Estimation Uncertainty

The sample mean

$$b_0 = \frac{1}{T} \sum_{t=1}^{T} y_{t+h}$$

is an estimate of $\beta_0 = E(y_{t+h})$

• The estimation error is

$$b_0 - \beta_0 = \frac{1}{T} \sum_{t=1}^{T} y_{t+h} - \beta_0$$

$$= \frac{1}{T} \sum_{t=1}^{T} (y_{t+h} - \beta_0)$$

$$= \frac{1}{T} \sum_{t=1}^{T} e_t$$

Estimation Variance

Under classical conditions,

$$\operatorname{var}(b_0) = \frac{\sigma^2}{T}$$

where $\sigma^2 = \text{var}(e_t)$

• The standard error for b_0 is an estimate of the standard deviation

$$sd(b_0) = \sqrt{\frac{\hat{\sigma}^2}{T}}$$

Forecast Variance

• When the sample mean b_0 is used as the forecast for y_{T+h} then the prediction error is

$$y_{T+h} - b_0 = e_{T+h} + \beta_0 - b_0$$

which is the sum of the forecast error e_{T+h} and the estimation uncertainty β_0 - b_0 .

The forecast variance is

$$\operatorname{var}(y_{T+h} - b_0) = \operatorname{var}(e_{T+h}) + \operatorname{var}(\beta_0 - b_0)$$
$$= \sigma^2 + \frac{\sigma^2}{T}$$
$$= \left(1 + \frac{1}{T}\right)\sigma^2$$

Standard Deviation of Forecast

The standard deviation of the forecast is the estimate

$$s_{T+h} = \sqrt{\left(1 + \frac{1}{T}\right)\hat{\sigma}^2}$$

- This is slightly larger than the regression standard deviation $\hat{\sigma}$
- Calculated in STATA after a regression using the stdf option to the predict command:
- predict s, stdf
- This creates variable "s"

Normal Forecast Intervals

- Let \hat{y}_{T+h} be a forecast for y_{T+h}
- The prediction error is y_{T+h} \hat{y}_{T+h}
- Let s_{T+h} be the st. deviation of the forecast
- If the prediction errors are normally distributed, the $(1-\alpha)\%$ forecast interval endpoints are

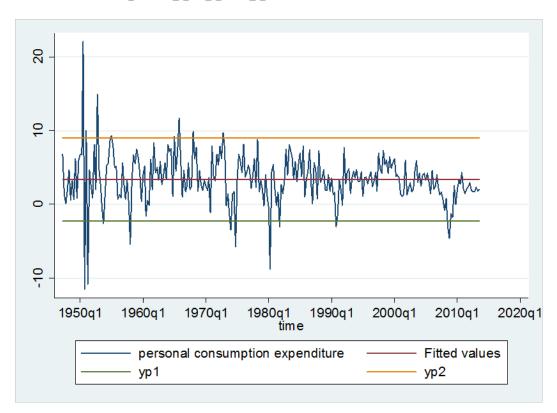
$$L_{T+h} = \hat{y}_{T+h} + s_{T+h} z_{\alpha/2}$$

$$U_{T+h} = \hat{y}_{T+h} + s_{T+h} z_{1-\alpha/2}$$

where $z_{\alpha/2}$ and $z_{1-\alpha/2}$ are the $\alpha/2$ and $1-\alpha/2$ quantiles of the normal distribution

• $e.g. \hat{y}_{T+h} \pm 1.64 s_{T+h}$ for a 90% interval

- . predict s, stdf
- . generate yp1=yp-1.645*s
 (12 missing values generated)
- . generate yp2=yp+1.645*s
 (12 missing values generated)
- . tsline pce yp yp1 yp2



