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DATA-DEPENDENT ESTIMATION OF PREDICTION FUNCTIONS

By P. BurMaN AND D. NOLAN
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Abstract. The technique of cross-validation for model selection where the observa-
sions have martingale-like structure is developed. It is argued that cross-validation
works, unaltered, in this more general setting. The specific example of the stationary
Markov process is considered in detail. An estimate of the one-step prediction
function of this process is selected from a collection of splines by minimizing the
cross-validatory version of the prediction error. Asymptotic optimality of the estimate
is established.

Keywords. Cross-validation; B-splines; Markov chain; asymptotic optimality; pre-
diction error: autoregressive process.

1. INTRODUCTION

Cross-validation (Stone, 1974; Geisser, 1975) is a technique acclaimed for its
model selection ability. This is especially true in the nonparametric setting. It
is our belief that the cross-validation folklore implicitly claims its success from
the independence of the training sample and the test sample. The aim of this
paper is to establish a much broader setting in which cross-validation
successfully selects a model. This broader setting includes observations with a
martingale-like structure where the criterion function to be cross-validated is
of quadratic form.

To best illustrate our claim, consider the regression setting. Suppose one

observes pairs (X, Y;) where
Yi = m(Xz) + Eis

for some unknown function m and error €. The prediction error assesses the
predictive ability of an estimate m of m:

PE(m) = E{Y — Am(X)}*. (1.1)

The expection in (1.1) is over a new independent observation (X, Y),
conditional on the data. Leave-one-out cross-validation estimates the ex-
pected value in PE(/#) by forming an expectation with respect to the
empirical distribution based on the sample (X, Y,), ..., (X,.Y,). To
correct for the double use of the data, the ith pair (X, Y}) is removed from
the estimate 71 in the evaluation {Y, — #(X;)}?. This leave-out-one estimate
is denoted by A1 _;. The exclusion of (X;, Y;) enables PE(#) to mimic PE(#),
where

0143-9782/92/03 189-20 $02.50/0 © 1992 P. Burman and D. Nolan
JOURNAL OF TIME SERIES ANALYSIS Vol. 13, No. 3




190 P. BURMAN AND D. NOLAN

PEGM) = -3 {Y, = A (X)), (1.2)

Here the training sample is {(X;, Y¥;): j ¥ i} and the test sample is {(X;, Y})}.
A heuristic argument shows that it is not so much the independence of these
two samples that makes cross-validation work, but the quadratic form in
(X;,Y), (X,,Y;) found in PE. More specifically, the zero conditional
expectation of the quadratic form for the i # j terms drives the successful
approximation of PE by PE. This can be seen in the approximation below.

PE(/#) = j(r’r‘z — m)?dF + foﬁ dF

I

f(ﬁq — )2 dF + j(ﬁ"i — m)> dF + faz dF

~ > e, W(X,, X)) + f(rﬁ — m)*dF + fo@ dF,

ij=1

where 7i(x) = E{m(x)}, o’(x) =var(Y /X, =x) and W is a deterministic
weight function. Typically, PE approximates PE well if its expectation
matches the conditional expectation

EJZ(XI;)W(X[‘, Xt) -+ f(ﬁ_l - m)z dF -+ fgz dF.
i=1
This happens when the errors are such that
E(gigj)lX,, ..., X)) =0fori < j. (1.3)

That is, the technique of cross-validation can carry over, without modifica-
tion, to the dependent setting.
In this paper, we formally establish this assertion for a specific example,

where X, ..., X,.; form a stationary Markov process with one-step
prediction function mz, that is,
Yi= X = m(X)) + &,

Section 2 contains a detailed description of this set-up. It is shown that, when
nonparametric techniques are used to estimate i, cross-validation of the
prediction error can be used successfully to choose the estimate. In Akaike’s
(1970} study of autoregressive processes he considers the choice of 7 as a
prediction problem with prediction error E{X} — m(X})}?, for X|, X5, ...,
a stationary Markov process with the same distribution as and independent of
the original process. We show here that if one cross-validates this prediction
error then, just as in the independent case, the estimate A that minimizes PE
is asymptotically optimal in the sense of Hirdle and Marron (1985).

