First Midterm Exam

- Thursday Feb 20 in class
 - Humanities 1101
- Gonzalez-Rivera, Chapters 1-4, 10.1
- Review book, lectures, problem sets
- Calculators allowed
- Mix of conceptual, interpretive, and computational problems. No questions from Silver's book or Stata code.

MA(1) Process

 The first-order moving average process, or MA(1) process, is

$$y_{t} = e_{t} + \theta e_{t-1}$$

where e_t is WN(0, σ^2)

Lag Operator Notation

Remember the lag operator L

$$Ly_t = y_{t-1}$$

We can write the MA(1) as

$$y_{t} = e_{t} + \theta e_{t-1}$$
$$= e_{t} + \theta L e_{t}$$
$$= (1 + \theta L)e_{t}$$

or

$$y_t = \theta(L)e_t$$

where $\theta(L)=1+\theta L$ is a function of the lag operator.

Inversion of an MA(1)

• We can write an MA(1) in terms of lagged y_t

$$y_t = e_t + \theta e_{t-1}$$

Rewrite as

$$e_{t} = y_{t} - \theta e_{t-1}$$

Then lag this equation one period

$$e_{t-1} = y_{t-1} - \theta e_{t-2}$$

Then combine

$$e_{t} = y_{t} - \theta e_{t-1}$$

$$= y_{t} - \theta (y_{t-1} - \theta e_{t-2})$$

$$= y_{t} - \theta y_{t-1} + \theta^{2} e_{t-2}$$

Inversion, Continued

Do this again

$$\begin{aligned} e_{t-2} &= y_{t-2} - \theta e_{t-3} \\ e_t &= y_t - \theta y_{t-1} + \theta^2 e_{t-2} \\ &= y_t - \theta y_{t-1} + \theta^2 (y_{t-2} - \theta e_{t-3}) \\ &= y_t - \theta y_{t-1} + \theta^2 y_{t-2} - \theta^3 e_{t-3} \end{aligned}$$

- Repeat to infinity $e_t = y_t \theta y_{t-1} + \theta^2 y_{t-2} \theta^3 y_{t-3} + \cdots$
- Then

$$y_{t} = \theta y_{t-1} - \theta^{2} y_{t-2} + \theta^{3} y_{t-3} + \dots + e_{t}$$
$$= -\sum_{i=1}^{\infty} (-\theta)^{i} y_{t-i} + e_{t}$$

Existence of Inverse

- This series converges (and the inversion exists) if $|\theta|$ <1.
- Recall the lag operator expression

$$y_t = (1 + \theta L)e_t$$

We can write this as

$$(1 + \theta L)^{-1} y_t = e_t$$

• This inversion is valid if $|\theta| < 1$

Inversion of Lag Polynomial

- What does this mean? $(1 + \theta L)^{-1} y_t = e_t$
- By taking a power series expansion (from calculus)

$$(1 + \theta L)^{-1} = 1 - \theta L + \theta^2 L^2 - \theta^3 L^3 + \cdots$$

- This expansion converges if $|\theta| < 1$
- Applying this expression

$$(1 + \theta L)^{-1} y_t = (1 - \theta L + \theta^2 L^2 - \theta^3 L^3 + \cdots) y_t$$
$$= y_t - \theta y_{t-1} + \theta^2 y_{t-2} - \theta^3 y_{t-3} + \cdots$$

as needed

Optimal Forecast

In the MA(1) model

$$y_t = e_t + \theta e_{t-1}$$

the optimal forecast is θe_{t-1} but the error is not directly observed.

One approach is to use the autoregressive representation

$$E(y_t \mid \Omega_{t-1}) = -\sum_{i=1}^{\infty} (-\theta)^i y_{t-i}$$

• But this is cumbersome.