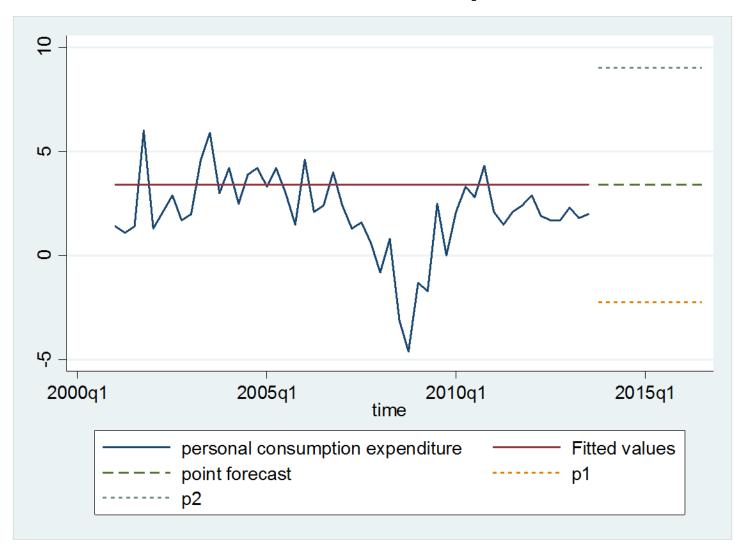
Out-of-Sample

```
. generate p1=p-1.645*s
(266 missing values generated)
```

```
. generate p2=p+1.645*s
(266 missing values generated)
```

. tsline pce yp p p1 p2 if time>tq(2000q4)

Out-of-Sample

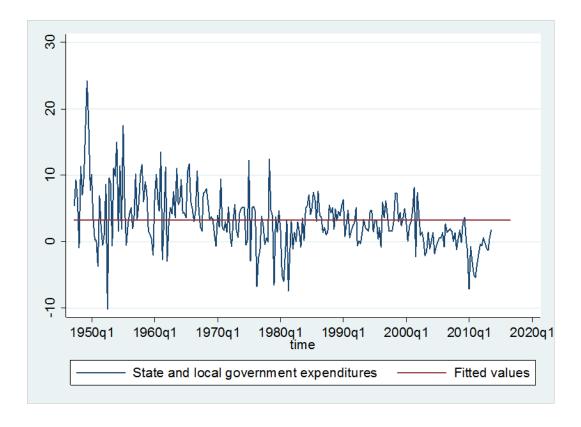


Mean Shifts

- Sometimes the mean of a series changes over time
- It can drift slowly, or change quickly
 - Possibly due to a policy change
- In this case, forecasting based on a constant mean model can be misleading

State and Local Government Spending Percentage Growth Rate (Quarterly)

- Average for 1947-2013: 3.24%
- But this has not been typical in recent years.



Alternatives

- Subsample estimation
 - Estimate the mean on subsamples
 - Forecasts are based on the most recent
- Dummy Variable formulation

$$E(y_{t+h} | \Omega_t) = \beta_0 + \beta_1 d_t$$
$$d_t = 1(t \ge \tau)$$

- τ is the breakdate
 - The date when the mean shifts
 - The coefficient β_0 is the mean before $t=\tau$
 - The coefficient β_1 is the shift at $t=\tau$
 - The sum $\beta_0 + \beta_1$ is the mean after $t=\tau$

Forecast

- Linear Regression y_{t+h} on d_t
- Example
 - State and Local Government Percentage Growth
 - Mean breaks in 1970q1 and 2002q1

```
. generate d1=(time>=tq(1970q1))
```

. generate d2=(time>=tq(2002q1))

-3.065908

-2.837084

5.76044

. regress state d1 d2

d1

d2

cons

Source	ss	df	MS		Number of obs =		266
Model Residual	1153.92979 3996.4187	2 263	576.964895 15.1955084		R-squared =	= =	
Total	5150.34849	265	19.4352773		Adj R-squared = Root MSE =		3.8981
state	Coef.	Std.	Err. t	P> t	[95% Conf.]	Int	erval]

-5.74

-4.27

14.10

0.000

0.000

0.000

-4.118367

-4.146188

4.955825

-2.013449

-1.527981

6.565055

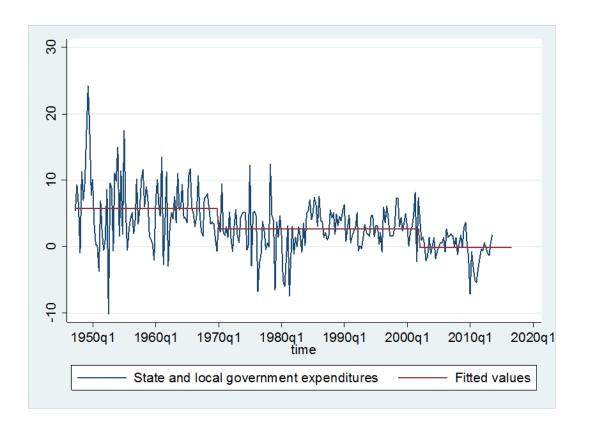
.5345077

.6648486

.4086363

Fitted

Out-of-sample forecast falls from 3.2% to -0.14%!



