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A cross-validatory method for dependent data
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SUMMARY

In this paper we extend the technique of cross-validation to the case where observations
form a general stationary sequence. We call it h-block cross-validation, because the idea
is to reduce the training set by removing the h observations preceding and following the
observation in the test set. We propose taking h to be a fixed fraction of the sample size,
and we add a term to our h-block cross-validated estimate to compensate for the underuse
of the sample. The advantages of the proposed modification over the cross-validation
technique are demonstrated via simulation.
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1. INTRODUCTION

Cross-validation (Stone, 1974; Geisser, 1975) is acclaimed as a method for estimating
prediction error in regression and classification problems, and in recent years it has
received much attention for its model selection ability in the nonparametric setting. See for
example Hérdle & Marron (1985). Even more recently, the technique of cross-validation
has been applied to prediction error estimation in the dependent setting. Work in this
area includes that of Gyorfi et al. (1989), C. K. Chu, in a University of North Carolina
Ph.D. thesis, and Burman & Nolan (1992). Here we continue this line of development,
and present a modification of the traditional leave-one-out method of cross-validation for
use with dependent observations. Our approach is suggested by the well-known technique
of removing blocks or subseries of observations, which originates from estimation prob-
lems for dependent random variables.

To best illustrate our procedure, suppose the goal is to fit the (k + 1)-parameter model

xi=90+91x,-_1+...+0kxi_k (1)

to N observations X;,..., Xy from a stationary process. Let (90, cens ék) be the least-
squares estimate, where (X;,..., X;,,) for i=1,..., N —k are the cases on which the
calculation is based. Following Akaike (1970), we assess the predictive ability of the fitted
model by the expectation:

E{PE(éo, cees ék)} = E{(Xk+1 - éo - éIXk — ... ékX1)2}, (2)

where X, ..., Xy is another process that has the same distribution as X, ..., Xy but is
independent of it. Leave-one-out, or ordinary, cross-validation estimates the expected
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value in (2) by

12 A R A
oCv, = n '21 Xk — 00— 01, Xip—1— ... — 0, X)) (3)
i=
where 0 ;i (=0, ..., k) denotes the ith least-squares estimate of 0;, obtained after deleting
the ith case (X, ..., X;+x), and n= N — k is the number of cases.

In classical applications of leave-one-out cross-validation, the cases are independent,
therefore making the cross-validated prediction error a good approximation to the true
expected prediction error. Here, however, the cases overlap, so leave-one-out cross-vali-
dation (3) may provide a very poor estimate of E{PE(0,, . . ., 0;)}. In this note we examine
an alternative method of cross-validation, which we dub ‘h-block cross-validation’, that
can handle general forms of dependence. The idea is a simple one. Rather than remove
the single case (X, ..., X;.,) when calculating the ith least-squares estimate, remove as
well a block of h cases from either side of it. Now the training set contains 2k fewer cases,
but the test set remains a singleton. Carlstein (1986), Kiinsch (1989) and Lele (1991) use
a similar technique with jackknife variance estimates for stationary sequences, and Chu,
in the thesis mentioned above, and Gyorfi et al. (1989) propose this modification to cross-
validation when selecting the nuisance parameter in nonparametric curve estimation with
dependent data. This approach is quite different from v-fold cross-validation. There, the
n cases are divided into v sets roughly of size n/v. Each group of n/v cases constitutes a
test set; the remaining n — (n/v) cases comprise the corresponding training set. Here instead,
there are n test sets, each consisting of one case, and the training sets contain roughly
n—2h — 1 cases. So, h-block cross-validation maintains a leave-one-out aspect.

According to the underlying structure of the data, blocking allows near independence
between these two sets. It remains a question how to select the value of h. This is our
main concern here. Intuitively, one should shrink the block size relative to the sample
size, but to maintain independence between the test set and the training set, & should
remain large. Chu, in the thesis mentioned above, and Gyorfi et al. (1989) require that
h/n tend to 0, with the rate of decrease a complex function of the underlying structure of
the data and the amount of smoothness in the model. In practice this structure is unknown
and, for small samples, h will necessarily be large relative to n. Alternatively, we propose
to take h as a fixed fraction of n, that is h/n = p for some 0 < p <%, and to correct for the
underuse of the sample by adding a simple term to the h-block cross-validated estimate.
The correction term makes possible our omnibus choice of h. It is analogous to the
correction used for v-fold cross-validation (Burman, 1989). We find through simulation
that, with the correction term proposed here, h-block cross-validation estimates the
expected prediction error well in a wide range of settings, and we also find that, without
this correction, h-block cross-validation may be as ineffective as ordinary leave-one-out
cross-validation. We consider here only processes having a short range dependence.
Although long-range dependence models have been proven useful in a variety of appli-
cations (Hosking, 1981; Cox, 1984; Dahlhaus, 1989), we do not know if our methodology
is applicable.

