Econometrics 710 Midterm Exam, March 25, 2004

1. Take the homoskedastic model

$$y_{i} = x'_{1i}\beta_{1} + x'_{2i}\beta_{2} + e_{i}$$

$$E(e_{i} | x_{1i}, x_{2i}) = 0$$

$$E(e_{i}^{2} | x_{1i}, x_{2i}) = \sigma^{2}$$

$$E(x_{2i} | x_{1i}) = \Gamma x_{1i}$$

$$\Gamma \neq 0$$

Suppose the parameter β_1 is of interest, and suppose that it is estimated by a regression of y_i on x_{1i} only. We know that the exclusion of x_{2i} makes the estimator biased and inconsistent for β_1 . It also changes the equation error. Our question is: what is the effect on the homoskedasticity property of the induced equation error? Does the exclusion of x_{2i} induce heteroskedasticity or not? Be specific.

2. The model is

$$y_i = x'_i\beta + e_i$$

$$E(e_i \mid x_i) = 0$$

$$E(e_i^2 \mid x_i) = \sigma_i^2$$

$$\Omega = diag(\sigma_1^2, ..., \sigma_n^2)$$

The parameter β is estimated both by OLS $\hat{\beta} = (X'X)^{-1} X'Y$ and GLS $\tilde{\beta} = (X'\Omega^{-1}X)^{-1} X'\Omega^{-1}Y$. Let $\hat{e}_i = y_i = x'_i \hat{\beta}$ and $\tilde{e}_i = y_i = x'_i \hat{\beta}$ denote the residuals and $\hat{R}^2 = 1 - \hat{e}' \hat{e}/(y^*y^*)$ and $\tilde{R}^2 = 1 - \tilde{e}' \hat{e}/(y^*y^*)$ where $y = y - \overline{y}$ denote the equation R^2 . If the error e_i is truly heteroskedastic will \hat{R}^2 or \tilde{R}^2 be smaller?

3. Take the model

$$y_i = x'_{1i}\beta_1 + x'_{2i}\beta_2 + e_i$$
$$E(x_ie_i) = 0$$

where β_1 and β_2 are each $k \times 1$. How would you test the joint hypothesis that the ratio of each element of β_1 and β_2 is one? That is, if k = 1, $H_0: \beta_1/\beta_2 = 1$. Describe the test statistic and appropriate sampling distribution under the null.

4. In the regression/projection model

$$y_i = x'_i\beta + e_i$$
$$E(x_ie_i) = 0$$

the asymptotic distribution for $\hat{\beta}$ is largely determined by that of

$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n x_i e_i$$

Briefly, what is the asymptotic distribution of S_n ? (You do not need to re-derive it.)

Now draw n iid N(0,1) random variables u_i , i = 1, ..., n, independent of the sample. Define

$$S_n^* = \frac{1}{\sqrt{n}} \sum_{i=1}^n x_i e_i u_i.$$

What is the exact distribution of S_n^* , conditional on the sample? As $n \to \infty$, what is its asymptotic distribution?