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Abstract—Bias-corrected bootstrap confidence intervals explicitly ac-
count for the bias and skewness of the small-sample distribution of the
impulse response estimator, while retaining asymptotic validity in station-
ary autoregressions. Monte Carlo simulations for a wide range of bivariate
models show that in small samples bias-corrected bootstrap intervals tend
to be more accurate than delta method intervals, standard bootstrap
intervals, and Monte Carlo integration intervals. This conclusion holds for
VAR models estimated in levels, as deviations from a linear time trend, and
in first differences. It also holds for random walk processes and cointe-
grated processes estimated in levels. An empirical example shows that
bias-corrected bootstrap intervals may imply economic interpretations of
the data that are substantively different from standard methods.

I. Introduction

MPULSE response analysis based on vector autoregres-

sive (VAR) models plays an important role in contempo-
rary macroeconomic research. However, macroeconomic
data sets for the postwar and post-Bretton Woods eras are
comparatively short, which has led observers to question the
statistical reliability of impulse response estimates from
unrestricted vector autoregressions. Confidence bands for
impulse response estimates are often based on Liitkepohl’s
(1990) asymptotic normal approximation, Runkle’s (1987)
nonparametric bootstrap method, or the parametric Monte
Carlo integration procedure of Doan (1990). All three
intervals are asymptotically valid in stationary models, but
little is known about their small-sample performance. This
paper pursues three related questions: (1) How accurate are
these confidence intervals in small samples? (2) How do
differences in their assumptions affect small-sample perfor-
mance? (3) How can these intervals be improved upon? I
show that bias and skewness in the small-sample distribution
of the impulse response estimator can render traditional
confidence intervals extremely inaccurate. To address this
problem, I propose a new, bias-corrected bootstrap interval. I
establish the asymptotic validity of this ‘‘bootstrap-after-
bootstrap’ interval for stationary VAR models, and I com-
pare its effective coverage and average length in small
samples to that of traditional methods by Monte Carlo
simulation. Section II establishes notation and briefly de-
scribes the traditional methods. Section III motivates the
idea of bias correction, discusses the implementation of the
bootstrap-after-bootstrap method, and establishes its asymp-
totic validity. Section IV introduces the details of the
simulation design. Section V presents the simulation evi-
dence for the stationary model, section VI discusses exten-
sions to nonstationary processes, and section VII considers
models with higher lag orders. Section VIII discusses
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alternative approaches, section IX presents a macroeco-
nomic example, and section X concludes.

II. Traditional Methods

To focus the discussion and establish notation, consider an
N-variate data series y of length T + p generated by a
covariance stationary VAR (p) process with intercept o,
Y+ =0+ Biy,—1 + Byy—2 + -+ + By, + u,. The lag order
p is assumed to be finite and known, and the disturbances u,
are identically and independently distributed (iid) white
noise with vector mean zero, unknown positive definite
covariance matrix 3,, and finite moments up to eighth order.
Each element of (u;, u;u';) satisfies Cramér’s condition (see
Bose (1988)). The system’s responses to reduced-form
disturbances are obtained by the recursion ®; = [dy,] =

j’:=1 ®,_B,i=1,2,...,where ®), = Iyand B; = 0 forj >
p- The orthogonalized impulse responses are defined as ®; =
[0 = ®:P, i = 0,1,2,..., where P satisfies PP’ = 3.
Throughout the paper I assume exact identification of the
structural VAR innovations. The statistic of interest 0y, is
interpreted as the response of variable k& to a one-time
impulse in variable [, i periods ago. Let B = vec (7,
By, B, ...,B,) and o = vech (3,), where vec denotes the
column stacking operator and vech is the column stacking
operator that stacks the elements on and below the diagonal
only. At times it will be convenient to express the impulse
response 0y, as a nonlinear function 6,,(B, o).

There are three traditional methods of constructing classi-
cal confidence intervals for 0;;;. The asymptotic interval is
the computationally simplest method. It relies on a delta
expansion of the asymptotic distribution of the impulse
response estimator (see Liitkepohl (1990, p. 118) and
Mittnik and Zadrozny (1993)). The Monte Carlo integration
method is Bayesian in origin. It involves simulating the
posterior distribution of the impulse response, conditional
on the p presample observations. Assuming Gaussian inno-
vations and a suitable diffuse prior, that distribution is
normal inverse Wishart and can be computed by Monte
Carlo methods (see Sims (1987), Doan (1990), and Sims and
Zha (1995)). Error bands are typically constructed based on
the posterior mean and posterior standard errors. From a
classical point of view, these intervals have only asymptotic
justification. However, in applied work, Bayesian Monte
Carlo integration intervals are often calculated based on
unrestricted point estimates of vector autoregressions. I
therefore include them in this study and analyze them
(perhaps unfairly) from a strictly frequentist point of view.!
The nonparametric bootstrap interval based on Runkle
(1987) generates many replications 0%; of the impulse

1'This paper does not cover Bayesian methods. For a complementary
analysis from a Bayesian point of view see Sims and Zha (1995).
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response estimate, conditional on the estimated coefficients
B and residuals 4, as though they were the population
values. Under regularity conditions, a confidence interval
for O, of the form [9’,’:,(‘,"), ,’f,(,l @] can be constructed based
ontheaand 1l — o percentlles of the empirical distribution
of the bootstrap estimate 6 %.; (Efron and Tibshirani (1993)).2