It should be noted that, in dependent settings where (1.3) does not hold,
the technique of cross-validation does not work. Instead, it yields a biased
estimate of the prediction error. Burman er al. (1990), Chu (1989) and Gyorfi
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et al. (1990) consider modifications of the leave-one-out technigque to handle
these cases.

Cross-validation, unaltered, can be a tool for model selection in the
dependent setting because it capitalizes on the quadratic form of the
prediction error. The recent contributions of nonparametric techniques to the
arena of dependent data (see Bierens, 1983; Robinson, 1983; Collomb and
Hirdle, 1986; Truong and Stone, 1989) should find this observation especially
welcome. In addition, functionals other than squared error loss may be
successfully cross-validated, provided they are smooth enough to be approxi-
mated by a quadratic form. This general case is beyond the scope of this
paper.

The remainder of the paper is organized as follows. Section 2 formally
introduces the notation and main result of the paper. A simulation comparing
the cross-validation technique with two simple rules-of-thumb for estimating
the prediction error appears in Section 3, along with a numerical example.
Section 4 contains some preliminary technical details useful in the proof of
the main result, which appears in Section 5 of the paper.

2. THE MAIN RESULT

Let X, ..., X,.: be the first n + 1 observations from a stationary Markov
process which can be represented as

X1 = m(X;) + £;,

where it is assumed that E(g,]X,) = 0. It is also assumed that the sequence
{X,i=1,2, ...} satisfies the mixing condition below.
There exists a strictly decreasing function ¢ such that

(a) |P(A N B) — P(A)P(B)| = @(r) P(A), for all A eB; and B e Biis, foOr
any i and ¢, and

(b) Zjalfp(j) < %,

where %, and B, are the o-fields generated by {Xy, ..., X;} and {X}, Xy,

.}, respectively.

Use G to denote the joint distribution function of (X, X ») and g to
denote its density. Let F be the marginal distribution function of X, and f be
its corresponding density. Following Stone (1985) and Burman (1989), we
consider spline estimates of the one-step prediction function m restricted to
the interval [0, 1].

For positive integers k and v, let &, , represent the class of all functions
{s} on [0, 1] that satisfy the following two properties.

(i) s is a polynomial of degree v on [(z — 1)k71, tk™ 1, e=1, ..., k.
(ii) s is v — 1 times continuously differentiable on [C, 1].

That is, &, is the class of splines of degree v with k equispaced knots. It is
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well known that &, , has a basis consisting of kX + v normalized B-splines
{By;:j=1,..., k+ v} (see de Boor, 1978). Our interest is in the spline

k=+v

Ar(x) = ;ékaf(x),

where @& is chosen to minimize
k+uv

2
'12{ i+1 gletBkt(Xi)} T(X). (2.1)

The function Z(-) is the indicator function for the interval [0, 1].

As in Section 1, denote by 1, the SPBHG constructed from all the
observations apart from (X, ;). Then take k to minimize the cross-validated
version of the prediction error:

PE, = nﬂE{XHl — (X)X,

where k ranges from 1 to K, = nl * for some arbitrary small positive «. The
minimization of PE(k) is almost as good as the minimization of PE(k). This
is formally stated in the following theorem.

Tueorem 2.1. Suppose the following conditions hold for X, ..., X,.,., a
stationary Markov process satisfying the mixing condition stated above:

(1) 0 < f(x) < ¢, for all x € [0, 1], for some constant c;

(ii) the conditional densities {fx,x,} are uniformly bounded on [0, 1]%;

(iii) the prediction function m is not a spline of degree v for any
ki (V) SupPper<r E{| X, X,=x} < oo, for all v > 0.

