Estimation Uncertainty

e The sample mean

1
b, :?tzﬂ: Yisn

is an estimate of B,=E(y,.,)
 The estimation error is
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Estimation Variance

e Under classical conditions,

2
var(b, )= %

where o’=var(e,)
* The standard error for b, is an estimate of the
standard deviation

~2
Sd(bo): O-?



Forecast Variance

When the sample mean b, is used as the
forecast for y,, then the prediction error is

Yrin — 0o =€r, + 5y —Dy
which is the sum of the forecast error e,,, and
the estimation uncertainty B,-b,.

The forecast variance is
Var(YTm B bo): Var(enh )"‘ Var(ﬂo - bo)



Standard Deviation of Forecast

The standard deviation of the forecast is the

estimate
1).

This is slightly larger than the regression standard
deviation &

Calculated in STATA after a regression using the
stdf option to the predict command:

predict s, stdf
This creates variable
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Normal Forecast Intervals

Let y.,, be a forecast fory,,,
The prediction erroris y .- V7.,
Let s.,, be the st. deviation of the forecast

If the prediction errors are normally distributed,
the (1-a)% forecast interval endpoints are

LT+h = Y10 TSrinlase

U= 9T+h T5rinligr2
where z,,, and z; , ,are the a/2 and 1-a /2
guantiles of the normal distribution

e.g. yr.,x1.64 s, for a 90% interval



. predict s, stdf

generate ypl=yp-1.645*s
(12 missing values generated)

generate yp2=yp+1l.645*s
(12 missing values generated)

tsline pce yp ypl yp2
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Out-of-Sample

generate pl=p-1.645*s
(266 missing values generated)

generate p2=p+1.645*s
(266 missing values generated)

tsline pce yp p Pl p2 if time>tg(2000g4)
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Mean Shifts

e Sometimes the mean of a series changes over
time

* |t can drift slowly, or change quickly
— Possibly due to a policy change

* In this case, forecasting based on a constant
mean model can be misleading



State and Local Government Spending
Percentage Growth Rate (Quarterly)

e Average for 1947-2013: 3.24%
e But this has not been typical in recent years.
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Alternatives

e Subsample estimation
— Estimate the mean on subsamples
— Forecasts are based on the most recent

e Dummy Variable formulation

E(yt+h | Qt): :Bo T :Bldt
d, =1(t > 7)

* T isthe breakdate
— The date when the mean shifts
— The coefficient B, is the mean before t=t
— The coefficient B, is the shift at t=t
— The sum B,+B; is the mean after t=t



Forecast

* Linear Regression y,,, ond,

e Example

— State and Local Government Percentage Growth
— Mean breaks in 197091 and 200291

. generate dl=(time>=tg(19704gl))
. generate d2=(time>=tg(2002gl))

. regress state dl 42

Source Ss df MS Number of obs = 266
F( 2, 263) = 37.97

Model 1153.92979 2 b576.9648895 Prob > F = 0.0000
Residual 3996.4187 263 15.1955084 R-squared = 0.2240
Adj R-squared = 0.2181

Total 5150.34849% 265 19.4352773 Root MSE = 3.8981
state Coef. std. Err. t P>|t| [95% Conf. Interval]

di -3.065908 .5345077 -5.74 0.000 -4.118367 -2.013449

d2 -2.837084 .6648486 -4.27 0.000 -4.146188 -1.527981

_cons 5.76044 .4086363 14.10 0.000 4.955825 6.565055




Fitted

e Qut-of-sample forecast falls from 3.2% to -0.14%!
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Should you use Mean Shifts?

Only after great hesitation and consideration.

Should use shifts and breaks reluctantly and with
care.

Do you have a model or explanation?

What is the forecasting power of a mean shift?

— If they have happened in the past, will there be more
in the future?

Yet, if there has been an obvious shift, a simple
constant mean model will forecast terribly.



How to Select Breakdates

e Judgmental
— Dates of known policy shifts
— Important events
— Economic crises
* |[nformal data-based
— Visual inspection

e Formal data-based
— Estimate regression for many possible breakdates
— Select one which minimizes sum of squared error
— This is the least-squares breakdate estimator



Trend Models

* Atrend modelis _
T, =g(Time,)

where Time, is the time index.

* In STATA, Time, is an integer sequence, normalized to
be zero at first observation of 1960.
e Most common models
— Linear Trend
— Exponential Trend
— Quadratic Trend
— Trends with Changing SLope



Warning:
Be skeptical of Trend Models

While in some cases, trend forecasting can be
useful.

In many cases, it can be hazardous.

We will examine some examples from another
textbook (Diebold: Elements of Forecasting)

They did not forecast well out of sample.

A constructive alternative is to forecast growth
rates, as we did for consumption expenditure.



