2 \alpha > \phi_j + \psi_j$, then

$$\sup_{1 \leq j \leq n} |\sum_{i=1}^j \exp(i\theta) X_i| = o_p(n^{\alpha + 1}).$$

The same proof and (iv) replaced by (iv') $2 \alpha = \phi_j + \psi_j + 1$, it actually follows that for all $\eta > 0$, $\sup_{1 \leq j \leq n} |\sum_{i=1}^j \exp(i\theta) X_i| = o_p(n^{\alpha + \eta/2})$. Now, choose X_n as above, $\alpha = 1, A_j(n, m) = \sum_{j=1}^n (-1)^j e_j, B_j(n, m) = \sum_{j=m+1}^n e_j$ with $\phi_1 = 1, \psi_1 = 0,$ and $A_j(n, m) = \sum_{j=m+1}^n (-1)^j e_j, B_j(n, m) = \sum_{j=m+1}^n e_j$ with $\phi_2 = 1, \psi_2 = 0$.

For Z stationary: For $\eta \geq 1$ the result follows from Chan and Wei (1988, Lemma 3.4.3). Their arguments can be sharpened. The Lemma says: if (i) z_j is a stationary autoregressive process, (ii) the process g_j satisfies $g_j = M g_{t-1} + h_j$, (iii) $E \sum_{j=1}^n |g_j|^2 = O(n^\alpha)$ for some $\alpha > 0$, (iv) $E \sum_{j=1}^n |h_j|^2 = o(n^\alpha)$, then $E \|\sum_{j=1}^n g_j + h_j\|^2 = o(n^{\alpha + 1/2}).$ With the same proof and (iv) replaced by (iv') $E \|\sum_{j=1}^n g_j + h_j\|^2 = O(n^{\alpha + \eta/2})$, it actually follows that $E \|\sum_{j=1}^n g_j + h_j\|^2 = o(n^{\alpha + \eta/2})$ for all $\eta > 0$. Now, let $h_j = e_j, M = 1$ and hence $g_j = S_j$, let T_j be the non-normalized process G_j and choose $\alpha = 2$. Then it follows that $E \|\sum_{j=1}^n \hat{c}_j \|^2 = o(T^{1+\eta/2})$ and $T^{1-\eta/2} \sum_{j=1}^n \hat{c}_j = o(T^{1-\eta/2})$. Since $\sum_{j=1}^n \hat{c}_j = o(T^{1-\eta/2})$ converges in probability the desired result follows.

For Z explosive: As in the proof of Lemma A3 $\|\sum_{j=1}^T d_{t-1} S_{t-1}\|$ is of the same stochastic order as $\max_{1 < T} \|S_T\|$. According to Chan and Wei (1988, Theorem 2.2) the process $T^{1-\eta/2} S_T$ converges weakly to a Brownian motion on $D[0, 1]$, the space of functions on $[0, 1]$ which are right continuous, have left hand limits, and is equipped with the Skorokhod topology. The supremum is a continuous mapping on $D[0, 1]$ and, hence, by the Continuous Mapping Theorem (see Billingsley (1968)), $\max_{1 < T} \|T^{1-\eta/2} S_T\|$ converges in distribution.

Proof of Theorem 2: In Lemma A3 choose η, ξ such that $0 < \eta < \xi < \gamma/(2 + \gamma) \leq 1$. Then by the expression (A.1)

\begin{align*}
\frac{1}{T} \sum_{t=1}^T R_{0,t} &= \frac{1}{T} \sum_{t=1}^T e_t^2 + o_p(T^{-1}) \\
\frac{1}{T} \sum_{t=1}^T R_{t,t} &= \frac{1}{T} \sum_{t=1}^T S_{t-1} e_t + o_p(T^{(\eta - \xi)/2}) \\
\frac{1}{T} \sum_{t=1}^T R_{t,t}^2 &= \frac{1}{T} \sum_{t=1}^T S_{t-1}^2 + o_p(T^{(\eta - \xi)/2}).
\end{align*}

Note, that $\eta - \xi < 0$ and $\eta - 1 < 0$. Combine this with Lemma A2.

Q.E.D.

Appendix B: Proof of Theorem 3

When analyzing the asymptotic null distribution of the considered tests it suffices to consider the same probability measures as in Appendix A.1. For the constant level model (3.1) this is readily seen. For the linear trend model (3.2) the additional parameter μ turns out not to be important as long as the condition (2.3) is satisfied. First, by mimicking the proof of Lemma A1,

$$X_{t-1} = \delta S_{t-1} + \delta \mu t - \delta \sum_{j=1}^T \Delta X_{t-j} \sum_{k=1}^T \beta_k + \text{constant},$$

UNIT ROOT TESTS OF UNSTABLE AUTOREGRESSIVE PROCESSES 217
and the dependency of linear trend of X_{t-1} can be removed by linear transformation of X_{t-1}^*. Secondly, the regressors ΔX_{t-j} can be replaced by $\Delta X_{t-j} + \delta u_t$, which satisfies the equation for the model without deterministic terms (2.1) although the initial conditions are altered. Finally, the asymptotic result does not depend on the initial values and hence μ can be ignored.

The proof of Theorem 3 therefore follows by combining the arguments of Appendix A.1 with the following lemma.

Lemma B1: Suppose (e_t) satisfy the martingale difference assumption and that equation (2.1), the hypothesis $\alpha = 0$, and the condition (2.3) are satisfied. Then, for all $\eta > 0$

\[(B.1) \quad T^{-\eta} \left(\sum_{t=1}^T Z_{t-1} Z'_{t-1} \right)^{-1/2} \sum_{t=1}^T Z_{t-1} \rightarrow 0,\]

\[\text{(B.2)} \quad T^{-(1+\eta)} \left(\sum_{t=1}^T Z_{t-1} Z'_{t-1} \right)^{-1/2} \sum_{t=1}^T Z_{t-1} t \rightarrow 0.\]

If Z only has roots of length one and none equal to one, then the result holds for $\eta > -1/2$.

Proof (for Z having roots on the unit circle, but no roots at one): First, suppose the component b_1 has one root at -1 and $e_{0,t} = X_{0,t}$. By change of summation order

\[(B.3) \quad \sum_{t=1}^T b_{1,t-1} = T^{-1} \sum_{t=1}^T \sum_{k=1}^t (-1)^{t-k} e_{k-1} = T^{-1} \sum_{k=1}^T e_{k-1} \sum_{t=k}^T (-1)^{t-k} = T^{-1} \sum_{k=0}^{[T/2]} e_{T-2k-1},\]

which is of order $T^{-1/2}$ (see Chan and Wei (1988, Theorem 2.2)), and (B.1) follows for $\eta > -1/2$. Similarly, (B.2) follows using the additional normalization by T^{-1}. If the root multiplicity at -1 is higher than one, the result follows in a fashion similar to the proof of Chan and Wei (1988, Theorem 3.2.1). For the case where b_1 has nonreal roots at $\exp(i\theta)$ and $\exp(-i\theta)$ the argument is basically the same, albeit the notation is more complicated. A result like (B.3) is established using trigonometric identities as $\sum_{t=1}^T \sin(kT\theta) = \sin(t/2)\sin((T+1)/2)\sin(\theta)$ and the sharpened version of Chan and Wei (1981, Theorem 2.1) mentioned in the proof of Lemma A4.

For Z explosive: The result follows as in the proof of Lemma A3 with e_t replaced by 1 and t respectively. \(Q.E.D.\)

REFERENCES