III. The Bootstrap-after-Bootstrap Method

A. Motivation

It is well known that the asymptotic distribution of the
impulse response estimator 0y,;; is normal. What has rarely
been recognized in the literature is that the small-sample
distribution of impulse response estimates can be extremely
biased and skewed. To illustrate this point, figure 1 displays
an example representative for applied research. It plots the
empirical densities of three impulse response coefficients,
corresponding to the time horizons 4, 10, and 16 of a given
impulse response function. The densities have been centered
about the population value of the impulse response. The
three plots illustrate that the asymptotic normal approxima-
tion can be a poor approximation in small samples, espe-
cially at higher time horizons; yet none of the standard
methods in the literature account for the small-sample bias
of 9k1 ;» and only the bootstrap interval attempts to allow for
skewness. Not imposing symmetry seems to be a step into
the right direction, but what is rarely made explicit is that
reading off the o and 1 — « percentile interval endpomts of
the bootstrap distribution amounts to assuming that ek,, is
unbiased and its distribution scale invariant. This observa-
tion suggests that the standard bootstrap interval will
perform poorly in small samples. At first sight it may seem
that a simple correction for median bias in the bootstrap
distribution of Gk,, would suffice to produce accurate
intervals, but treating bias as a pure location shift problem
ignores that the distribution of Ok,, is not scale invariant.
This explains why the bootstrap confidence interval of Efron
(1982) and Efron and Tibshirani (1993) performs very
erratically in Monte Carlo simulation. More sophisticated
bootstrap confidence intervals like the accelerated BC
interval (BC,) attempt to estimate scale effects either
analytically or by Jackkmfe methods. For ek,, neither of
these two approaches is easy to implement. Other refine-
ments of bootstrap confidence intervals such as the percen-
tile- interval require reliable estimates of scale. Given the
dependence of the variance estimate of 6y;; on the location of
0> it is not surprising that the percentile-¢ interval tends to
perform erratically in Monte Carlo simulation.

Given the difficulties of directly correcting for bias (and
skewness) in Ok, ;» this paper proposes to indirectly remove

2 Throughout this paper, I will refer to this interval as the percentile
interval. The percentile interval may be justified based on transformation
theory (e.g., Efron (1982) and Efron and Tibshirani (1993)). An alternative
view of bootstrapping prompted Hall (1992) to refer to the same interval as
the ‘“‘other” percentile interval. For a discussion of the relationship
between these two approaches see Hall (1992) and Efron and Tibshirani
(1993) and the references therein.
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FIGURE 1.—FINITE-SAMPLE DENSITIES OF IMPULSE RESPONSE ESTIMATES
CENTERED ABOUT POPULATION VALUES
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the bias in Okl, prior to bootstrapping the estimate. Bias in
Gk,, may arise from small-sample bias in slope coefficient
estimates or from the nonlinearity of 0y;;. In practice, even
small amounts of bias in B* may translate into dramatic
changes in interval width and location. To the extent that
ordinary least-squares (OLS) small-sample bias is respon-
sible for the observed bias in ek, » replacing the biased
coefficient estimates [3* by bias-corrected estimates B* prior
to constructlng the impulse response function will reduce the
bias in % %, This suggests bootstrapping 0% . ,([3* cr*) rather
than Ok, ,(B* 6*).3 Given the nonlinearity of Ok, ;» this
procedure will not in general produce unbiased estimates,
but as long as the resulting bootstrap estimator is approxi-
mately unbiased, the implied percentile intervals are likely
to be good approximations.

In addition, the presence of OLS bias necessitates a
second change in Runkle’s (1987) bootstrap algorithm. The
basic idea behind bootstrapping techniques is that the
bootstrap estimate B* is expected to relate to B, as  relates
to the unobservable 3. This makes obvious sense in the
classical linear regression model, where the OLS coefficient
estimator is unbiased. In contrast, in autoregressive models
the OLS estimator is systematically biased away from the
population value, and the bootstrap analogy breaks down.

3 Note that this procedure ignores the effects of coefficient bias on 6*.
One could have considered bias-correcting &* in addition, but such a
modification would only have had second-order effects on the impulse
response estimate. It also would have required us to recalculate and
recenter the empirical residuals to preserve the internal consistency of the
resampling algorithm. Given these complications, the small order of the
effect, and the favorable performance of the bootstrap even without this
correction, I chose to keep the algorithm simple by ignoring the effects of
bias on 6*. However, further investigation of this issue may be useful.
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Generating bootstrap data conditional on a biased point
estimate will tend to result in even more biased bootstrap
estimates. This explains the curious result, noted by Sims
and Zha (1995, p. 16), that the standard bootstrap interval
often tends to lie almost entirely below (or above) the initial
OLS point estimate. To preserve the bootstrap analogy we
need to bias-correct 3 ““prior to bootstrapping” to obtain an
approximately unbiased estimator of (3. In the VAR context
this point was first alluded to by Nicholls and Pope (1988, p.
296), but it has been ignored in applications.*

B. Implementation

Bias corrections for univariate autoregressive models
have been put forward by a number of authors, yet the
difficulties of estimating bias in multivariate settings have
prevented the problem from receiving much attention in the
VAR literature.> Explicit expressions for the asymptotic
first-order mean bias in demeaned stationary VAR processes
are available in Pope (1990). In this paper, I estimate the
mean OLS bias ¥ by resampling methods instead, adapting
the general procedure outlined in Efron and Tibshirani
(1993, p. 124). Bootstrapping does not improve the accuracy
of the bias estimate, but it easily accommodates the inclu-
sion of a linear time trend. Since some of the models I
consider in sections V and VI include a linear time trend, I
rely on resampling methods for bias estimation throughout
this paper. This implies the following algorithm for the
bias-corrected bootstrap method.

Step 1a:  Estimate the VAR(p) in equation (1) and generate
1000 bootstrap replications B* from

Yh=9+ Byt + - + Byt + uk )

using standard nonparametric bootstrap techniques. Then
approximate the bias term ¥ = EPB - B) by ¥* =

E*(ﬁ* - é). This suggests the bias estimate ¥ = B* - B.7

STeP 1b: Calculate the modulus of the largest root of the
companion matrix associated with B Denote this quantity
by m(B). Ifm(B) =1,setp = B without any adjustments. If

4 A referee pointed out that the same point has been made in more detail
in an unpublished M. Sc. thesis at the Australian National University (Pope
(1987)), which forms the basis of the remark quoted.

