Schedule

- Tuesday Feb 18: Problem Set 4 due
 - Problem Set Answer key will be posted
 - Return Problem Sets 1-3
- Thursday Feb 20: Midterm Exam
 - Humanities 1101, 1pm
 - No Reading Reflection
- Tuesday Feb 25: First Project Report Due
 - No Problem Set
- Thursday Feb 27: Reading Reflection Ch 4

First Midterm Exam

- Thursday Feb 20 in class
- Gonzalez-Rivera, Chapters 1-4, 10.1
- Review book, lectures, problem sets
- Calculators allowed
- Mix of conceptual, interpretive, and computational problems. No questions from Silver's book.

First Project Report

- Due Tuesday Feb 25
- Requirements described on website
- Describe your variable(s)
 - Source, historical dates available
 - Which observations will you be forecasting out-of-sample?
 - Download the data, and present a time-series plot
- This is a preliminary proposal; you can change the series if desired

Estimation of Autocorrelations

The autocorrelation is a function of moments

$$\rho(k) = \frac{\text{cov}(Y_t, Y_{t-k})}{\text{var}(Y_t)}$$

$$= \frac{\gamma(k)}{\gamma(0)}$$

$$\text{cov}(Y_t, Y_{t-k}) = \gamma(k)$$

$$= E((Y_t - \mu)(Y_{t-k} - \mu))$$

$$\mu = EY_t$$

 We estimate by replacing the population moments by sample moments

Estimation

The population mean

$$\mu = EY_{t}$$

is estimated by the sample mean

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} Y_t$$

The population covariance

$$\gamma(k) = E((Y_t - \mu)(Y_{t-k} - \mu))$$

is estimated by the sample covariance

$$\hat{\gamma}(k) = \frac{1}{T} \sum_{t=k+1}^{T} (Y_t - \hat{\mu}) (Y_{t-k} - \hat{\mu})$$

Estimation

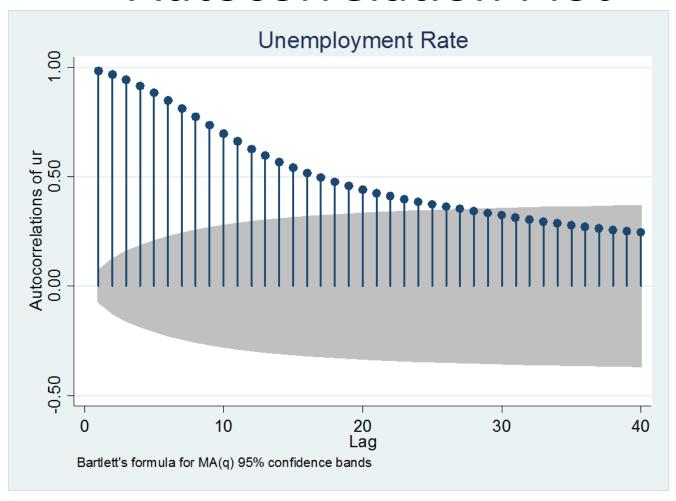
The population autocorrelation

$$\rho(k) = \frac{\gamma(k)}{\gamma(0)}$$

is estimated by the ratio of sample autocovariances

$$\hat{\rho}(k) = \frac{\hat{\gamma}(k)}{\hat{\gamma}(0)}$$

Autocorrelation Plot



ac ur
ac ur, title("Unemployment Rate")

Sampling Uncertainty

- The sample autocorrelations are estimates of the population autocorrelations, and are thus random.
- Just because the estimated autocorrelation is positive does not mean that the true autocorrelation is positive. The estimate contains sampling error.

Confidence Bands – White Noise Case

• If Y_t is independent white noise, then $\operatorname{var}(\hat{\rho}(k)) \approx \frac{1}{T}$

which means that the standard error is $1/T^{1/2}$

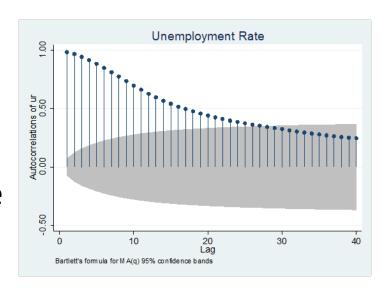
- Thus the sample values will lie in the region $[-2/T^{1/2}, 2/T^{1/2}]$ with 95% probability.
- Consequently, a common measure of uncertainty for sample autocorrelations is to plot $\pm 2/T^{1/2}$ confidence bands about zero.
- The interpretation is that if the sample autocorrelation is within the bands, it is not statistically different from zero.

Confidence Bands – Correlated Case

- The ± 2/T^{1/2} confidence bands are only valid if the true process is white noise
- In general, the confidence bands depend upon the actual autocorrelation.
- Bartlett worked out an approximation based on a moving average model

Bartlett Confidence Bands

- Suppose that the autocorrelations up to order k-1 are the estimated values, but the remaining autocorrelations (order k and above) are zero.
- The Bartlett confidence band is the 95% sampling interval for the estimated k'th autocorrelation
- STATA displays the Bartlett bands as the shaded region
- The interpretation is that if the estimated autocorrelation falls outside the shaded region, it is statistically different than zero.



