
Kernel Density Estimation

Let X be a random variable with continuous distribution F (x) and density f(x) = d
dxF (x).

The goal is to estimate f(x). While F (x) can be estimated by the EDF F̂ (x), we cannot set
f̂(x) = d

dx F̂ (x) since F̂ (x) is a step function. The standard nonparametric method to estimate
f(x) is based on smoothing using a kernel.

While we are typically interested in estimating the entire function f(x), we can simply focus
on the problem where x is a specific fixed number, and then see how the method generalizes to
estimating the entire function. So consider x fixed.

Definition 1 K(u) is a kernel function ifK(u) = K(−u) (symmetric about zero), R∞−∞K(u)du =

1 and
R∞
−∞K(u)du = 0.

We will focus on the case where K(u) ≥ 0, so that K(u) is a symmetric density with zero
mean. When K(u) ≥ 0 it is called a second-order kernel and these are the most common used in
applications. The kernel will be used as a weighting function.

The most common choices are the Gaussian kernel
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the Epanechnikov kernel
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and the Biweight or Quartic kernel
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The most important choice is the bandwidth h > 0 which controls the amount of smoothing.
If h is large, there is a lot of smoothing, and if h is small there is less smoothing. Let
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Note that Kh(u) is a kernel function. If K(u) is a density, then so is Kh(u). The difference is that
the variance of Kh is that of K, multiplied by h2. So as h gets small, the density Kh concentrates
about its mean, zero.

Now consider the random variable

Yh = Kh (X − x)

where X is the original random variable, x is a fixed number, and h is a bandwidth. Yh has mean

EYh = EKh (X − x) =

Z
Kh (z − x) f(z)dz =

Z
Kh (uh) f(x+ hu)hdu =

Z
K (u) f(x+ hu)du

The second equality uses the change-of variables u = (z − x)/h which has Jacobian h. The last
expression shows that Y is an average of f(z) locally about x.



This integral (typically) is not analytically solvable, so we approximate it using a second order
Taylor expansion of f(x+ hu) in the argument hu about hu = 0, which is valid as h→ 0. Thus
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since
R
K (u) du = 1, and

R
K (u)udu = 0, with κ =

R
u2K (u) du, the variance of the kernel K(u).

While for any fixed h, EY 6= f(x), as h→ 0, EY → f(x). Thus we propose estimating f(x) by
the sample mean of the Yh using a “small” value of h. The sample value of Yh is Yi = Kh (Xi − x) ,
with sample average

f̂(x) =
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nX
i=1

Kh (Xi − x) .

The is the classic nonparametric kernel density estimator of the density f(x). It is the average of
a set of weights. If a large number of Xi are near x, then the weights are relatively large and f̂(x)
is larger. Conversely, if only a few Xi are near x, then the weights are small and f̂(x) is small.
The bandwidth h controls the meaning of “near”.

We derived f̂(x) as the estimator of f(x) for fixed x. But it also is the estimator of the entire
function. Interestingly, f̂(x) is a valid density when K(u) is a density. That is, since K(u) ≥ 0,
then f̂(x) ≥ 0 for all x, andZ
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where the second-to-last equality makes the change-of-variables u = (Xi − x)/h.
We can also calculate the moments of the density f̂(x). The mean isZ
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the sample mean of the Xi. Again we used the change-of-variables u = (Xi − x)/h. Note: this is
the mean of the density f̂(x), not the expectation Ef̂(x).



The second moment of the density isZ
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It follows that the variance of the density f̂(x) is
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Thus the variance of the estimated density is inflated by the factor hκ relative to the sample
moment.

We now explore the sampling properties of f̂(x). Specifically, we calculate the bias, variance
and MSE.

The bias is easy to calculate. We have

Ef̂(x) =
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so
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We see that the bias of f̂(x) at x depends on the second derivative f 00(x). The sharper the derivative,
the greater the bias. Intuitively, the estimator f̂(x) smooths data local to Xi = x, so is estimating
a smoothed version of f(x). The bias results from this smoothing, and is larger the greater the
curvature in f(x).

The integrated squared bias (a global measure of bias) isZ
Bias(x)2dx =

h4κ2R(f 00)
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is the Roughness of f 00 or f. It is called the roughness because it indexes the amount of wiggles
in f. Not surprisingly, the global bias is higher when the roughness is greater.