Then: [y = m3HdF

1nfk<Kf(mk — m)?IdF

ReEMARKS

1. It is possible to extend this theorem to hold for a sequence {X;} that is
nonstationary but has stationary transition probabilities. In this case, if the
joint distribution function of X; and X,,, is denoted by G, ., then PE, is
taken to be

J = Ay 1) G (x, »)

where Gn(x’ y) = n_lziéignGi,i+l(xv y)

2. It is assumed here that the knots of the splines are equispaced. In practice,
however, it may be desirable to place the knots at the sample guantiles.
The main result should carry over to this case, but we do not prove it

here.
3. We believe that Theorem 2.1 can be extended to the pth-order Markov
chain where the problem is to estimate m(x,, ..., x,) = E(X| X, = *1,

. X, =x,). To do so, we would use tensor products of one-
dimensional B-splines to create multivariate spline estimates (see Burman
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and Chen, 1989). Also, we believe our arguments are valid for other types
of estimators such as those based on kernal or nearest-neighbor tech-
nigques.

4. The mixing condition given above is satisfied if

sup |, () = SOy = (),

for a decreasing sequence {(-)} converging to zero. In fact, if

sup [|frpx (1) = FOIdy = p < 1

then take @(n) = p" to meet this condition. The model used in the
simulation in the next section is such an example.

5. Condition (iv) in Theorem 2.1 can be weakened to hold for r = 8. This
requires excessive calculation in the proof of the theorem, however, for we
can no longer use part (g) of Lemma 4.1 (see later).

3. SOME NUMERICAL RESULTS

3.1. A simulation

In this section we present a simulation in support of our theoretical results.
Observations are generated from a stationary Markov process with Uni-
form(0, 1) marginal density and joint density (of X and X ;)

1+ 09sinRaxN2x, — 1) O0=sx,x,=1
glxy, X2) = {0 otherwise.

The one-step prediction function is then
m(x) = 0.5 + 0.15sin 27x).

To estimate m2, fit a quadratic spline with knots placed at the sample
quantiles, choosing the number of knots by the cross-validation method as
described in Section 2. Compare the cross-validatory choice of the number of
knots with the ad hoc rule that takes the number of knots to be a fixed
fraction of the sample, say 10% or 20%. To measure the performance of
these methods compute the ratio

inf, [(Pi, — m)*dF
[(gr — m)*dF
where 71, is the quadratic spline estimate of m with k knots and k£" stands
for the number of knots chosen according to one of the competing rules.
Table I presents the mean, median and standard deviations of these ratios for
1 = 50 and n = 100. All are based on 400 repeats. The closer the ratio is to 1,
the better is the method. Table I shows that the median ratio for the

cross-validatory choice (denoted by CV in the table) is close to 1 for both
sample sizes.
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TABILEI
THE MEeaN, MeEDIAN AND STANDARD DEVIATION OF THE THREE PERFORMANCE RATIOS

n =50 n = 100
Knot
selection Cv 10% of n 20% of n CV 10% of n 20% of n
Mean 0.74 0.53 0.25 0.78 0.30 0.13
Median 0.94 0.27 0.19 0.998 0.28 0.10
Standard deviation 0.34 0.54 0.21 0.32 0.18 0.11

3.2. A numerical example

We close this section with an illustration of the use of a cross-validatory
choice of model in the Markov chain context. One hundred pairs (X;, X;,;)
were generated according to the following specifications:

X,y = 0.5+ 025sin(2aX) + U, i =1, ..., 100,

z

where {U;} are independent observations from the Uniform distribution on
[—0.25,0.25]. The prediction error (1.1) was then cross-validated (1.2) and
minimized over the collection of quadratic splines on the unit interval with
knots located at the sample quantiles. In this example, a quadratic spline with
two knots was chosen. The spline estimate is plotted in Figure 1 along with
the true prediction function and the observations. The two curves appear to
be remarkably close to one another, except possibly near the endpoints of the
interval of estimation,