Moving Average Processes

- Gonzalez-Rivera, Chapter 6
- These models are linear functions of stochastic errors

Innovations

- Time-series models are constructed as linear functions of fundamental forecasting errors e_t , also called **innovations** or **shocks**
- These basic building blocks satisfy
 - $-Ee_t=0$
 - $-\operatorname{var}(e_t) = \operatorname{E} e_t^2 = \sigma^2$
 - Serially uncorrelated
 - These errors e_t are called white noise
- In general, if you see an error e_t , it should be interpreted as white noise. We will write
 - $-e_t$ is WN(0, σ^2)

Unforecastable Innovations

- White noise processes are linearly unforecastable
- A stronger condition is unforecastable.
- The innovations e_t are **unforecastable** if
 - $\operatorname{E}(e_t | \Omega_{t-1}) = 0$
 - This means the best forecast is zero
- For some purposes, we will assume the errors are unforecastable

MA(1) Process

 The first-order moving average process, or MA(1) process, is

$$y_{t} = e_{t} + \theta e_{t-1}$$

where e_t is WN(0, σ^2)

- The MA coefficient θ controls the degree of serial correlation. It may be positive or negative.
- The innovations e_t impact y_t over two periods
 - An contemporaneous (same period) impact
 - A one-period delayed impact

Mean of MA(1)

• The unconditional mean of y_t is

$$E(y_t) = E(e_t + \theta e_{t-1})$$

$$= E(e_t) + \theta E(e_{t-1})$$

$$= 0$$

Variance of MA(1)

• The unconditional variance of y_t is

$$var(y_t) = var(e_t + \theta e_{t-1})$$

$$= var(e_t) + var(\theta e_{t-1}) + 2 cov(e_t, \theta e_{t-1})$$

$$= \sigma^2 + \theta^2 \sigma^2 + 0$$

$$= (1 + \theta^2)\sigma^2$$

• This is a function of both the innovation variance σ^2 and the MA coefficient θ .

Conditional Mean of MA(1)

• If the error is unforecastable $E(e_t | \Omega_{t-1}) = 0$ then the conditional mean of y_t is

$$\begin{split} E(y_{t} \mid \Omega_{t-1}) &= E(e_{t} + \theta e_{t-1} \mid \Omega_{t-1}) \\ &= E(e_{t} \mid \Omega_{t-1}) + \theta E(e_{t-1} \mid \Omega_{t-1}) \\ &= \theta e_{t-1} \end{split}$$

- This is the best forecast of y_t .
- The optimal forecast error is

$$y_{t} - E(y_{t} | \Omega_{t-1}) = (e_{t} + \theta e_{t-1}) - \theta e_{t-1}$$
$$= e_{t}$$

Conditional Variance of MA(1)

• The conditional variance of y_t is

$$var(y_t | \Omega_{t-1}) = var(y_t - E(y_t | \Omega_{t-1}) | \Omega_{t-1})$$

$$= var(e_t | \Omega_{t-1})$$

$$= \sigma^2$$

 The conditional variance, the forecast variance, and the innovation variance are all the same thing

Autocovariance of MA(1)

The first autocovariance is

$$\begin{split} \gamma(1) &= E(y_t y_{t-1}) \\ &= E \big((e_t + \theta e_{t-1}) (e_{t-1} + \theta e_{t-2}) \big) \\ &= E(e_t e_{t-1}) + \theta E(e_{t-1}^2) + \theta E(e_t e_{t-2}) + \theta^2 E(e_{t-1} e_{t-2}) \\ &= 0 + \theta E(e_{t-1}^2) + 0 + 0 \\ &= \theta \sigma^2 \end{split}$$

Autocovariance of MA(1)

• The autocovariance for k>1 are

$$\begin{split} \gamma(k) &= E(y_t y_{t-k}) \\ &= E \big((e_t + \theta e_{t-1}) (e_{t-k} + \theta e_{t-k-1}) \big) \\ &= E(e_t e_{t-k}) + \theta E(e_{t-1} e_{t-k}) + \theta E(e_t e_{t-k-1}) + \theta^2 E(e_{t-1} e_{t-k-1}) \\ &= 0 + 0 + 0 + 0 \\ &= 0 \end{split}$$

Thus the autocovariance function is zero for k>1

Autocorrelations of MA(1)

Since

$$\gamma(0) = \text{var}(y_t) = (1 + \theta^2)\sigma^2$$
$$\gamma(1) = \theta\sigma^2$$
$$\gamma(k) = 0, k \ge 2$$

then

$$\rho(1) = \frac{\theta \sigma^2}{(1+\theta^2)\sigma^2} = \frac{\theta}{1+\theta^2}$$

$$\rho(k) = 0, k \ge 2$$

 The autocorrelation function of an MA(1) is zero after the first lag.

First Autocorrelation

• The first autocorrelation has the same sign as θ

$$\rho(1) = \frac{\theta}{1 + \theta^2}$$

• As θ ranges from -1 to 1, $\rho(1)$ ranges from - ½ to ½

$$y_{t} = e_{t} + \theta e_{t-1}$$

Θ<0 : negative autocorration