5 Recent work on bias-corrected OLS estimates for univariate autoregres-
sive processes includes Shaman and Stine (1988), Rudebusch (1992,
1993), Andrews (1993), and Andrews and Chen (1994), among others.

6 In related work, Nicholls and Pope (1988) derive the same bias estimate
under the more restrictive assumption of normal innovations. Tjgstheim
and Paulsen (1983) outline a procedure for bias estimation in VAR models,
but they do not provide a rigorous analytical derivation of that bias nor do
they estimate the order of the error.

7'This approximation is accurate to first order. It amounts to assuming
that the bias is constant in the neighborhood of 8. More generally, the
coefficient bias may be approximated to higher order by iterating the bias
estimation procedure in step la. I abstract from these higher order
corrections, because their magnitude is typically small and of rapidly
diminishing order.
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m(B) < 1, construct the bias-corrected coefficient estimate [3 =
B ¥ 1f m(B) =1, let ‘I’l =¥ and 8; = 1 and define
\If,t, 8‘1’ and 8,+1 = 8 0.01. Set @ [3, after iterating
onf; = |3 ‘I',, i= , until m(B;) < 1. By changing
the grid for 3, one can make m(P) arbitrarily close to unity.
The purpose of this stationarity correction is to avoid
pushing stationary impulse response estimates into the
nonstationary region. The adjustment has no effect asymptoti-
cally and does not restrict the parameter space of the OLS
estimator, since it does not shrink the OLS estimate |3 itself,
but only its bias estimate.

STEP 2a: Substitute [§ for ﬁ in equation (2) and generate
2000 new bootstrap replications 3* using standard nonpara-
metric bootstrap techniques. To estimate the mean bias P
of B* requires nesting a separate bootstrap loop inside each
of the 2000 bootstrap loops. To reduce the computational
requirements, one may use the first-stage bias estimate ¥ as
a proxy for W*. This short-cut makes use of the result that
the bias estimate in each bootstrap loop agrees up to
Op(T~¥2) with the bias estimate for the initial point estimate,
which is of order Op(T ') itself (see appendix).?

STEP 2b: Calculate B* from ﬁ* and ¥, following the
instructions in step 1b with the obvious changes in notation.

Step 3: Calculate the o and 1 — a percentile interval
endpoints of the distribution of 6% ] ,(B* &%).

Section IIIC will establish that this bootstrap-after-
bootstrap procedure is asymptotically valid. To verify the
accuracy of the bootstrap-after-bootstrap interval in small
samples, I will conduct an extensive Monte Carlo experi-
ment in section V. While the double bootstrap algorithm
outlined in step 2a promises even better coverage perfor-
mance than the bootstrap-after-bootstrap method, it is cur-
rently not computationally feasible to test it on a large scale.
That does not mean, however, that it could not be employed
in applications. Alternatively, the double bootstrap could be
reduced to a single layer of bootstrapping whenever asymp-
totic bias expressions are available.’

C. Asymptotic Validity

The asymptotic validity of the standard bootstrap tech-
nique for impulse responses follows from Bose (1988,

8 The resulting bootstrap-after-bootstrap method is computationally
much more efficient than a ‘“‘bootstrap plus double bootstrap” would have
been. Instead of (1000 + 2000 X 1000), it requires only (1000 + 2000)
replications.

9 To initialize the bootstrap data-generating process, I randomly select p
initial observations using the block method of Stine (1987). Sims and Zha
(1995) object to this procedure and suggest to condition on the actual data.
Their suggestion appears inconsistent with a frequentist point of view.
Note that imposing the same initial conditions in each bootstrap sample
will understate the true sampling uncertainty of the impulse response
estimate. However, additional simulation experiments suggest that, at least
for the example process, treating the initial conditions as fixed in repeated
sampling makes essentially no difference for the bootstrap results.
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theorem 3.9 and remark 3.10). Let 2,12 denote the Cholesky
decomposition of the variance—covariance matrix . Under
the assumptions of section II, Bose (1988) shows that the
difference between the Edgeworth expansion for B* and a
comparable expansion for B is o(7~12) almost surely. For
almost everywhere Y,

sup Ip*(Tl/zil/z(é* _ é) <x) — P(T1’221/2(f3 -B)
X B B

3)
= x)| = o(T~1?)
and by an analogous argument,
sup [P*(T\2812(6% — 6) = x) — P(TVES(6 — o)
* “)

=x)| = o(T~1?).

Further, the joint distribution of [.3) and & can be bootstrapped
with accuracy o(T~1?2), because

Aol <))

Then the asymptotic validity of the standard bootstrap
algorithm follows from the fact that 6,,,(8, o) is a continu-
ously differentiable function in its arguments.

The additional modifications I proposed to improve the
performance of the bootstrap interval in small samples do
not alter its asymptotic validity. The reason is that the effect
of bias corrections is negligible asymptotically, since the
OLS estimator converges at rate 7~ "2, while the estimated
bias ‘I’(B) is of order Op(T~1). An analogous argument holds
for bootstrap bias estimation. Similarly, ‘If(B) may be
substituted for ¥( [3*) since the two bootstrap bias estimates
differ only by Op(T~*?) (see appendix), and the difference
vanishes at a faster rate than ‘I’(B*) itself.

Moreover, shrinking the bias-correction term of [3 (and of
[3*) to keep the system stationary has no effect on the
asymptotic performance of the bootstrap-after-bootstrap
method, because by Chebychev’s inequality, for any slope
coefficient B;, j = 1,2, ...,N?p,

S

\ E; — B
P(lBj_Bj|>€)S—[—Bigﬂ, €e>0. 6)

Define events E; = {|B; — B;| > €| for j = 1,2,..., N%p.

