1.

(a) This is easiest solved using matrix notation. Write the model as \(y = X_1 \beta_1 + X_2 \beta_2 e \) and the short regression as \(y = X_1 \hat{\beta}_1 + \hat{e} \). Let \(M_1 = I - (X_1'X_1)^{-1} X_1' \). By the properties of least-squares and the fact that \(M_1 X_1 = 0 \),

\[
\hat{e} = M_1 y \\
= M_1 (X_1 \beta_1 + X_2 \beta_2 + e) \\
= M_1 (X_2 \beta_2 + e)
\]

Thus since \(M_1 \) is idempotent

\[
(n - k_1) s^2 = (X_2 \beta_2 + e)' M_1 M_1 (X_2 \beta_2 + e) \\
= (X_2 \beta_2 + e)' M_1 (X_2 \beta_2 + e) \\
= \beta_2' M_1 e + \beta_2' X_2 M_1 X_2 \beta_2 + 2 \beta_2' X_2'M_1 e.
\]

Since \(X_2 \) and \(M_1 \) are functions of \(X \), and \(E(e|X) = 0 \)

\[
(n - k_1) E(s^2 | X) = E((\hat{e}') M_1 e | X) + \beta_2' X_2 M_1 X_2 \beta_2 \\
= (n - k_1) \sigma^2 + \beta_2' X_2 M_1 X_2 \beta_2.
\]

the second equality since \(E(\hat{e}e' | X) = I \sigma^2 \) and \([M_1] = rank(M_1) = n - k_1 \) imply that

\[
E(\hat{e}' M_1 e | X) = tr[M_1 E(\hat{e}e' | X)] = tr[M_1] \sigma^2 = (n - k_1) \sigma^2
\]

Therefore we find

\[
E(s^2 | X) = \sigma^2 + \frac{1}{n - k_1} \beta_2' X_2'M_1 X_2 \beta_2.
\]

Common errors:

i. Assuming (implicitly or explicitly) that \(\beta_2 = 0 \)

ii. Pretending that \(\hat{e}' \hat{e} = e'e \)

iii. Assuming that \(s^2 \) must be unbiased because it is in a correctly-specified model.

(b) Note that

\[
s^2 = \left(\frac{n}{n - k_1} \right) \left(\frac{1}{n} e' M_1 e + \frac{1}{n} \beta_2' X_2'M_1 X_2 \beta_2 + 2 \frac{1}{n} \beta_2' X_2'M_1 e \right)
\]

and \(\frac{n}{n - k_1} \rightarrow 1 \). We learned in class that

\[
\frac{1}{n} e' M_1 e \longrightarrow_p \sigma^2.
\]

Indeed,

\[
\frac{1}{n} e' M_1 e = \frac{1}{n} e'e - \frac{1}{n} e' X_1 \left(\frac{1}{n} X_1' X_1 \right)^{-1} \frac{1}{n} X_1' e \longrightarrow_p \sigma^2
\]

since \(\frac{1}{n} X_1' X_1 \longrightarrow_p Q_{11} \) and \(\frac{1}{n} X_1' e \longrightarrow_p 0. \)
Next,
\[\frac{1}{n} \beta' X' M_2 e = \beta' \left(\frac{1}{n} X' e - \frac{1}{n} X' X_1 \left(\frac{1}{n} X' X_1 \right)^{-1} \frac{1}{n} X' e \right) \]
\[\xrightarrow{p} \beta' \left(0 - Q \left(Q_1 \right)^{-1} 0 \right) \]
\[= 0 \]

Finally,
\[\frac{1}{n} \beta' X' M_1 X_2 \beta_2 = \beta' \left[\frac{1}{n} X' X_2 - \frac{1}{n} X' X_1 \left(\frac{1}{n} X' X_1 \right)^{-1} \frac{1}{n} X' X_2 \right] \beta_2 \]
\[\xrightarrow{p} \beta' \left[Q_{22} - Q_{21} \left(Q_1 \right)^{-1} Q_{12} \right] \beta_2 \]

In sum
\[s^2 \xrightarrow{p} \sigma^2 + \beta^2 \left[Q_{22} - Q_{21} \left(Q_1 \right)^{-1} Q_{12} \right] \beta_2. \]

Common errors:

i. Confusing probability limits and expectations

ii. Assuming that \(s^2 \) must be consistent because it is under correct specification.

2.