Recursive Forecast for MA(1)

Another approach is to use the equation

$$e_t = y_t - \theta e_{t-1}$$

and realize that this gives a recursive formula to numerically compute the error

• Given θ , and given the initial condition e_0 =0

$$e_1 = y_1 - \theta e_0$$

 $e_2 = y_2 - \theta e_1$
:

- This gives a recursive formula to compute all the errors.
- The out-of-sample forecast is $y_{T+1/T} = \theta e_T$

MA(q) Process

 The moving average process of order q, or MA(q), is

$$y_{t} = e_{t} + \theta_{1}e_{t-1} + \theta_{2}e_{t-2} + \dots + \theta_{q}e_{t-q}$$

where e_t is WN(0, σ^2)

We can write the equation as

$$y_{t} = (1 + \theta_{1}L + \theta_{2}L^{2} + \dots + \theta_{q}L^{q})e_{t}$$
$$= \theta(L)e_{t}$$

where $\theta(L)$ is a q'th order polynomial in L

Autocorrelations

 The first q autocorrelations of a MA(q) are non-zero, the autocorrelations above q are zero

Wold's Theorem

 If y_t is a zero-mean covariance stationary process, then it can be written as an infinite order moving average, also known as a general linear process

$$y_{t} = \sum_{i=0}^{\infty} \theta_{i} e_{t-i}$$
$$= \theta(L) e_{t}$$

where e_t is WN(0, σ^2)

Linear Process

$$y_{t} = \sum_{i=0}^{\infty} \theta_{i} e_{t-i}$$
$$= \theta(L) e_{t}$$

- Normalization: θ_0 =1
- Square summability

$$\sum_{i=0}^{\infty} \theta_i^2 < \infty$$

Interpretation of Wold's Theorem

- There is a best linear approximation for y_t in terms of is past values
- MA(q) may be a useful approximation

Mean and Variance

Unconditional mean

$$E(y_t) = E(\sum_{i=0}^{\infty} \theta_i e_{t-i}) = 0$$

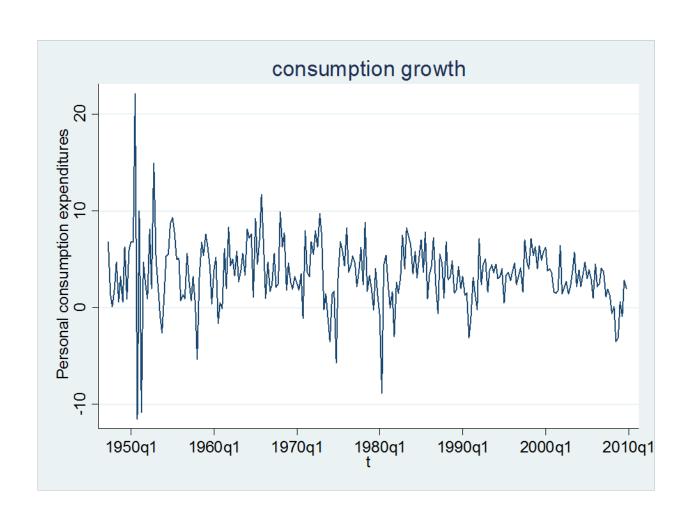
Unconditional variance

$$var(y_t) = var(\sum_{i=0}^{\infty} \theta_i e_{t-i})$$
$$= \left(\sum_{i=0}^{\infty} \theta_i^2\right) \sigma^2$$

Relevance of MA(q) Models

- MA(q) models help to build our understanding and intuition for serial dependence and autocorrelation
- But, not commonly used for forecasting
- To estimate in STATA, use command arima y, arima(0,0,q)

Quarterly Consumption Growth



MA(2) Estimates

. arima consumption, arima(0,0,2)

```
(setting optimization to BHHH)
               log\ likelihood = -669.82978
Iteration 0:
Iteration 1:
               log likelihood = -656.28924
               log likelihood = -653.50008
Iteration 2:
Iteration 3:
               log likelihood = -653.1981
               log likelihood = -653.08655
Iteration 4:
(switching optimization to BFGS)
Iteration 5:
               log likelihood = -653.05643
               log likelihood = -653.03835
Iteration 6:
              log likelihood = -653.03759
Iteration 7:
Iteration 8:
               log likelihood = -653.03758
```

ARIMA regression

Sample:	1947q2 - 2009q4	Number of obs	=	251
-	•	Wald chi2(2)	=	74.17
Log likelihood = -653.0376		Prob > chi2	=	0.0000

consumption	Coef.	OPG Std. Err.	Z	P> z	[95% Conf.	Interval]
consumption _cons	3.475522	.2940881	11.82	0.000	2.89912	4.051925
ARMA ma L1. L2.	.0241409 .3618992	.0409067 .045273	0.59 7.99	0.555 0.000	0560349 .2731657	.1043166 .4506327
/sigma	3.261838	.0830438	39.28	0.000	3.099075	3.424601