Using equation (6),
sz
Plmax |3, - 8 > ¢ = P{U;E) = X P(E}
j=1
Nr E[R; — By
= — = oT™hH. (M
=1 €
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By equation (7) the probability of a nonstationary draw
shrinks at the same rate as the mean squared error of 8. Thus
the nonstationary region of the distribution will be empty
asymptotically. This argument continues to hold if we
replace B by B, because the bias estimate is of order T~! (see
Pope (1990)). An analogous argument holds in the bootstrap
world where the OLS estimate assumes the role of the
population value. We simply replace 8 by B* and replace 3
by B in equations (6) and (7). Moreover, the analogy
continues to hold if we condition on the bias-corrected 8 as
the bootstrap population value and replace B* by its
bias-corrected counterpart [3* This establishes the asymp-
totic validity of the bootstrap-after-bootstrap method.

IV. Simulation Design

The data-generating process is deliberately stylized in
order to isolate the nature of the problem of small-sample
bias. Its simple structure facilitates a systematic analysis of a
wide range of impulse responses with varying shapes and
degrees of persistence. The population model is a stationary
bivariate VAR(1) of the form

B, 0 ia [0V [1 0.3
Ve = Vo1t dy, 4~ N 0/°l03 1

105 05

where B, € {—0.9, —0.5,0,0.5,0.9,0.97, 1).1° The intercept
and trend coefficients have been normalized to zero in
population. By; regulates the persistence of the process. For
—1 < By < 1, the data-generating process may be
interpreted as stationary in levels or first differences.!!
Alternatively, if a linear trend term is included in the
estimation, the same data-generating process can be inter-
preted as deviations from the trend. For B;; = 1, the process
becomes cointegrated, but by the continuity of the finite-
sample distribution, the results for B;; = 1 are virtually
identical to those for borderline stationary values as By,
approaches 1. A detailed study of nonstationary processes
with and without drift can be found in section VI. For B;; =
0, the first equation reduces to white noise, and the
asymptotic distribution theory does not apply, because some
of the impulse responses will have zero variances (Liitke-
pohl (1990, p. 119)). Negative values for By; imply oscilla-
tory impulse response functions.!2

I consider sample sizes of 50 and 100. These sizes may
appear low, but have to be viewed in relation to the number
of parameters to be estimated. For example, a four-variable
VAR(4) using 30 years of quarterly data utilizes many more
observations, but also involves many more parameters. As a

) ®

10 This data-generating process closely resembles that of Griffiths and
Liitkepohl (1993).

' VAR models in first differences have been estimated, for example, by
Cooley and Ohanian (1991), Fackler (1990), and Friedman and Kuttner
(1992).

12 Oscillatory behavior may also arise from complex roots. The popula-
tion model in equation (8) does not allow for that possibility, but additional
Monte Carlo evidence for alternative VAR(1) models with complex roots and
varying degrees of persistence gave results comparable to those in section V.
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result, its degrees of freedom would be roughly equivalent to
those of the example process with sample size 100. Since the
error-covariance matrix is invariant to scalar multiplication,
the diagonal elements can be normalized to 1. The off-
diagonal elements are chosen to represent low cross correla-
tions common in applied work (e.g., Sims (1992)). Addi-
tional preliminary experiments with cross correlations of 0.9
yielded virtually identical results, suggesting that the simula-
tion results are insensitive to the degree of cross correlation.!3
In total, I analyze four methods in the Monte Carlo
experiment: the asymptotic interval, the standard bootstrap
interval, the Monte Carlo integration interval, and the
bootstrap-after-bootstrap interval. The bootstrap simulations
are based on 1000 replications for bootstrap bias estimation
and 2000 replications for the construction of confidence
intervals. The criteria of comparison for the Monte Carlo
exercise are the effective coverage rate of the nominal 95%
interval and its average length. Effective coverage is defined
as the relative frequency at which the confidence interval
covers the true, but in practice unknown impulse response
value in repeated trials. Simulation results are based on 500
trials, which implies a Monte Carlo standard error of
approximately 0.01 for the coverage estimate.

V. Simulation Evidence

For each design point, I draw 500 data series from the
data-generating process in equation (8). For each draw I
estimate a bivariate VAR(1) model including an intercept
(and possibly a linear time trend) and calculate the four
confidence intervals for each of the 68 implied impulse
response coefficients.!* These intervals are evaluated across
the 500 Monte Carlo trials for each impulse response
coefficient. Figures 2 through 4 plot the proportion of
intervals that include the true, but in practice unknown value
of the impulse response for a given time horizon. Each plot
shows the effective coverage rates of the nominal 95%
intervals for a time horizon of 16 periods after the initial
shock. A horizontal line at 0.95 would imply perfect
coverage accuracy at all time horizons.

It is instructive to begin with the coverage results for
B;; = 0.9 and sample size 50 in the model without time
trend. First consider the upper left panel in figure 2 for 6y,
where 0,; stands for the response of variable 2 to a shock in
variable 1. The differences in performance between the four

13 The residuals are orthogonalized by Cholesky decomposition. This
assumption is made purely for convenience. While alternative structural
identification methods may involve an additional layer of estimation
uncertainty, the essence of the results is likely to be the same. The pattern
of exclusion restrictions on the impact multiplier matrix primarily affects
which of the OLS coefficients are combined into a given impulse response.
Since I already systematically analyze impulse response functions of
various shapes and degrees of persistence, from a statistical point of view
nothing remains to be learned from considering alternative structural identifica-
tion schemes under the maintained assumption of exact identification.

14 The lag order is assumed to be known. This assumption is common to
all methods discussed in this paper. I deliberately ignore the issue of
specification uncertainty. At this stage of the analysis it is useful to avoid
nesting econometric procedures. However, I am in the process of
developing alternative methods that endogenize the lag order choice.
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FIGURE 2.—EFFECTIVE COVERAGE RATES OF SELECTED 95% CONFIDENCE
INTERVALS FOR SAMPLE SIZE 50
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methods are striking. The effective coverage of the standard
bootstrap interval and of the asymptotic interval both
quickly drop off to about 50%. The effective coverage of the
Monte Carlo integration interval fluctuates between about
80 and 96%, depending on the time horizon. On the other
hand, the effective coverage of the bootstrap-after-bootstrap
interval for 0,; is about 90 to 95% at all time horizons.
Similar results hold for 6;;. However, turning to 6, in the
lower left panel of figure 2, the differences between the four
intervals are only minor. Although the asymptotic interval
and the Monte Carlo integration interval tend to overcover
for higher time horizons, by and large, all methods have
close to nominal coverage.!3> Similarly, the differences
across methods for 6,, are comparatively minor.