4. PRELIMINARIES

In this section we present some preliminary results to be used in establishing
asymptotic optimality of k. For the vector z in R, write [|u] to denote the
usual Euclidean norm of u and for a f X ¢ matrix H, write its matrix norm as
|H]|. The empirical distribution function constructed from (X, X,), ...,
(X, X,+1) is denoted by G,, and that of X, ..., X, is denoted by F,. For
any two sequences of random variables {§,,: pe D,} and {7,, pe D,},
where D, is an index set, write Enp=0,n,,) to mean that
SUPpep, |Er 0/ Mnpl = Op(1). Similarly define &, , = 0 (M p)-
Define

A = [BOBUOI@AFE) by = [m(x) B I0)dF()

S
x-
]

Ay = [BUOBUI®AELx) By = [m(x)B () I(x)dE,(x)

b, = nT 2 X Bo(XDI(X) 8 = Al'b,.
i=1
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Let 8,; = 1/(kn'~%)"? for some 0 < &< «/2 where « is the constant that
appears in the upper bound XK, on 4. The proof of the following result is
contained in Lemma 3.6 of Burman (1989); it uses properties of splines.

Lemviva 4.1, Under conditions (i), (ii) and (iv) of Theorem 2.1:

(a) The eigenvalues of A, are bounded by ¢, k™' and c>k, for 0 <c, < ¢
(b) HAk — Al = op(Su)s

{c) HAk” = Op(k™");

(d) A kl exzsts except on an event whose probability goes to zero as n —
(e) HAk - ” = OP(k O )

@ A =

(g) ku - bk“ = OP(kl/zénk)
(h) Hb K bkli = OP(kl/z(S i)

LemvmMma 4.2. Suppose that q is a function on [0,1] such that |g =1 and
fqu = (. Assume that

g(x, y)
sup |————
o=x=1- f(x)f(¥)

Then for any positive integer s
n 2s s !
E{Zq(Xa} = c(s)E{nqudF} :
i=1 f=1

where c{s) is a constant that depends only on s.

dF(y) < =

Finally, re-express

ak - 81{ - A;lek -+ Fi, (4.1)
where
€, = gk - E’k = n_lzsin(Xi)I(Xi),
i=1
g = X1 — m(X))
and

ro = (Ak — ADe, — AT B mux) — m(x)}I(x)d(F, — F)(x).

Lemma 4.3. Under conditions (i), (ii) and (iv) of Theorem 2.1:
(a) Hka(X){mk(X) ~ m(x)}I(x)d(F, — F)(x)|]?

= op(n®){kn=2 + n7l|m, — m|},
() Hr‘kli = 0n(n*) (K n " + K0 m, — mll},

where for any function u, ||ul| = {juz(x)l(x)dF(x)}l/z.

The proofs of Lemmas 4.2 and 4.3 appear at the end of Section 5.
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5. THE PROOFS

Throughout the proofs ¢ will denote an arbitrary positive constant that
changes from one line to the next.
Define

LK) = [(Ax) = md@)IG)dF() + [imix) = m()) I(x)dF(),
£,k = PE, — [o*()dF(x).
V() = n~" [0? () Bi(x) AT Bo(x) [(x)dF(x)

+ [tmie) = mEY 1),
Note that
|, = ml? = LG,

PE, = fo*z(x)dF(x) + L,(k),
and

Va(k) = cu(kfn) + llmy — ml*. (5.1)
Theorem 2.1 follows easily from Lemmas 5.1 and 5.2 below. These lemmas
are typical of proofs of asymptotic optimality for cross-validatory choice of
smoothing parameters in nonparametric function estimation (in the independ-
ent setting). The main difference, however, is the approximation

E 5:‘5;W(X;'a Xj) = Eaz(Xl-)W(Xi, X),
Lj=1 i=1
where Wi(x, v) = Bi.{(x)A7*B(¥)I(x)I(y). This approximation is key to the
proofs of Lemmas 5.1 and 5.2. It is presented as a separate lemma below.
LemMa 5.1, As n—> o we have that
|L.(k) = Va(k)
sup
k=K, VoK)