The next section formally introduces h-block cross validation. Section 3 outlines a few
examples where h-block cross-validation can be used. Finally in the last section, a variety
of simulations are presented in support of our proposal.

2. THE TECHNIQUE

Let Z,,...,Z, be a segment of length n from a stationary process where each Z; has
distribution P on R® For h a positive integer and for each i, define P, ;, an empirical
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estimate of P, as follows:

P(A)=Y o IZ;eA),
=1

J

for 4 a Borel set in R%. Here the weights {w,;:1 <i,j<n} form a double array of non-
negative numbers such that

w; ;=0 if [i—j|<h, (4)

w;;=1 forallj. (5)

it

14

Many choices for the weight function satisfy these two constraints. In our simulation
study we simply take:

for 1 <j<h,
Lo (I1<i<j+h),
YT \1)n—j—h) otherwise;
forh<j<n—h
Lo (J—h<i<j+h),
T\ m—2h—1) otherwise;
forn—h<j<n,
o (j—h<i<n),
YTl j—h—-1) otherwise.

The intent of condition (4) is to make the training set and the test set nearly independent.
Our notation suppresses the dependence of h on n, of P,; on h, and of w;; on h and n.
The empirical estimates P, ; need not be probability measures, but condition (5) ensures
Y P,;=nP,, where P, denotes the standard empirical distribution that places mass 1/n
on each of the observations.

For some functional T on R x &, where 2 is a collection of probability measures on
R?, define the prediction error by

PE,= J T(z, P,) dP(z), (6)
and the h-block cross-validated estimate of E(PE,) to be
1 n
Cv, = ; Z T(Zi’ Pn,i)' (7)
i=1

Examples of functionals T are found in the next section. Also define the corrected h-block
cross-validated estimate as

S |-

CCV,=CV, —

i fT(Z, P, ;) dP,(z) + fT(Z, P,) dP,(2). (8)
i=1

Heuristically, the extra terms in (8) follow from matching the expectation of cv, with
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that of PE,. To see this write cv, as:

{% > T, Py 3 f TGz, P..) dP(z)} 43 f (T(z, P..))— T(z, P,)} dP(z) + v,
i=1 i=1 i=1
©)

If the {Z;} are independent then the expectation of the first term is zero. If not, this
expectation is small when Z; and {Z;:|i —j| > h} are nearly independent. The correction
in (8) is an approximation to the second term in (9). It is needed because this term’s
expectation is of order h/{n(n — 2h)}. If h =np, for 0 < p <%, then the order of the expec-
tation becomes 1/n, whereas the order of the expectation of ccv, — PE, is 1/n. Note that
the order terms include a constant that increases with dimension of the fitted model
implicit in T.

Remark 1. Burman & Nolan (1992) consider the problem of estimating the prediction
function p for a stationary process (X;, Y;), where

Y, =uX;)+e, E(s]X;)=0.

It is argued there that leave-one-out cross-validation for model selection is asymptotically
optimal in the sense of Shibata (1980) in many cases. It is important to point out that
the test and training set need not be independent for cross-validation to work. Briefly, the
prediction error can be well approximated by a quadratic form in the errors plus a bias
term, provided E(g;¢;| X, . .., X;) =0 (i <j). A stationary Markov process with Y,=X;, ,
satisfies this condition, which implies the AR(1) process also meets this condition. See
Burman & Nolan (1992) for details of the argument.

Remark 2. Conditions for asymptotic optimality for this proposal remain open. It is
noted however that in the independent case Burman (1990) has shown the closely related
corrected v-fold cross-validation is asymptotically optimal for 0 < p <3.

3. EXAMPLES

In this section we present three examples where h-block cross-validation may prove
useful in estimating the prediction error. The first is a formalization of the example used
in §1 to introduce the notion of h-block cross-validation, i.e. the autoregressive model.
The second example concerns additive prediction and the last is a nonparametric model.