The striking differences between the results for 61, and 6,
on the one hand, and 6, and 6,, on the other, are
systematically linked to the magnitude of the OLS bias in 3,
which in turn depends on the size of the elements of .
Consider the impulse response 6,; in the upper panel of
figure 3. If we raise By, from 0.9 to 0.97, for example, the
coverage of the standard bootstrap interval for 6,; drops to
22%, that of the asymptotic interval to 41%, and that of the
Monte Carlo integration interval to 72%. For By; = 1, these
rates fall further to 12%, 33%, and 62%, respectively. If we

15 The coverage rate for 6,, at time horizon zero is 100%, independently
of the method used to construct the confidence interval. This is an artifact
of the orthogonalization by Cholesky decomposition.
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FiGURE 3.—EFFECTIVE COVERAGE RATES OF SELECTED 95% INTERVALS FOR ©;; IN MODEL WITHOUT TIME TREND
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lower Bj; to 0.5, on the other hand, the coverage improves.
Similar results would have been obtained for 6;. This
pattern is familiar from many univariate studies. The precise
effect of bias, however, is more complicated in the multivar-
iate setting. Individual impulse responses are affected by
bias depending on the sign and size of the individual OLS
coefficients in B that enter 8;,,(B, o), and on the precise
manner in which they enter. The latter is governed by the
number of lags and variables in the model as well as by the
coefficients of P, where P satisfies PP’ = 3,,. In the process
considered here, 0;; and 0,; are primarily functions of the
OLS estimate of B;;, whereas 0;, or 6y, are not, which
explains why the latter are hardly affected by bias in By;.
More generally, this finding suggests that in VAR applica-
tions standard methods will sometimes coincide with the
bootstrap-after-bootstrap interval and sometimes imply dras-
tically different results, but only the bias-corrected bootstrap
interval is likely to have accurate coverage all the time.
Figure 3 focuses on fairly persistent VAR processes with
large positive roots. For these processes bias is large, and
there is strong evidence for the superiority of the bootstrap-
after-bootstrap method. To conserve space, I do not display
the remaining results for B;; = {0, —0.5, —0.9}, but it is
worth noting that the bias-corrected bootstrap continues to
perform well, even when bias is virtually nonexistent and

5 05

0
Yi-1 + Up

therefore difficult to estimate, as might be the case for
difference-stationary processes. In all cases considered, the
bootstrap-after-bootstrap interval performs at least as well as
the other methods, and its effective coverage is typically
close to nominal coverage. It is also worth noting that the
coverage performance of the asymptotic interval is erratic
and often poor for B;; = 0, when the asymptotic variance
may not be well defined.

Qualitatively similar results are obtained for sample size
100. The lower panel in figure 3 shows that the coverage of
the bootstrap-after-bootstrap interval is close to nominal
coverage with the exception of the limiting case of By; = 1.
In relative terms the bootstrap-after-bootstrap interval contin-
ues to dominate the other methods, often by a wide margin.
The earlier results for sample size 50 are evidently not an
artifact of the small sample size. The bias and the skewness
of the impulse response distribution persist even in moder-
ately sized samples. For example, if B;; = 0.9, for the
asymptotic interval to attain the same coverage accuracy as
the bootstrap-after-bootstrap interval for sample size 50, the
sample size has to increase to about 400 periods.

The preceding results apply to VARs estimated in levels
or first differences. Including a time trend in the regression is
likely to increase small-sample bias. The right panels in
figure 2 demonstrate that the coverage performance of the
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FIGURE 4.—EFFECTIVE COVERAGE RATES OF SELECTED 95% INTERVALS FOR 621 IN MoDEL WITH TIME TREND
----------- Standard Bootstrap Interval Bootstrap-after-Bootstrap Interval
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Source: Results based on 500 Monte Carlo trials and the data-generating process y, = (

standard methods deteriorates dramatically after inclusion of
a time trend, compared to the left panel in the same figure.
The effective coverage of the standard bootstrap intervals
may drop as low as 13% for the standard bootstrap interval,
28% for the asymptotic interval, and 67% for the Monte
Carlo integration interval. Qualitatively, the results are
unchanged. Similarly, figure 4 allows a direct comparison to
figure 3. As By increases, the performance of the standard
methods may fall as low as 1%, 8%, and 32%, respectively,
for sample size 50. The coverage of the bootstrap-after-
bootstrap interval also declines with rising persistence, but it
continues to outperform the other methods by a wide
margin. For sample size 100, its coverage is 84% or higher
with the exception of the limiting case of By; = 1. This result
compares to rates as low as 7% for the standard bootstrap,
34% for the asymptotics, and 54% for Monte Carlo integra-
tion. Thus the inclusion of a time trend in the model
reinforces and strengthens the earlier result.

To summarize, the bootstrap-after-bootstrap method is the
only method to achieve effective coverage rates close to
nominal coverage in nearly all circumstances. By how much
the coverage results for the bootstrap-after-bootstrap inter-
val differ from standard methods largely depends on the
persistence of the process, the sample size, and whether the

1 03
Y1 + Uy, Eu = .
0.5 03 1

VAR includes a deterministic time trend. It is perhaps
surprising that this increase in probability content does not
necessarily come at the expense of wider intervals. Figure 5
shows that for sample size 50 the bias-corrected bootstrap
interval both has higher coverage and is shorter on average
than the Monte Carlo integration interval.!® For sample size
100, the coverage of the bias-corrected interval continues to
be much higher at a fairly small additional cost in terms of
length. Qualitatively similar results are obtained for the
regression model with trend. The additional length of the
bootstrap-after-bootstrap interval in small samples com-
pared to the asymptotic and the standard bootstrap interval,
especially for highly persistent processes, is no reason for
concern, since those intervals have much lower coverage.