(a) By definition,
\[V = (E x_i^2)^{-1} \left(E \left(x_i^2 e_i^2 \right) \right) \left(E x_i^2 \right)^{-1} = E \left(x_i^2 e_i^2 \right) \]
and
\[V^0 = (E x_i^2)^{-1} E e_i^2 = \sigma^2 \]
where \(\sigma^2 = E e_i^2 \).

(b) By the definition of covariance and the above equations,
\[C = \text{cov} \left(x_i^2, e_i^2 \right) \]
\[= E \left(x_i^2 e_i^2 \right) - E \left(x_i^2 \right) E \left(e_i^2 \right) \]
\[= V - V^0 \]

Thus \(C = V - V^0 \) (or \(V = C + V^0 \)).

Common errors:

i. Assuming that \(e_i \) is homoskedastic (e.g., stating that the assumptions imply homoskedasticity)

ii. Assuming that \(C = 0 \)

3. A point forecast of \(y_{n+1} \) takes the form \(x' \hat{\beta} \) for some estimate \(\hat{\beta} \) of \(\beta \). A complete answer requires describing the choice of estimator \(\hat{\beta} \), and it is best if this choice is justified.

(a) One option is least-squares \(\hat{\beta} = \left(X' X \right)^{-1} X' y \). While this estimator is not semiparametrically efficient in the model, it can be justified as simple and robust to misspecification.

(b) Another option is FGLS. \(\hat{\beta} = \left(X' \hat{\Omega}^{-1} X \right)^{-1} X' \hat{\Omega}^{-1} y \) where \(\hat{\Omega} = \text{diag} \left(\hat{\sigma}_i^2 \right), \hat{\sigma}_i^2 = z_i' \gamma \)
and \(\hat{\gamma} = \left(Z' Z \right)^{-1} Z' \hat{\eta} \) where \(\hat{\eta} \) is the vector with \(i'th \) entry \(\hat{e}_i \) where \(\hat{e}_i = y_i - x_i' \hat{\beta} \) and \(\hat{\beta} \) is the OLS estimator. Given that the model is specified as a regression with a parametric variance equation, the FGLS estimator is semiparametrically efficient.
A standard forecast interval takes the form

\[x'\hat{\beta} \pm 2\sqrt{\hat{\gamma} + \frac{1}{n}x'\hat{V}x'} \]

where \(\hat{\gamma} \) is an estimate of \(\gamma \) and \(\hat{V} \) is an estimate of the asymptotic variance of the estimator \(\hat{\beta} \). The natural estimator for \(\hat{\gamma} \) is described above. The estimate \(\hat{V} \) depends on the choice for \(\hat{\beta} \). If \(\hat{\beta} \) is OLS, then either \(\hat{V} = \left(\frac{1}{n}X'X\right)^{-1} \left(\frac{1}{n} \sum_i x_i x_i' (z_i'\hat{\gamma})\right) \left(\frac{1}{n}X'X\right)^{-1} \) or \(\hat{V} = \left(\frac{1}{n}X'X\right)^{-1} \left(\frac{1}{n} \sum_i x_i x_i' (z_i'\hat{\gamma})\right) \left(\frac{1}{n}X'X\right)^{-1} \). If \(\hat{\beta} \) is FGLS, a good choice is \(\hat{V} = \left(\frac{1}{n}X'\hat{D}^{-1}X\right)^{-1} \).

On a cautionary note, it may be observed that this forecast interval is correct only when the error \(e_i \) is normally distributed.

Common errors:

i. Assuming that the error is homoskedastic (even though the question explicitly assumes a heteroskedastic variance equation).
ii. Assuming that \(\gamma \) is known
iii. Assuming that \(\beta \) is known
iv. Stating that the forecast is \(\hat{\beta}'x \) without describing \(\hat{\beta} \).
v. Picking the least-squares estimator but not describing why this choice is made.
vi. Specifying the forecast interval as \(x'\hat{\beta} \pm 2\sqrt{\sigma^2 + \frac{1}{n}x'\hat{V}x'} \) or \(x'\hat{\beta} \pm 2\sqrt{\frac{1}{n}x'\hat{V}x'} \)

4. It was not stated explicitly, but implicit in the notation we can see that \(\gamma \) is real valued. A convenient way to write the estimator \(\hat{\gamma} \) is

\[\hat{\gamma} = \left(\hat{\beta}'X'X\hat{\beta}\right)^{-1} \hat{\beta}'X'Z \]