Example 1. Let X;,...,Xy be N observations from a statlonary process. Use
least squares to fit an autoregresswe model of order k to the data as in (1). Call the
fitted parameters 00, ...,0,. Then the expected quadratic loss (2) in predicting a new
observation is

E(eE,) =E{f(xk+1 - éo— élxk ... ékx1)2 dP(xy, ..., xk+1)}- (10)

Here
Zi=(X; ..., Xi11), T(z, P)=(Xgs+1— éo - élxk — ... ékx1)2,

with z=(xy,..., X;+;) and n= N — k. This is the model that is fitted in the simulations
of the next section. .
To explain further, take k = 1. Then the least squares estimates 0,, 6, in (10) are the



Cross-validatory method for dependent data 355

minimizers of
Y (Xiv1— 00— 0,X,)%
i=1

P is the joint distribution of (X;, X,), and P, puts mass 1/n, or 1/(N — 1), on each of the
pairs (X;, X;+1)fori=1,..., N — 1. The leave-one-out cross-validated estimate (3) in this
case is

ocyv, = 2 (Xiv1— éo,i - él,iXi)2,
i=1

N

where 90,,~ and 91,,. minimize
Zj#i (Xj+l - 00 - 01Xj)2'

To h-block cross-validate, minimize for each i the following quadratic:
Z (Xj+1 — 0 — 91Xj)2wi,j,
j=1

where the weights w; ; satisfy (4) and (5). Call the minimizers éo,i,w and él,i,w. Finally, the
corrected h-block cross-validated estimate of (10) is
Z (Xj+1 - éO,i,w - é1,i,jo)2

1j=1

14

12 A o 1
CCV,=— Z (Xi+1— 00w — 01,i,in)2 -
n/= n

1 A A
+ . '21 (Xi+1—0o— 0, X)%

Example 2. As in the previous example, take X;, ..., Xy to be N observations from a
stationary process. Generalize the ideas of Hastie & Tibshirani (1987) and Stone (1985)
by considering the problem of predicting X; by an additive nonparametric model:
Mo+ p(Xi—1)+ ... + w(X;—¢). If we employ least-squares to fit splines or polynomials
then, as in the above example, the prediction error (6) is given by

PE, = f (e — flo— Ay (%) — .- — B(X0)}2 dP(Xy, . ., Xpsr)-
Again, P represents the distribution of Z; = (X, . . ., X; ), the function T is the quadratic
integrand above, z =(x;,...,X;+;) and n=N —k.
Example 3. Consider the nonparametric regression model
E(Y|X = x)= pu(x).

Take {Z;=(X;, ¥;):i=1,..., N} to be N observations from a strictly stationary process.
Once again if a polynomial of order k, or a spline with k knots, is fitted to the data by
the method of least squares then the prediction error using quadratic loss is

PE, = f {y - ﬁk(x)}2 dP(x, ,V),

where fi, is the estimate of . In this example n = N.
In each of these examples, quadratic loss was used both to estimate the unknown
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prediction function and to evaluate the prediction error. Our method is not restricted to
the use of quadratic loss; in fact, the functional T can be any reasonably smooth function
of z and P. We do not investigate the performance of other loss functions here.

4. SIMULATION STUDY

Six simulations are presented here. The simulations demonstrate a variety in autocorrel-
ation, sample size, and fitted model. Each simulation is based on 10 000 replications. For
one replication, N observations are generated from a stationary zero-mean Gaussian
sequence with standard deviation 3 and specified autocorrelation. A model is fitted to the
generated data using least squares; the exact one-step prediction error is calculated based
on the fitted parameters and pre-specified correlation structure; and, finally, the expected
prediction error is estimated according to leave-one-out cross-validation, that is h =0,
and according to corrected (8) and uncorrected (7) h-block cross-validation for h as the
nearest integer to each of the following fractions of n: 0-05, 0-10, 0-15, 0-20, 0-25, 0-30,
where n is the effective number of cases. Example 1 in § 3 provides details for computing
these quantities. Table 1 reports estimates of E(PE,), E(cV,), E(ccV,) based on the 10 000
repetitions.

The simulations show that classical leave-one-out cross-validation can be very mislead-
ing, and caution should be exercised in using the leave-one-out technique when obser-
vations are not independent. On the other hand, these simulations also demonstrate that
blocking effectively adapts cross-validation to the dependent setting. In each of the simu-
lations, at least one block size produces good results for uncorrected h-block cross-vali-
dation. However, as discussed earlier, the best block size to use is determined by the
autocorrelation and the appropriateness of the fitted model, both of which are presumed
unknown. Therefore it is reassuring to see positive results for corrected h-block cross-
validation over a wide range of block sizes. Whether £ or % of the cases are removed,
blocking with the corrective term yields good cross-validated estimates of the expected
prediction error. Our simulations suggest the rule-of-thumb of removing 3 of the data;
that is the fourth column in each simulation of Table 1 shows that h =n/6 appears to be
a sensible choice in a variety of settings. Finally, it is noted that it can be difficult for the
corrective term to compensate for large data loss, where h exceeds 0-25n, because it makes
only a first order correction.