VL

The bias-corrected bootstrap interval of section III has
been designed for stationary models. In fact, bootstrapping

Extensions to Nonstationary Processes

16 The apparent reason is that the Monte Carlo integration interval
assumes that  is normally distributed in small samples. This raises the
probability of explosive draws, especially if the estimated root is close to
unity. Explosive outliers inflate the standard error of the simulated
distribution of the impulse response. Imposing symmetry then results in
ever wider intervals with increasing coverage, as the time horizon grows
(see figures 2, 3, and 4).
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FIGURE 5.—AVERAGE LENGTHS OF SELECTED 95% INTERVALS FOR @>; IN MODEL WITHOUT TIME TREND
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is not asymptotically valid for models with an exact unit
root, if the regression is estimated in levels.!” Nevertheless,
based on the continuity of the finite sample distribution of
the OLS estimator, the bootstrap approximation may still be

17 A rigorous proof of the asymptotic invalidity of the standard resam-
pling algorithm for the slope coefficient in a univariate random walk model
without drift can be found in Basawa et al. (1991). The reason for the
failure of the bootstrap is the discontinuity of the asymptotic distribution of
the OLS estimator at the unit circle. The point estimate of 8 will almost
never lie exactly on the unit circle. As a result, the bootstrap distribution of
the estimator will differ systematically from that of the point estimate. This
kind of reasoning also carries over to cointegrated VAR processes and
integrated VAR processes with p > 1. One way to avoid this problem is to
impose the unit root in estimation and to estimate random walk processes
in first differences and cointegrated processes in vector error correction
(VEC) form. Liitkepohl and Reimers (1992) establish the asymptotic
distribution of the implied level slope coefficients and of the impulse
response under the cointegration constraint. The asymptotic distribution of
this maximum-likelihood estimator is continuous, and the bootstrap
algorithm is asymptotically valid. Preliminary simulation experiments for
bivariate processes suggest that imposing a unit root in estimation can
effectively remove much of the bias in the level coefficients. It is not
uncommon for both bootstrap methods and the delta method to have fairly
good coverage properties and comparable length. However, the results
remain sensitive to the size of the second root. As that root approaches
unity, the coverage performance of the standard methods tends to drop, and
the bootstrap-after-bootstrap interval often performs better. Unlike the
results for the level specification, these results are contingent on correct
identification of the order of integration and of the cointegration rank.

satisfactory in practice. It seems useful to quantify the
consequences of ignoring exact unit roots in estimation,
because these consequences are likely to be an important
concern for applied econometricians. For example, in prac-
tice, many econometricians would be willing to assume
stationarity if models arbitrarily close to nonstationarity
were allowed. Researchers also may be reluctant to condi-
tion on the outcomes of pretests for unit roots and cointegra-
tion, which tend to have low power. This section will
demonstrate that the bootstrap-after-bootstrap interval typi-
cally performs better than the delta method and the Monte
Carlo integration interval even for nonstationary processes
incorrectly specified in levels.

Figures 3, 4, and 5 already presented some results for the
cointegrated model without drift (B;; = 1). For this model,
the bias-corrected bootstrap interval clearly outperforms its
competitors. Similar results hold for a multivariate random
walk model where the slope coefficient matrix in equation
(8) has been replaced by the identity matrix. However,
compared to the cointegrated model, the effective coverage
rates may be much lower and are less consistent across
impulse response functions. It is intriguing that the perfor-
mance of the bias-corrected bootstrap interval improves with
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FIGURE 6.—SELECTED 95% INTERVALS FOR ©; IN NONSTATIONARY MODEL WITH DRIFT
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sample size. For example, the coverage rates of the bias-
corrected bootstrap interval for 0,; in the cointegration
model approach 90% for sample size 500, compared to rates
as low as 70% for the other two methods. For the random
walk model the improvement is smaller, but still noticeable.

A perhaps more realistic class of data-generating pro-
cesses are nonstationary processes with drift. Apart from the
drift term, the two models I consider are identical to the
cointegrated and random walk models discussed earlier. The
size of the drift is set equal to 1 in population to roughly
match the ratio of the drift to the standard deviation of the
innovation found in applied work. Figure 6 shows the results
for 8,; and the regression model including an intercept, but
no time trend. For the cointegrated model with drift, both the
bootstrap-after-bootstrap and the Monte Carlo integration
intervals have excellent coverage properties. In fact, even
the asymptotic interval performs quite well. This result is
strikingly different from the model without drift. In terms of
length, for sample size 50, the bias-corrected bootstrap
interval tends to be slightly shorter than the Monte Carlo
integration interval at higher time horizons. In contrast, for
the random walk model with drift, the results are not much
different from the model without drift. In relative terms the
bias-corrected bootstrap interval continues to dominate its

0.5 0.5 03 1 1 0 1

competitors. The results for the cointegrated model with
drift may seem to suggest that there is little gain from using
bias corrections. However, additional experiments show
that, as the second root of the cointegrated process ap-
proaches unity, the performance of the bias-corrected boot-
strap and of the traditional methods begins to diverge, and
the bootstrap-after-bootstrap interval enjoys clear advan-
tages.

Including an additional time trend in the regression model
considerably worsens the performance of all intervals,
although the relative superiority of the bootstrap-after-
bootstrap interval is preserved in the trend model without
drift. In the trend model with drift, however, the Monte
Carlo integration interval often has higher coverage and on
average is much longer. These results suggest that falsely
including a time trend in the regression model can seriously
impair the coverage content of confidence intervals if the
true process has a unit root.