Example 1
Labor Force Participation Rate

From BLS
Monthly, 1948-2009, Seasonally adjusted
Men and Women, ages 25+

Percentage of population in labor force
(employed plus unemployed divided by
population)

We will estimate on 1948-1992
Forecast 1993-2009
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Linear Trend Model

 The labor force participation rates have been
smoothly and linearly increasing (for women)
and smoothly and linearly decreasing (for
men) over 1948-1992

e This suggests a linear trend

T, = B, + p,Time,

* In this model, B, is the expected period-to-
period change in the trend T,



Example 2
Retail Sales, Current Dollars

From Census Bureau
Monthly, 1955-2001, seasonally adjusted

— This particular series discontinued after 2001
We will 1955-1991
Forecast 1992-current
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Quadratic Trends

 The retail sales series has been increasing
smoothly over 1955-1993, but not linearly.

* To model this we will use a quadratic trend
T. = B, + BTime, + B,Time;



Example 3
Transaction Volume, S&P Index

From Yahoo Finance
Weekly, 1950-current

We estimate on 1955-1993
Forecast 1994-2001



volume
1.0e+08 2.0e+08 3.0e+08 4.0e+08 5.0e+08

Transaction Volume

—— | Ayl

0
|

I T I I I
1950w1 1960w1 1970\{\11 1980w1 1990w1



Exponential Trend

 To model this we will use an exponential trend

Tt _ eﬂo + 4, Time,

* The exponential trend is linear after taking
(natural) logarithms

In(T,)= B, + BTime,

e This is typically estimated by a linear model after
taking logs of the variable to forecast
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* Inlogarithms, trend is roughly linear.



Exponential Trends

 Most economic series which are growing
(aggregate output, such as GDP, investment,
consumption) are exponentially increasing

— Percentage changes are stable in the long run
e These series cannot be fit by a linear trend

 We can fit a linear trend to their (natural)
logarithm



Linear Models

 The linear and quadratic trends are both linear
regression models of the form

Tt = ,Bo T /lelt
or
T, = By + Bk + PoXy
where
— X4, = Time,

- T 2
— X, = Time,



Example 4
Real GDP

From BEA
Quarterly, 1947-2009

We will estimate on 1947-1990, forecast 1991-
2009

Also use an exponential trend
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Ln(Real GDP)
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Linear Forecasting

The goal is to forecast future observations
given a linear function of observables

In the case of trend estimation, these
observables are functions of the time index

In other cases, they will be other functions of
the data

In the model T, =2, + 8

the forecast for y,,, is y,,,=b,+b,x, where
b,and b, are estimates



Estimation

How should we select b, and b, ?

The goal is to produce a forecast with low
mean square error (MSE)

The best linear forecast is the linear function
B,+B,x, that minimizes the MSE

E(yt+h_§lt+h )2 = E(yt+h_ﬂ0 - BX )2

We do not know the MSE, but we can
estimate it by a sample average



Sum of Squared Errors

Sample estimate of mean square error is the sum of
squared errors

n

Sn(ﬂO’IBl): %Z(th - B — X )2

t=1
The best linear forecast is the linear function B, +Bx,

that minimizes the MSE, or expected sum of squared
errors.

Our sample estimate of the best linear forecast is the
linear function which minimizes the (sample) sum of
squared errors.

This is called the least-squares estimator



Least Squares

* The least-squares estimates (b,,b,) are the

values which minimize the sum of squared
errors

n

Sn(ﬂO’IBl): %Z(th - B — X )2

t=1

* This produces estimates of the best linear

predictor — the linear function B,+Bx, that
minimizes the MSE



Multiple Regressors

e There are multiple regressors
Ty = By + BiXy + BoXy
 For example, the quadratic trend
T. = B, + B Time, + B,Time;

 The best linear predictor is the linear function
By+B X, +B,X,, that minimizes the MSE

E(yt+h_§/t+h )2 = E(yt+h_ﬁ0 _ﬂlxlt _IBZXZI )2



Multiple Regression

 The sample estimate of the best linear
predictor are the values (b,,b,,b,) which
minimize the sum of squared errors

,Bo /81 ﬂz = Z Yien — 181 1t IBZXZt )2

e |[n STATA, use the regress command



Example 1
Women’s Labor Force Participation Rate
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Regression Estimation

. use "C:\Users\Bruce Hansen\Documents\docs\classdocs\390\participation.dta"

regress women t if t<=tm(1992ml2)

Source SS df MS Number of obs = 540
FC 1, 538) =19575.55

Model 33879.9082 1 33879.9082 Prob > F = 0.0000
Residual 931.130559 538 1.73072595 R-squared = 0.9733
Adj R-squared = 0.9732

Total 34811.0387 539 64.5844874 Root MSE = 1.3156
women Coef. std. Err. t P>|t] [95% Conf. Interval]

t .0508126 .0003632 139.91 0.000 .0500992 .0515261

_cons 36.02153 .0726804 495.62 0.000 35.87876 36.1643
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Residuals

e Residuals are difference between data and
fitted regression line
ét = Yisn _Tt
= Yiun — 0 — B, TIMe,

. predict e if t<=tm(1992m12), residuals
(204 missing values generated)
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In-Sample Fit
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e Compute with predict command
e Fit looks good
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