Should you use Mean Shifts?

- Only after great hesitation and consideration.
- Should use shifts and breaks reluctantly and with care.
- Do you have a model or explanation?
- What is the forecasting power of a mean shift?
 - If they have happened in the past, will there be more in the future?
- Yet, if there has been an obvious shift, a simple constant mean model will forecast terribly.

How to Select Breakdates

- Judgmental
 - Dates of known policy shifts
 - Important events
 - Economic crises
- Informal data-based
 - Visual inspection
- Formal data-based
 - Estimate regression for many possible breakdates
 - Select one which minimizes sum of squared error
 - This is the least-squares breakdate estimator

Trend Models

A trend model is

$$T_t = g(Time_t)$$

where $Time_t$ is the time index.

- In STATA, $Time_t$ is an integer sequence, normalized to be zero at first observation of 1960.
- Most common models
 - Linear Trend
 - Exponential Trend
 - Quadratic Trend
 - Trends with Changing SLope

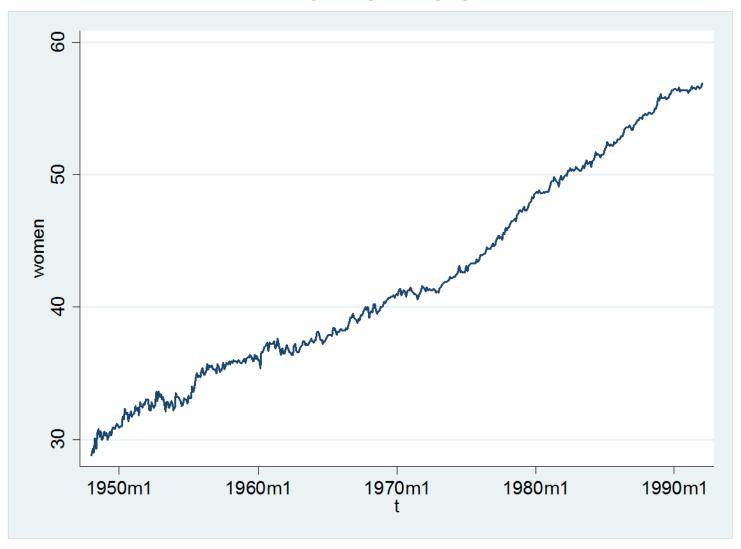
Warning: Be skeptical of Trend Models

- While in some cases, trend forecasting can be useful.
- In many cases, it can be hazardous.
- We will examine some examples from another textbook (Diebold: Elements of Forecasting)
- They did not forecast well out of sample.
- A constructive alternative is to forecast growth rates, as we did for consumption expenditure.

Example 1 Labor Force Participation Rate

- From BLS
- Monthly, 1948-2009, Seasonally adjusted
- Men and Women, ages 25+
- Percentage of population in labor force (employed plus unemployed divided by population)
- We will estimate on 1948-1992
- Forecast 1993-2009

Women's Labor Participation Rate 1948-1992



Men's Labor Participation Rate 1948-1992

Linear Trend Model

- The labor force participation rates have been smoothly and linearly increasing (for women) and smoothly and linearly decreasing (for men) over 1948-1992
- This suggests a linear trend