VII. Extensions to Models with Higher Lag Orders

To verify that the simulation results extend to models with
higher lag orders, I also carried out a similar Monte Carlo
study for a bivariate VAR(8) in levels with nonzero inter-
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cept, based on the actual estimate of such a process using
quarterly M1 and industrial production data for the United
States. The persistence of the estimated process, as mea-
sured by m(B), was 0.99. The coverage results for the
bootstrap-after-bootstrap interval for sample sizes 80 and
120 were similar to the results for the VAR(1) model with
comparable persistence. The Monte Carlo integration inter-
val performed about as well as the bootstrap-after-bootstrap
interval for sample size 80, but had slightly lower coverage
for sample size 120. It also tended to become very wide at
high time horizons in some cases.

Since there is reason to suspect that bias corrections may
do more harm than good for higher order processes with
lower persistence, I also conducted a Monte Carlo study for
a model based on the actual estimate of a first-differenced
quarterly M1 industrial production VAR(4) with m(B) =
0.89. The coverage results for the bias-corrected bootstrap
for sample sizes 80 and 120 again confirmed the robustness
of the earlier conclusions. As expected for processes with
lower persistence, the coverage rates of the bootstrap-after-
bootstrap interval and the Monte Carlo integration interval
were similar, although in some cases the bias-corrected
intervals were wider without improving coverage. In both
models considered in this section, the coverage performance
of the asymptotic and standard bootstrap intervals was much
worse than for the Monte Carlo integration interval or the
bootstrap-after-bootstrap interval.

VIII. Further Discussion

While the bootstrap-after-bootstrap interval represents a
significant improvement over traditional intervals, that does
not mean that it is without problems. Figures 2 through 4
show that its performance in absolute terms tends to fall
short of the nominal coverage probability, as the true process
becomes highly persistent, especially if a linear time trend is
included in the regression. This tendency becomes very
visible for B;; > 0.97. One explanation could be that
nonlinearities become more important for processes with
large roots, but that does not explain why including a time
trend in the regression worsens coverage. A more likely
explanation is that the rapid increase in bias, as the root
approaches unity, calls for higher order bias corrections.
While the first-order bias corrections of section IIIB tend to
be sufficient for most stationary processes, I conjecture that
in highly persistent processes higher order bias corrections
could further improve the accuracy of the bias-corrected
bootstrap interval. Higher order bias estimates can be easily
obtained by iterating on the bias estimation bootstrap loop, if
computational costs are not a concern.

An alternative view recently expressed in Stock (1995) is
that conventional approaches to inference tend to fail in
autoregressive processes with large roots and should perhaps
be replaced by near-unit-root or near-cointegration asymptot-
ics. Local to unit-root asymptotics for 9, ; are not available
so far, but related results in Phillips (1995, p. 7) for the
reduced-form impulse response ¢y,;; suggest that near-unit-
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root asymptotics may provide poor small-sample approxima-
tions. Phillips shows that in the local to unity model the
asymptotic distribution of ¢,,; is normal if the time horizon
of the impulse response function does not depend on sample
size. This normality result does not seem consistent with the
observed shape of the small-sample distribution of the
impulse response. Phillips also shows that the local to
unit-root results change if the time horizon of the reduced-
form impulse response function is proportional to sample
size. The latter assumption is compelling in applications that
use the impulse response function to measure long-run
persistence as in Campbell and Mankiw (1987), but in most
applied settings it seems more reasonable to regard the time
horizon of the impulse response function as fixed with
respect to sample size. For example, it is common to conduct
subsample analyses of VAR models without adjusting the
time horizon of the impulse response function. Nevertheless,
it would be of interest to compare the performance of these
alternative asymptotic approaches in small samples and to
develop the corresponding local to unit-root asymptotic
theory for 0y,

Yet another alternative to bias-corrected bootstrap inter-
vals has recently been proposed by Sims and Zha (1995, p.
14). Sims and Zha recognize that many of the problems of
the Monte Carlo integration interval arise from the imposi-
tion of symmetry. They favor replacing the symmetric
Monte Carlo integration interval by the percentile interval.
Abandoning symmetry tends to raise the coverage of the
Monte Carlo integration interval, it curbs the explosive
behavior of the interval length in all but the most persistent
models, and it stabilizes coverage rates across time horizons,
but it does not alter the ranking of the methods in sections V,
VI, and VIL!® While the coverage differences are dimin-
ished, the Monte Carlo integration interval may still under-
cover by up to 20 percentage points relative to the bootstrap-
after-bootstrap interval, especially if a time trend is included
in the regression. Its lower coverage compared to the
bootstrap-after-bootstrap interval mainly results from the
fact that it ignores small-sample bias in the initial OLS
estimate 3 .

If the performance of the bootstrap can be improved by
bias corrections, it may seem that the same should be
possible for other methods. For example, it may be tempting
to consider small-sample bias corrections to further improve
the Monte Carlo integration interval. However, Bayesian
inference is exact conditional on the sample path, and one
would be hard pressed to justify such bias corrections.
Similarly, the prospects of improving the delta method seem
limited. Even if one corrected the delta method to allow for
coefficient bias, the resulting symmetric interval would be
unlikely to perform as well as the bias-corrected bootstrap
interval, given the skewness of the small-sample distribu-
tion.

18 An alternative set of figures 2 through 6 is available upon request.
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FIGURE 7.—95% CONFIDENCE INTERVALS FOR SELECTED RESPONSES TO A SHOCK IN FEDERAL FUNDS RATE
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IX. Empirical Example

To illustrate some of the differences between standard and
bias-corrected methods, this section studies a macroeco-
nomic VAR model based on Bernanke and Gertler (1995).
The estimated VAR is based on monthly data for the
logarithm of industrial production, the logarithm of the
consumer price index excluding shelter, the logarithm of
commodity prices, and the federal funds rate (in percent), in
that order. Each equation of the system includes 12 lags of
each variable and an intercept. The sample period is January
1965 through December 1993.1° Figure 7 plots the responses
of industrial production, consumer prices (excluding shel-
ter), and the federal funds rate to an unanticipated 1%
increase in the federal funds rate. It also shows the upper and
lower bounds of the standard bootstrap interval, the asymp-
totic interval, the bootstrap-after-bootstrap interval, and the
Monte Carlo integration interval at the nominal 95% level.
The time horizon is 48 months.