.——)P

LeMMA 5.2, If k™ minimizes V,, over all k < K,,, then

(L, (k) — L,(k)} — {L(k¥) — L,(k")}
E V) e

LEMMA S5.3. There exists a constant ¢ > 0 such that

n " a4
E{z g6, W(X,, X)) — 20 (XH)W(X,, Xl-)} = ck*n*.
=1

ij=1
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Proor orF Lemma 5.1. Note that
LK) = V(k) = [, = mlP = n7t o)W (x, x)dF(x).  (5.2)
By Lemmas 4.1 and 4.3
JriB (LA B AF

< llrell*llA&l + 2l el A4 el
= op(n* W K2n"? + kn~lmy — mlPYO(k™H)
+ op(n) {07! + K2 n TP my — m|}OkTHO(k)op(k 2 8,,)
= op(V,(K)). (5.3)
Substitute (5.3) into (5.2) to get

I = mulP = llexAiBoR| = [(riB)2aF + 2

LK) = Vi(k) = [(et ATIB ()} I(x)dF(x)

— n_ljaz(x)W(x, x)dF(x) + op(V,(k)).

Lemma 4.3 implies that the first two terms together are op(V,(k)). This
completes the proof of Lemma 5.1.

PROOF OF LEMMA 5.2. Re-express PE(k) (Cook and Weisberg (1982), p. 33,
Equation 2.2.23) as

2”: { X1 — A(X)YI(X)
i=1 (1 = hy/n)?
where
hy = Bi(X)A'B(X).
Then

Xiv1 — A (X))} I(X)
i+ Zn_lhf

L.(k) = n"ii { + op(V,(k)) — jazdF (5.4)

The stochastic order term follows from Lemma 4.1 applied to the inequality
[hi? < IATP = Op(&?),
and from the fact that

n“lz{&ﬂ — A (XD Y I(X) = Op(1).

Ignore the stochastic order term in (5.4) and rewrite the difference
L,(k)— L,(k)as
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{n—léeﬁl(xi) - fazldF} + {f(mk — m)?Id(F, — F)}
wZ[nmlési{ﬁzk(Xl-) — m(XHYI(X) — n_zés?l()(i)hi}
+ 2l S () — M) Ik
+ 4n_2§8i{ﬁ1k(}fi) - m(X,-)}I(Xi)h,]
— 4[;1—22&{;%;(()@) - m(Xi)}I(X,-)hl]

= T, + To(k) — 2T(k) + 2T (k) — 4T s(k), say. (5.5)

The first term 7', does not depend on k. Therefore it does not enter into the
difference {L, (k) — L, (k)} — {L,(k*) — L,(X¥*)}. The remaining terms are
handled one by one, beginning with 7,.

TA(k) = [(Fiy = m)*Td(F, = F)
= [ty — mHd(F, — F) + Jom = my?1acr, - P

+ 2[(my — m(m = m)IA(F, — F)

= To(k) + Trp(k) + 2T 5(k).
Lemmas 4.1 and 4.3 imply

1T21(k)l = U(ﬁ’ik - mk)zld(Fn - F)\

flex a7 BL(OBLGIAT e + TLBABL)F

— 2¢, A By () B (x)r JI(x)d(F, — F)(x)

I

el AT (A — ADA'e, + ri(Ay — ADrg

— 2e, AT AL — AT

< |ATWPIA L — Adllled® + liradPll A, — Al
+ 2le lATIA L — Adllizgll

= Op(k2)0p(S)op(k8%) + op(n*)(K>n™% + kn Himy — ml[?)op(S.4)
+ OP(kl/z5m’c)o(k)0P(5nk)0P(n6)(k3/2n_l + kP nT Py — ml)

