Problem Set #4 Spring 2014

1.

(a) If

$$y_t = \beta_0 + \beta_1 Time_t + e_t$$

and $Time_n = 100$ for n = 100, which is 2013Q4 (quarterly data) . Suppose the estimated model is

$$\beta_0 = 0.51$$

 $\hat{\beta}_1 = 0.02$
 $\hat{\sigma}^2 = 16$

Construct point and nominal 90% interval forecasts (use the normal interval method) for 2014Q1, Q2, Q3 and Q4

- (b) Suppose for the y_t of the previous part, $y_t = \ln(Y_t)$. Construct point and 90% interval forecasts for Y_t in 2014Q4.
- 2. Let [L, U] be a reported 95% forecast interval for Y_{n+h} . What does this mean?
- 3. In the trend model

$$T_t = \beta_0 + \beta_1 Time_t$$

suppose $\beta_1 > 0$.

- (a) Does this mean that the series is expected to grow or decline in subsequent periods?
- (b) Does this mean that the series will grow with certainty in every period?
- 4. The STATA file "realgdp2013.dta" is on the course webpage. This contains quarterly observations on the major components of U.S. real GDP
 - gdp = real gdp
 - consumption = personal consumption expenditures
 - investment = gross private domestic investment
 - exports = exports of goods and services
 - imports = imports of goods and services
 - government = government consumption expenditures and gross investment

all variables are real reported in \$2009 chained dollars, for 1947Q1 through 2013Q4.

Take the imports series

- (a) Plot the data and determine if the series is better represented using a linear or exponential trend. If exponential, take natural logs of the series.
- (b) Fit your trend model to the time period 1947-2000.
- (c) Generate point and 90% interval forecasts for the level of imports for 2001-2013
- (d) Plot your forecasts against the actual. How did the forecast perform?
- (e) Now re-estimate using the full sample 1947-2009. Generate point and 90% interval forecasts for the level of imports 2014-2019