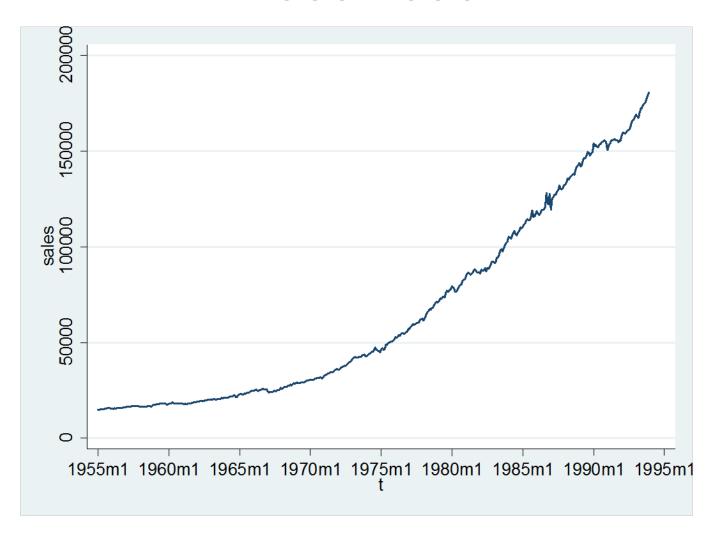
$$T_t = \beta_0 + \beta_1 Time_t$$

• In this model, β_1 is the expected period-toperiod change in the trend T_t

Example 2 Retail Sales, Current Dollars

- From Census Bureau
- Monthly, 1955-2001, seasonally adjusted
 - This particular series discontinued after 2001
- We will 1955-1991
- Forecast 1992-current

Retail Sales 1955-1993



Quadratic Trends

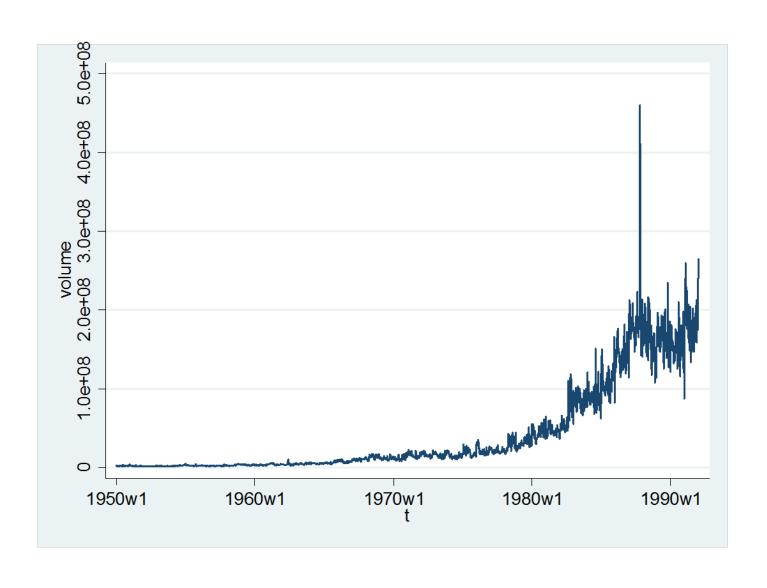
- The retail sales series has been increasing smoothly over 1955-1993, but not linearly.
- To model this we will use a quadratic trend

$$T_t = \beta_0 + \beta_1 Time_t + \beta_2 Time_t^2$$

Example 3 Transaction Volume, S&P Index

- From Yahoo Finance
- Weekly, 1950-current
- We estimate on 1955-1993
- Forecast 1994-2001

Transaction Volume



Exponential Trend

To model this we will use an exponential trend

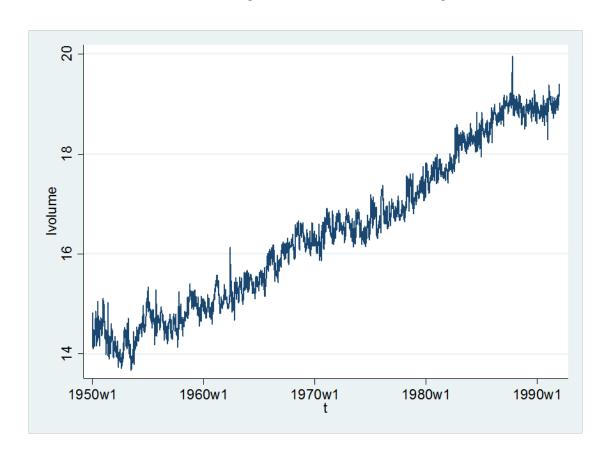
$$T_{t} = e^{\beta_0 + \beta_1 Time_t}$$

 The exponential trend is linear after taking (natural) logarithms

$$\ln(T_t) = \beta_0 + \beta_1 Time_t$$

 This is typically estimated by a linear model after taking logs of the variable to forecast

Ln(Volume)



In logarithms, trend is roughly linear.