= op(V,.(k)). (5.6)
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Apply Lemma 4.2 to find
E|T»(k)|* = O(i)n—‘*[{nf(mk - m)zldF} + {nf(mk - m)zldF}2]

which shows that 7, (k) = op(V,(k)). Then for T,; Lemmas 4.1 and 4.3 and
a little algebra imply

| T53(K)| = U{eLAEIBk(x) + P B () Hm(x) — m(x)}H (x)d(F, — F)(x)|

< (ledllAzH + IrdDIB () {mplx) — m(x)}I(x)d(F, — F)(x)|

= {op(k28,,)0(k) + o (n®)(k*n~t + kP n~ P m, — ml)}
x{op(n®) (K™t + n 7 |my — ml)}

= op(n®) (K207t + K2 rmy — mD(kYnt + n T my — miD)

= 0p(n®) Kk n7? + KP2n7R|my — m|| + ka7 imy — ml?)

= 0p(V,(K)).

_The term 7, has been dealt with and we now turn to 7;. Denote
h; = W(X,;, X;). Break T; into five subterms as follows.

Ts(k) = {n—ligiekAgin(Xi)I(Xi) - ”~1J-(72(X)W(x7 x)dF(x)}
+{nSerimuxo) - [ S e - o iam - Rl
- {n_zi{g? - C’Z(Xz’)}I(Xi)Ei}

. {n—1f0~2(x)W(x, X)d(F, — F)(x)}

= Ty(k) + Typ(k) — Ts(k) — Ts(k) — Tas(k).

We show that Ty, ..., T35 are each op(V,(k)). For T5; , apply Lemma 5.3.
As for the second term, it i1s a candidate for Lemma 4.3 because
T3(k) = e,r,. To deal with T3; use the bound implied by Lemma 4.1,

sup |h; — k| = A — A7 = op(k28,0)s

I=sisn

to find
| T3] =< ”_lOP(kzénk){nﬁlgfg? - Gz(Xi)u(Xi)} = op(n 1k%8,,)0p(1).

Next, for 7T, use the fact that {[g? — o®(X)]I(X)h,;} is a sequence of
martingale differences with respect to the o-fields {78,;} to show

E|[Ts(k)]* = ”~4§E[{5? — N X)Y(X)h,)?

= O()k?*n~3
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since |/;| = O(k). Then, for T35, by Lemma 4.1,
sup W(x, x) = |A zlllosupll!Bk(x)lP = AL = Ok).

O=x=1 < x =

This observation along with Lemma 3.2 gives us
EtT35(k)14 = O(l)n_4k2.

Therefore T3 = op(V,{k)).
Equation (5.6) implies that T, is also op(V,(k)). Finally,

ITs(k0)] = O(S)(nzs)/{ Jomni - m)ZIan}m

= op(V,(k)).

The proof of Lemma 5.2 is complete.

Proor OF LEMMA 5.3. Note that

Eing(Xza Xj) - EOZ(Xi)W(Xi’ X))
i=1

ij=1
= > {e? — (XN W(X,, X)) + 228,28, W(X,, X))
i=1 =2 j<i
= T6 -+ 2T7, say.
Note that {[g? — o? (X)W (X,, X;)} is a sequence of martingale differences

with respect to the o-fields {73,}. Using Burkholder’s ineqguality (Hall and
Heyde (1980), p. 23, Theorem 2.10) we obtain

2

EIT4* = cE|S (e? — 0*(X))2 WX, X)) -

Note that |B,(x)|? = > 5¥B%,(x) = 1 for all x. Consequently,

(W (x, )| = 1B ONIBOIAL = ck. (5.7)
It then follows from (5.7) and condition {iv) of Theorem 2.1 that
E|Tgl* < en?k>.