Since \(Z = X\beta\gamma + u \), we see

\[\hat{\gamma} = \left(\hat{\beta}'X'X\hat{\beta}\right)^{-1} \hat{\beta}'X' (X\beta\gamma + u) \]
\[= \left(\hat{\beta}'\frac{1}{n}X'X\hat{\beta}\right)^{-1} \hat{\beta}'\frac{1}{n}X'X\beta\gamma + \left(\hat{\beta}'\frac{1}{n}X'X\hat{\beta}\right)^{-1} \hat{\beta}'\frac{1}{n}X'u \]

Then since \(\hat{\beta} \to_p \beta \) and \(\frac{1}{n}X'u \to_p \frac{1}{n}X'u \to_p 0 \).

\[\hat{\gamma} \to_p (\beta'Q\beta)^{-1} \beta'Q\beta\gamma + (\beta'Q\beta)^{-1} \beta'0 = \gamma \]

(technically, this result requires that \(\beta'Q\beta > 0 \), otherwise \(\hat{\gamma} \) is not identified.)

Another way to solve this is to write \(\hat{\beta} = (X'X)^{-1}X'y \) and then

\[\hat{\gamma} = \left(y'X (X'X)^{-1} (X'X) (X'X)^{-1} X'y\right)^{-1} \left(y'X (X'X)^{-1} X'Z\right) \]
\[= \left(y'X (X'X)^{-1} X'y\right)^{-1} \left(y'X (X'X)^{-1} X'Z\right) \]
\[= \left(\frac{1}{n}y'X\right) \left(\frac{1}{n}X'y\right)^{-1} \left(\frac{1}{n}X'X\right) \left(\frac{1}{n}X'Z\right) \]
\[\to_p \left(E (y_i x_i') \left(E (x_i x_i')^{-1} E (x_i y_i)\right)^{-1} \left(E (y_i x_i') \left(E (x_i x_i')^{-1} E (x_i z_i)\right)\right) \right) \]
We want to show that this equals γ. Since $y = x_i'\beta + e_i$ and $Ex_ie_i = 0$,

$$E(x_iy_i) = E\left(x_i \left(x_i'\beta + e_i\right)\right) = E(x_i'x_i) \beta$$

and since $z_i = x_i'\beta\gamma + u_i$ and $Ex_iu_i = 0$,

$$E(x_iz_i) = E\left(x_i \left(x_i'\beta\gamma + u_i\right)\right) = E(x_i'x_i) \beta\gamma$$

Therefore the right-hand-side of (1) equals

$$\left(\beta' E(x_i'x_i) (E(x_i'x_i))^{-1} E(x_i'x_i) \beta\right)^{-1} \left(\beta' E(x_i'x_i) (E(x_i'x_i))^{-1} E(x_i'x_i) \beta\gamma\right) = \gamma$$

The extra credit problem asked for the asymptotic distribution of $\hat{\gamma}$. In general this is tricky as you have to handle the joint distribution of $\hat{\beta}$ and $\hat{\gamma}$. But when $\gamma = 0$ the problem simplifies. Note that from the above equation when $\gamma = 0$

$$\sqrt{n}\hat{\gamma} = \left(\frac{\beta' \frac{1}{n} X'X\hat{\beta}}{\sqrt{n}}\right)^{-1} \beta' \frac{1}{\sqrt{n}} X'u$$

$$\xrightarrow{d} \left(\beta'Q\beta\right)^{-1} \beta' N(0, \Omega_u)$$

$$= N\left(0, \frac{\beta'E(x_i'x_i)^{-1}\beta}{\left(\beta'E(x_i'x_i)\beta\right)^2}\right)$$

Common errors:

(a) Attempting to demonstrate consistency by taking expectations

(b) Treating $\hat{\beta}$ as a constant rather than a random variable

(c) Treating $\hat{\beta}$ as an invertible matrix

(d) Treating $\hat{\beta}$ as if it is a function of X. e.g. $E(\hat{\beta} x_i u_i \mid X) = \hat{\beta}' x_i E(u_i \mid X)$ (this is incorrect since $\hat{\beta}$ is a function of X and y and the problem does not make an assumption about the relationship between e_i and u_i)

(e) Saying that the WLLN asserts that $n^{-1} \sum_{i=1}^{n}(\hat{\beta}' x_i)^2 \xrightarrow{p} E\left((\hat{\beta}' x_i)^2\right)$ ($\hat{\beta}' x_i$ is not iid, as $\hat{\beta}$ depends on the full sample).