Exponential Trends

- Most economic series which are growing (aggregate output, such as GDP, investment, consumption) are exponentially increasing
 - Percentage changes are stable in the long run
- These series cannot be fit by a linear trend
- We can fit a linear trend to their (natural) logarithm

Linear Models

 The linear and quadratic trends are both linear regression models of the form

$$T_t = \beta_0 + \beta_1 x_{1t}$$

or

$$T_{t} = \beta_{0} + \beta_{1} x_{1t} + \beta_{2} x_{2t}$$

where

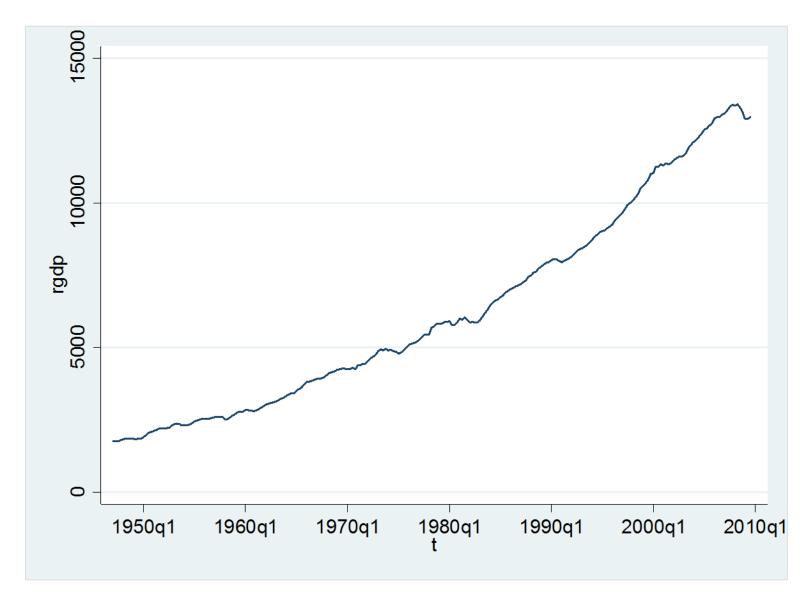
$$-x_{1t} = Time_t$$

$$-x_{2t} = Time_t^2$$

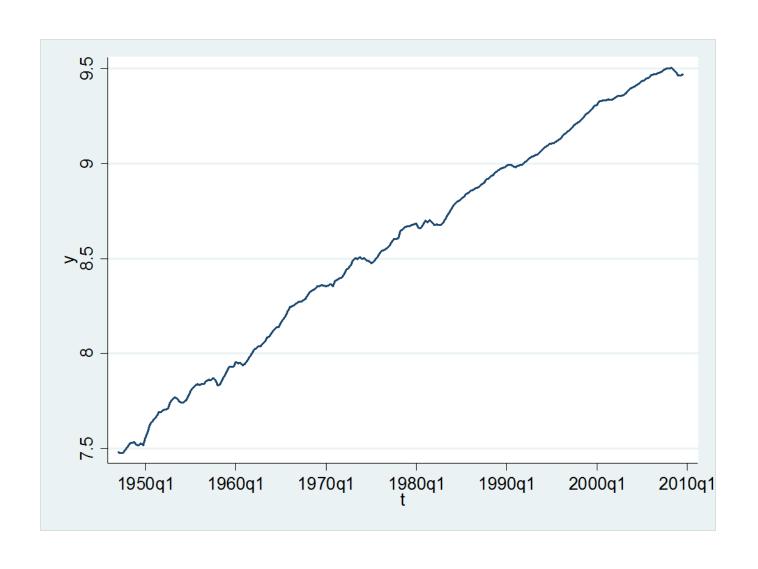
Example 4 Real GDP

- From BEA
- Quarterly, 1947-2009
- We will estimate on 1947-1990, forecast 1991-2009
- Also use an exponential trend

Real GDP



Ln(Real GDP)



Linear Forecasting

- The goal is to forecast future observations given a linear function of observables
- In the case of trend estimation, these observables are functions of the time index
- In other cases, they will be other functions of the data
- In the model $T_t = \beta_0 + \beta_1 x_t$ the forecast for y_{t+h} is $\hat{y}_{t+h} = b_0 + b_1 x_t$ where b_0 and b_1 are estimates