One of the key facts in the VAR literature is that a
monetary tightening is followed by a sustained decline in
output and in the price level. This finding is based on
econometric analysis using standard error bands. Figure 7
shows that only the first part of this statement is supported

19 All data are from CitiBase. The series codes are IP, PRXHS,
PWIMSA, and FYFF.

prices excluding shelter (CPI), commodity prices, and federal funds rate (FF). Model is based on Bernanke

by the bootstrap-after-bootstrap interval. In the left panel, all
methods suggest a significant if temporary decline in output
in response to the interest rate increase. Differences in the
duration of that decline may be as large as 7 months, but the
basic pattern is robust. In contrast, in the middle panel
results are substantively different across methods. While the
bias-corrected interval includes zero for all time horizons,
all other intervals suggest a significant negative response of
the price level at horizons higher than about 36 months. This
example clearly illustrates that using the bias-corrected
bootstrap interval can change the way we interpret
economic data, even for fairly large samples. It also demon-
strates that accounting for bias and skewness need not
invalidate the usefulness of VAR analysis in general. The
differences between intervals need not always be as spectacu-
lar as in the middle panel, and they are rarely so unanimous.
For example, consider the short-lived spike in the
federal funds rate following a monetary tightening in the
right panel. Judging by the bootstrap-after-bootstrap inter-
val, this response is no longer significant after 11 months.
However, the Monte Carlo integration interval and the
delta method interval show another significant spike at 14
through 16 months. Moreover, about three years after the
shock, the standard bootstrap interval falls below zero for 9
months, and the delta method interval turns negative after 48
months.



SMALL-SAMPLE CONFIDENCE INTERVALS FOR IMPULSE RESPONSE FUNCTIONS

X. Concluding Remarks

Bias-corrected bootstrap confidence intervals explicitly
account for the bias and skewness of the small-sample
distribution of the impulse response estimator, while retain-
ing asymptotic validity in stationary autoregressions. Monte
Carlo simulations for a wide range of bivariate models show
that in small samples the bias-corrected bootstrap interval
tends to be more accurate than traditional asymptotic,
bootstrap, and Monte Carlo integration intervals. This
conclusion appears to be robust to changes in sample size,
persistence, lag length, and the shape of the impulse
response function. The improved coverage content of the
bias-corrected interval does not come at the expense of
excessively long intervals. In fact, in some cases the
bootstrap-after-bootstrap interval is shorter on average than
the Monte Carlo integration interval. These results hold for
VAR models estimated in levels, as deviations from a linear
time trend, and in first differences. Additional simulations
for cointegrated processes and random walk processes
estimated in levels established that for reasonable sample
sizes the bias-corrected bootstrap interval dominates its
competitors even in nonstationary models. Including an
additional time trend in the regression tends to worsen the
coverage performance of all methods considerably, espe-
cially if the true model is nonstationary, but the relative
performance is almost always preserved. An empirical
example demonstrated that the bias-corrected bootstrap
method may lead to economic interpretations of the data that
are substantively different from standard methods.

The computational cost of implementing the bootstrap-
after-bootstrap method is higher than that for traditional
methods, but not unreasonable. For example, constructing
the intervals for a standard quarterly VAR(4) system with
linear time trend like the one considered by Runkle (1987)
takes about 30 minutes on a Pentium 100. Asymptotic bias
corrections can further reduce the computational burden of
the bias-corrected bootstrap method, but currently exist only
for VAR models without deterministic time trends. While
the bias-corrected bootstrap interval represents a significant
improvement over traditional intervals, its accuracy tends to
deteriorate in borderline stationary processes. I discuss
possible explanations for this phenomenon, and conjecture
that it may be ameliorated by higher order bias corrections.
The results of this paper call for further theoretical work to
explain the success of bias-corrected bootstrap methods in
small samples. In addition, further simulation evidence for
much larger VAR systems containing four to eight variables
would be useful. Currently nothing is known about the
small-sample performance of confidence intervals in such
large systems. While the simulation results in this paper are
suggestive, they are limited to bivariate systems. Current
research also addresses the usefulness of parametric assump-
tions in resampling and the effects of lag order uncertainty
on inference about impulse response estimates.
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APPENDIX

Define B = vec(By,,..,B,). From Pope (1990), EB —B) =
b(B)/T + O(T~3?), where B denotes the OLS estimator. Let 3* denote the
corresponding bootstrap OLS estimator. Then B = B — b(B)/T and B* =
B* — b(B*)/T. Assuming that b is a continuous and smooth function with
bounded derivatives of first and second order, b(B)*/T = b(BYT +
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Op(T~%2) by the following argument:
1 n A 1 R - 1 - -
T[b(ﬁ) = b(BH] = T[b(ﬁ) — b1+ T[b(B) — b(B*)]. Al

A Taylor series expansion for the jth element of b(fs*) about B forj =1,
2, ..., N?p implies

b(B*) = b(B) + bj(B* — B) + 3B* — By IBBE* - B) A2
where ﬁ* = E = f. The higher order terms of the expansion can be

dropped, provided b is a sufficiently smooth function in its argument.
Substituting equation (A.2) into equation (A.1), we obtain

1 A
716(B) = b(B™)] = OT™) + 0T = 0p(T™) Al

where b(B) — b(B) = QT ") by B — B = Ox(T ") and where b(f) —
b(B*) = Op(T~1?) by B* — B = Op(T~'?2). Abstracting from simulation
error, these results carry over to bootstrap bias estimates.