Turn to 7,. The sequence {£i2j<i£jW(Xi, X))} is also a sequence of
martingale differences with respect to the o-fields {X,}. Once again, apply
Burkholder’s inequality followed by Jensen’s inequality.

i{fizng(Xza Xj)}z

=2 Jj<i

= cniE{gizng(Xi, Xj)}

i=2 ]<l

= CniE{ZEjW(Xi, Xj)}4'

i=2 Jj<i

2
E|T,|* = cE
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Then, provided that
4
E{Est(Xi, Xj)} =< c(k* + ik? + i2k?), (5.8)
J<i

we have
E|T,|* = en > (k* + ik® + i?k?)
[=2

< c(nr?k* + 2k + n*k?).

The proof will be complete once we establish (5.8).

EEjW(Xia X)) =&, W(X,, X,.)) + 2, g, W(X, X))

i<i j<i—1
= TS + Tg.
Clearly,
E|Tgl* = ck*. (5.9)

Let the elements of A;! be denoted by ¢%'. For notational simplicity we will
write { B, ,} as {B,}. Then
k+uv
Wi(x, y) = Elas”Bs(X)Bf(y)-
S, 1=
Express Ty as
k-0 k+v

Z as,lBs(Xi) E EjBt(Xj) = E BS(Xi)I”LS(Zi)a

s =1 J<ti—1 s, =1

Whel'e Zf = (XI? “ e ey Xi—l) and

kv
u(Z) = 2 a2 &;BAX).
F=1 j<i—1
Then
k+uv 4
I - | (EXCOPREIR (5.10)
L Y S4=1 u1+...+u4=4 =1
The second summation in (5.10) is over all nonnegative integers u,, ..., U4
such that u; + ... + u,; = 4. The B-splines are zero outside an interval of
length (v + 1)/k and the product B (x) --- B,(x) is zero except when

ls, = s/ < v+ 1 for 1 =i, j=4. Bound the nonzero summands in (5.10) using
assumption (ii) of Theorem 2.1 and two applications of the Cauchy-Schwarz
inequality.

E[II{BSK(X»#S,(ZI-)}“: < E

E{Jusr(zi)} ”YE{I;[I{BST(X,-)} “ 731'—1]

4
= Ck~1 EH IMS,(Zi)’uT
=1
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= ck‘lI;Ii[l’i"{.usr(Zi)}“]“’/4

< ck7'sup E{u(Z)}*. (5.11)

1=t=4
Substitute (5.11) into (5.10) for the nonzero summands to get

E|Tq|* = ¢ SUP4E{uS(Zi)}4-

==

By a result of Demko (1977).
1as,r| = Ckpk—tl

> for some 0 < p <1. Apply Minkowski’s inequality to get

S o[ 3 emc)]”

t=1 j<i—1

4
/ E|Ty|* < c sup

Iss=sk+v

< ck* sup E{ > ng,(Xj)}4 (5.12)

l=¢=k+v F<i—1

Since {g;B,(X;)} is a sequence of martingale differences with respect to the
o-fields {7;}. Burkholder’s inequality implies

E{ z ngz(Xj)} = Ei Z {EjBt(AX'j)}Z}

F<ii=1 j<i—1

\ = 2 E{EjBt(Xj)}4

j<i—1

+2 > E{g; B(X,)}*{e,B{X;)}*

Ji<j.<<i—1
= c(ik™' + i?k7?).
Substituting this last inequality into (5.12) we obtain
E|Tq|* = c(ik® + i* k7). (5.13)
Complete the proof by noting that (5.8) follows from (5.9) and (5.13).

PROOF OF LEMMA 4.2. Rewrite 0, 4,<,g(X)) as
;Q'(Xi) = E[Q(Xi) — E{q(X)|X:1}] + ;E{q(Xi)lXi-l}

= TIO + Tll'
Denote E{g(X,)|X,_{ = x} by g:(x). Then

g(x, ¥) } l
f{f(x)f(y) aF ()

supllql(m = |lgl| sup

! O=sx=< O=x=i

= clqll
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According to Theorem 3.1 in Roussas (1988), if { Z;} is a stationary stochastic
process satisfying the mixing condition in Section 2, and Y,; = p,(Z,) for
some function p, with E(Y,;) =0 and |Y,;| = 1 then