Estimation

- How should we select b_0 and b_1 ?
- The goal is to produce a forecast with low mean square error (MSE)
- The best linear forecast is the linear function $\beta_0 + \beta_1 x_t$ that minimizes the MSE

$$E(y_{t+h} - \hat{y}_{t+h})^2 = E(y_{t+h} - \beta_0 - \beta_1 x_t)^2$$

 We do not know the MSE, but we can estimate it by a sample average

Sum of Squared Errors

Sample estimate of mean square error is the sum of squared errors

$$S_n(\beta_0, \beta_1) = \frac{1}{n} \sum_{t=1}^n (y_{t+h} - \beta_0 - \beta_1 x_t)^2$$

- The best linear forecast is the linear function $\beta_0 + \beta_1 x_t$ that minimizes the MSE, or expected sum of squared errors.
- Our sample estimate of the best linear forecast is the linear function which minimizes the (sample) sum of squared errors.
- This is called the least-squares estimator

Least Squares

• The least-squares estimates (b_0, b_1) are the values which minimize the sum of squared errors

$$S_n(\beta_0, \beta_1) = \frac{1}{n} \sum_{t=1}^n (y_{t+h} - \beta_0 - \beta_1 x_t)^2$$

• This produces estimates of the best linear predictor – the linear function $\beta_0 + \beta_1 x_t$ that minimizes the MSE

Multiple Regressors

There are multiple regressors

$$T_{t} = \beta_{0} + \beta_{1} x_{1t} + \beta_{2} x_{2t}$$

For example, the quadratic trend

$$T_{t} = \beta_{0} + \beta_{1} Time_{t} + \beta_{2} Time_{t}^{2}$$

• The best linear predictor is the linear function $\beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t}$ that minimizes the MSE

$$E(y_{t+h} - \hat{y}_{t+h})^2 = E(y_{t+h} - \beta_0 - \beta_1 x_{1t} - \beta_2 x_{2t})^2$$

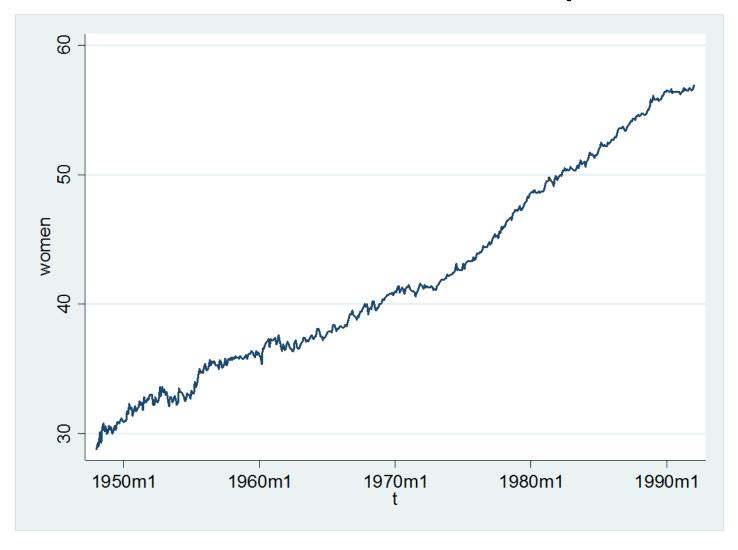
Multiple Regression

• The sample estimate of the best linear predictor are the values (b_0, b_1, b_2) which minimize the sum of squared errors

$$S_n(\beta_0, \beta_1, \beta_2) = \frac{1}{n} \sum_{t=1}^n (y_{t+h} - \beta_0 - \beta_1 x_{1t} - \beta_2 x_{2t})^2$$