Furthermore, we can see that for any x and globally in x, the bias tends to zero as h tends
to zero. Thus for the bias to asymptotically disappear, h must go to zero as n → ∞. This is a
minimal requirement for consistent estimation.



We now examine the variance of f̂(x). Since it is an average of iid random variables, using first-
order Taylor approximations and the fact that n−1 is of smaller order than (nh)−1 when h→ 0 as
n→∞,
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The integrated variance isZ
V ar

³
f̂(x)

´
dx '

Z
f (x)R(K)

nh
dx =

R(K)

nh
.

We see that for fixed x or globally, the variance tends to zero if nh→∞ as n→∞.
Together, the asymptotic mean-squared error (AMSE) for fixed x is the sum of the approximate

squared bias and approximate variance

AMSEh(x) =
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and the mean integrated squared error (AMISE) is
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A sufficient condition for consistent estimation is that the MSE tends to zero as n → ∞. This
occurs iff h → 0 yet nh →∞ as n →∞. That is, h must tend to zero, but at a slower rate than
n−1.

Equation (1) is an asymptotic approximation to the MSE. We define the asymptotically optimal
bandwidth h0 as the value which minimizes this approximate MSE. That is,

h0 = argmin
h

AMISEh

It can be found by solving the first order condition
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This solution takes the form h0 = cn−1/5 where c is a function of K and f, but not of n. We
thus say that the optimal bandwidth is of order O(n−1/5). Note that this h declines to zero, but
at a very slow rate.

In practice, how should the bandwidth be selected? This is a difficult problem, and there is
a large and continuing literature on the subject. We see that the optimal choice is given in (2).
Since n is given, and K (and thus R(K) and κ) are selected by the researcher, all components are
known except R(f 00). The obvious trouble is that this is unknown, and could take any value!

A classic simple solution proposed by Silverman has come to be known as the “reference
bandwidth” or “Silverman’s Rule-of-Thumb.” It uses formula (2) but replacing the unknown f
with the N(0, σ̂2) distribution, where σ̂2 is an estimate of σ2. This choice for h gives an optimal
rule when f(x) is normal, and gives a nearly optimal rule when f(x) is close to normal. The
downside is that if the density is very far from normal, the rule-of-thumb h can be fairly inefficient.
Working through the integrals, the rule-of-thumb choice h is a simple function of n, depending on
the kernel K being used.

Gaussian Kernel: hrule = 1.06n−1/5

Epanechnikov Kernel: hrule = 2.34n−1/5

Biweight (Quartic) Kernel: hrule = 2.78n−1/5

Unless you delve more deeply into kernel estimation theory, my recommendation is to use the
rule-of-thumb bandwidth, perhaps adjusted by visual inspection of the resulting esitmate f̂(x).
While there are other approaches, the advantages and disadvantages are delicate. I now discuss
some of these choices. The plug-in approach is to estimate R(f 00) in a first step, and then plug
this estimate into the formula (2). This is more treacherous than may first appear, as the optimal
h for estimation of the roughness R(f 00) is quite different than the optimal h for estimation of f(x).
However, there are modern versions of this estimator which appear to work well. Another popular
choice for selection of h is known as cross-validation. This works by constructing an estimate of
the MISE using leave-one-out estimators. There are some desireable properties of cross-validation
bandwidths, but they are also known to converge very slowly to the optimal values. They are also
quite ill-behaved when the data has some discretization (as is common in economics), in which case
the cross-validation rule can sometimes selected very small bandwidths, leading to dramatically
undersmoothed estimates. Fortunately there are remedies, which are known as smoothed cross-
validation which is a close cousin of the bootstrap.

Computation
Typically, we calculate f̂(x) in order to have a graphical representation of the density function.

In this case, we start by defining a set of gridpoints {x1, ..., xg} where we will calculate f̂(x). Some
researchers set the gridpoints equal to the sample values. Others set a uniform grid between the
min and max of the data or a selected quantile. At each point xj, the density estimate

f̂(xj) =
1

n

nX
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Kh (Xi − xj)

is calculated. An easy way to do this is to write the computer code to loop across the xj, and then
compute f̂(xj) at each point by a simple sample average of the kernel weights. (This is not an
efficient computational algorithm, but ease of programming often outweighs numerical efficiency.)
Once these have been all calculated, the pairs {xj, f̂(xj)} can be plotted.