E{i Ym«}zs = c(s)n’. (5.14)

When {Z;} is a Markov process, it is possible to extend (5.14) to the
nonstationary case. Using (5.14) we obtain

2@’1(Xi—1)

i=1

2s

EITllizs = F = Cnsllq“zs. (515)

Since {g(X,) — E[g(X))|X,_1]} is a sequence of martingale differences with
respect to {73;}. Burkholder’s inequality and (5.15) imply

E|To|* = E(;[Q(Xs) - E{Q(Xi)EXi—l}]z)s

5

= 25—1[}5 >q¥X)| + E
i=1

5}

+ ns_lgiE[E{Q(Xi)[Xi—l}]ZS)

;E{Q(Xi)lXi~l}2

5

= 23—1(5 2.7 (X))
=1

< z{E Sl + cnsuqn%}.
i=1

Therefore it is enough to show that
2a*(X)| = e nllql.

Since |g| =< 1. It is easy to see that

E

n s Ky
E|2q%(X)| < c> > > E{g*"(X.,) -+ ¢""(X,)}
i=1 u=1 vi+...+r,=s5 1=s{<...<i,<n
= C21 > E{gP(X.) - M (X))
=1 1=sj<.. . <ji,<n

The second sum in the middle inequality is over positive integers z, ..., T,
such that 7; + ... + 7, = s. The proof of this lemma will be complete once
we show that, for any postive integer u, there exists a constant ¢(u) such that

> E{q¥(X) - qA(X)) = C(’“‘)g‘l n'llq|[*. (5.16)

l=si<...<i,<n

We prove (5.16) by induction. This bound is obvious for u = 1. Now we show
that it is true for u + 1 if it is true for u.

> E{q* (X)) - - - ¢*(X,,.)}

1SH<. .. <i,e<n
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< > |E{q?(X}) - q*(X,.)} — E{q*(X,

l=i<..<igq1=n

qz(Xiu)}E{q2(Xiu+1)}'

+ > E{q*(X;) -~ (X )YE{g (X, )}

1=i1<...<i415h

= > @iy — WE{g* (X)) - g2 (X))}

Isi<..<igsy1§91

+allgl? 2 E{q*(Xy) - g* (XD}

lsi<...<i,<n

= {1+ nlgl?y X E{gX,) - q*(X,)} (since ;cp@) < o)

1=i1<<...<i,=n
= c{l + nlIQIIQ}c(u)zanqN”-
The proof of this lemma is now complete.
Proor oF LEMMa 4.3. For part (a) let
Eppe = {n_lj(BkJmk — m|I)*dF + n_z}l/z.

Then by Lemma 3.2

B — m)ld{(F, — F
P{sup sup lf K72 Jd( )| ~ né}
k< K,l=tsk+o & s
k+uv
= E Ei’l zsa(ngnkr) w2 { f(Bktlmk - m')ZIdF}

k<Kpt=1
k+v

k=K, t=

San(l @) n—zsé'

The last expression converges to zero for s larger than (1 — «)/&. In this case,

k+uv 2
\B(mi — m)Id(F, — P = { S [Butme — my1d(F, - F)}

k+u
= op(1) ;(négkm)z

k-+uv

= 01‘)(1)]?262{ f(Bk,]mk — ml|D?*dF + n_z}

= OP(l)nza( ﬁ — m|*IdF + kn;_z)

k4o

(since >, B%, < 1)
=1
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= op(W)n*?*(n7lmy — ml* + kn™?).

Part (a) is established.
To prove part (b) apply Lemma 4.1.

lrdl = 1A — Azl + NAZNIB (e — m)d(F, — F)
= OP(kzénk)OP(kl/zénk) + OP(k)”Bk(mk — m)d(F, — F)H
= op(k28%,) + Op(E)| B (my — m)d(F, — F)||.

The result now follows with an application of part (a) of this lemma.
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