• In STATA, use the regress command

Example 1 Women's Labor Force Participation Rate

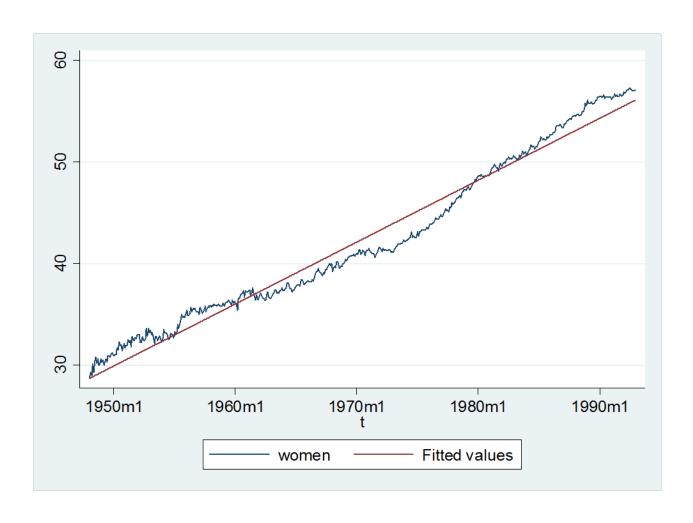


Regression Estimation

- . use "C:\Users\Bruce Hansen\Documents\docs\classdocs\390\participation.dta"
- . regress women t if t <= tm(1992m12)

Number of obs = 540 F(1, 538) =19575.55				df	SS	Source
Prob > F = 0.0000 R-squared = 0.9733 Adj R-squared = 0.9732		79.9082 3072595		1 538	33879.9082 931.130559	Model Residual
Root MSE = 1.3156		5844874	64.5	539	34811.0387	Total
[95% Conf. Interval]	P> t	t	Err.	Std.	Coef.	women
.0500992 .0515261 35.87876 36.1643	0.000	139.91 495.62		.0003	.0508126 36.02153	t

In-Sample Fit



Residuals

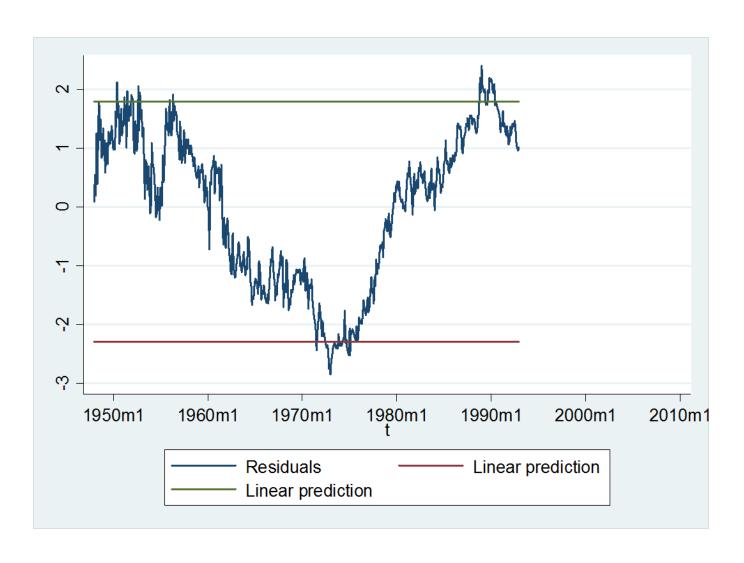
 Residuals are difference between data and fitted regression line

$$\hat{e}_{t} = y_{t+h} - T_{t}$$

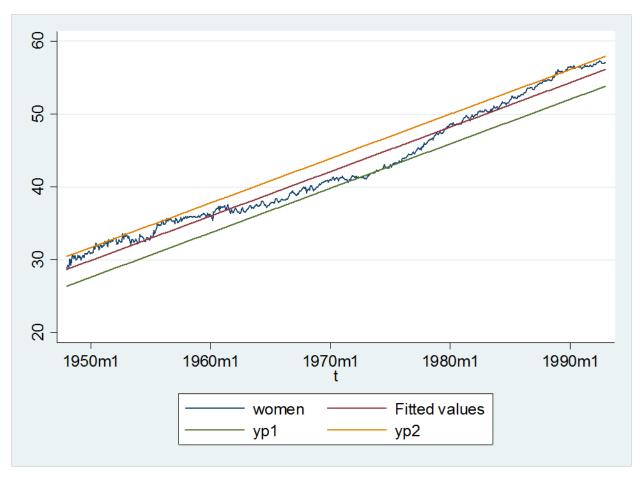
$$= y_{t+h} - b_{0} - b_{1}Time_{t}$$

. predict e if t<=tm(1992m12), residuals
(204 missing values generated)</pre>

Residual Plot



In-Sample Fit



- Compute with predict command
- Fit looks good