Specifically, the first simulation fits the linear model

X; = 90+ 01xi_1.

The sample is of size N = 25 with autocorrelations C(X;, X; ;) =03, 0-4, 0-3, 03, 0-3, 0-48,
047, 048,...,04% for j=1,...,24. The results appear at the top of Table 1. Notice
ordinary leave-one-out cross-validation greatly underestimates the expected prediction
error in this example.

The next two simulation results presented in Table 1 are based on the same stationary
process, an autoregressive model with single coefficient 0-7. Burman & Nolan (1992) show
that ordinary cross-validation is asymptotically equivalent to PE, for the AR(1) process.
The first of these two simulations fits a model that is linear in the first lag, and the second
fits a model that is quadratic in the first lag:

X; = 90 + Glxi_l + Bzx%_l.

The fourth and fifth simulations generate observations from a sequence of Gaussians
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Table 1. Mean and standard deviations of h-block and corrected h-block
estimates of the prediction error for six simulations
N =25, n=24, g(pg,) = 10-38, sp(PE,) = 2:74
h=0 h=1 h=2 h=4 h=S5 h=6 h=7
E(CV,) 7-96 822 8-89 10-58 11-82 12:32 13-01
E(ccv,) 7-93 812 8:64 9-81 10-68 10-73 10-83
sp(cv,) 2-83 3-00 3-52 4-85 592 675 7-86
sp(ccv,) 2-82 2-96 3-39 432 5-05 543 5-96
N =36, n= 135, (PE,) = 509, sD(PE,) = 0-75
h=0 h=2 h=4 h=5 h=17 h=9 h=11
E(CV,) 4-84 5-03 520 530 5-52 5-84 6-32
E(ccv,) 4-83 497 5-07 512 5-20 5-30 542
sp(cv,) 1-19 1-28 143 1-52 1-79 2-19 2:82
sp(ccv,) 119 126 1-36 142 1-57 1-78 2-:09
N =36, n= 135, g(PE,) = 5-50, sp(PE,) = 0-75
h=0 h=2 h=4 h=5 h=7 h=9 h=11
E(CV,) 512 543 5-82 6-:04 6-69 7-79 1034
B(ccv,) 511 532 5-55 565 595 636 725
sp(cv,) 1:37 1-68 234 273 442 772 1824
sp(ccv,) 1-36 1-61 2-10 2-36 347 5-68 1426
N =25, n=24, g(Pg,) = 11-59, sD(PE,) = 2:94
h=0 h=1 h=2 h=4 h=5 h=6 h=7
E(CV,) 801 8:62 10-08 12-17 12:70 13-32 1392
E(ccv,) 7-99 848 9-74 1121 1134 1146 1147
sp(cv,) 331 372 4-85 673 7-42 840 9-25
sp(ccv,) 3-30 3-65 4-63 6-00 6-31 6-82 7-14
N =64, n =62, E(PE,) = 618, SD(PE,) = 056
h=0 h=3 h=6 h=9 h=12 h=16 h=19
E(CV,) 6:06 621 6-30 6-40 651 676 7-07
E(ccv,) 6:06 616 620 6-23 625 6-31 6-38
sp(cv,) 123 129 137 1-47 1-58 1-81 208
sp(ccv,) 123 128 1-34 140 1-44 1-54 1-66
N =60, n=58, E(PE,) = 10-17, sD(PE,) = 1-78
h=0 h=3 h=6 h=9 h=12 h=15 h=17
E(CV,) 819 8:54 9-64 1036 11-03 11-53 12:24
E(ccv,) 818 834 9-34 9-79 10-10 10-09 10-34
sp(cv,) 2:18 2:29 2-99 3-62 434 492 573
sp(ccv,) 2-18 2:25 2-85 330 374 3-93 439
with autocorrelations: 0, 0-6, 0, 0-4, 0, 0-45, 0, 0-4%, . ... In the fourth simulation a linear

fit in one lag is made to the data, for N = 25. The results show a large expected prediction
error, and the h-block method does a very good job estimating it. In the fifth simulation,
N = 64 and the fitted model is linear in two lags:
X;i=00+0;1x;—1 +6,%;_,.

Here, both the h-block method and leave-one-out cross-validation perform well, which is
not surprising given the results of Burman & Nolan (1992).
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Finally, the last simulation further exemplifies the advantages of h-blocking. There the
autocorrelations are: 0-2, 0-2, 02, 06, 0-1, 0-1, 0, 0-62, 0, 0, 0, 06, 0, 0, 0, 0-6%, . . . ; and the
fitted model is

X; = 00 + 91x,~_1 + 02x,-2_1 + 03xi_2.
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