Threshold Autoregressions

and
NonLinear Autoregressions

Original Presentation: Central Bank of Chile
October 29-31, 2013

Bruce Hansen (University of Wisconsin) Threshold Regression 1/ 47



Threshold Models

A type of nonlinear time series models
Strong nonlinearity

Allows for switching effects

Most typically univariate (for simplicity)
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Threshold Models

@ Threshold Variable g;

> gt = 100(log(GDP;) — log(GDP;_4)) = annual growth
@ Threshold -y
@ Split regression

> Coefficients switch if g: <y or g+ > ¢
> If growth has been above or below the threshold

Yer1 = PBixel(qe <) + Boxel (g > ) + ee1

{ ﬁ:lxt + e qr <7y
Box: + e qr > 7y
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Partial Threshold Model

Yer1 = Boze + Bixel (qr < 77) + Boxel (qe > 77) + er i1

o Coefficients on z; do not switch

@ More parsimonious
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Estimation

Yer1 = Boze + Bixel (qe < ) + Boxel (g > ) + erv1

@ Least Squares (Eoﬁpﬁzl ) minimize sum-of-squared errors
e Equation is non-linear, so NLLS, not OLS
@ Simple to compute by concentration method

Given 7y, model is linear in B

Regressors are z¢, x¢1(gr < ) and x¢1 (gt > )

Estimate by least-squares

Save residuals, sum of squared errors

Repeat for all thresholds 7. Find value which minimizes SSE

Yy VvV VvV VY
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Estimation Details

@ For a grid on 7 (can use sample values of q;)

v

Define dummy variables di:(y) =1 (gr <) and dat(y) = 1(qr > 7)
Define interaction variables x1:(7) = x¢d1+(7y) and xo¢(77) = xedar(7y)
Regress yr+1 on z¢, x1¢(7), X2t (7)

v

v

~/ ~/ -~/
Yev1 = Bozt + Brx1e(7) + Boxae(7) + 41(7)

Sum of squared errors

v

n

S() :Z

v

Write this explicity as a function of 7y as the estimates, residuals and
SSE vary with

e Find 4 which minimizes S(7)
» Useful to view plot of S(1y) against ¢

~ o~

e Given 4, repeat above steps to find estimates (BO, B1. B,)
@ Forecasts made from fitted model
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Example: GDP Forecasting Equation

e g: = 100(log(GDP;) — log(GDP;_4)) = annual growth
@ Threshold estimate: 4 = 0.18

» Splits regression depend if past year's growth is above or below 0.18%
~ 0%
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Confidence Interval Construction for Threshold
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Likelihood Ratio Sequence in ¥

LRy (7)
— — 90% Critical
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Threshold Variable: Q
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Multi-Step Forecasts

@ Nonlinear models (including threshold models) do not have simple
iteration method for multi-step forecasts

@ Option 1: Specify direct threshold model
@ Option 2: lterate one-step threshold model by simulation:
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Multi-Step Simulation Method

@ Take fitted model

~/ ~/ -~/
Vi1 = Boze + B1xel (g < 4) + Boxe1 (qe > %) + &1

. o o : A A
Draw iid errors &;, ..., &, from the residuals {&y, ..., &}

Create y; . 1(b), yjin(b), ..., yi, »(b) forward by simulation
b indexes the simulation run

Repeat B times (a large number)

{yiis(b) : b=1, ..., B} constitute an iid sample from the forecast
distribution for y,.p

1
> Point forecast f,, p = B ZE:l Ynin(b)

> Interval forecast: a and 1 — a quantiles of y; , (b)
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Testing for a Threshold

@ Null hypothesis: No threshold (linearity)
@ Null Model: No threshold

-~/ -~/
Yiv1 = Pzt + Bixe + i1
n

S = Z é1.?+1

t=1
@ Alternative: Single Threshold
-~/ -~/ -~/ ~
Yerr = Boze + Brxie(y) + Byxae(7) + &1 (7)
n

Si(y) = Zér+1(7)2
S1 = S1(%) =min S ()
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NonStandard Testing

Test is non-standard.
Similar to Structural Change Tests
Examine all tests for each fixed threshold

critical values & p-values obtained by simulation or bootstrap

Plot sequence of tests; Reject if time plot exceeds critical value
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Example: GDP Forecasting Equation

e g: = 100(log(GDP;) — log(GDP;_4)) = annual growth
@ Bootstrap p-value for threshold effect: 10.6%
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Reject Linearity if F Sequence Exceeds Critical Value

F Test For Threshold

18

(
12

T

— — 957% Critical

Fn(7)
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Inference in Threshold Models

Threshold estimate has nonstandard distribution

Confidence intervals by inverting statistic constructed from

sum-of-squares
LR(y) =n (.51(7;1— 51)

Theory: [Hansen, 2000] LR(7y) —q4 ¢

Critical values:

P(Z<c) 080 .90 .95 .99
c 450 594 735 10.59
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Confidence Intervals for Threshold

@ All v such that LR(y) < c where c is critical value
o Easy to see in graph of LR(7y) against 7y
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Confidence Interval Construction for Threshold
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Threshold Estimates

o Estimate: 4 = 0.18
e Confidence Interval = [—1.0, 2.2]
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Inference on Slope Parameters

@ Conventional

@ As if threshold is known
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Threshold Model Estimates

g+ = 100(log(GDP;) — log(GDP;_4))

q: <018 g, >0.18

Intercept -10.3 (4.6) -0.23 (1.11)
Alog(GDP;) 0.36 (0.21) 0.16 (0.08)
Alog(GDP;_1) -0.22 (0.21) 0.20 (0.09)
Spread; 1.3(0.8) 0.71 (0.20)

Default Spread;  -0.22 (1.26) -2.3 (0.9)
Housing Starts; 2.5 (10.6) 4.1 (2.3)
Building Permits; 7.8 (10.5) -2.2 (2.0)
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NonParametric/NonLinear Autoregression
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NonParametric/NonLinear Time Series Regression

o Model

Vir1 = & (Xe)+ et
E (et+1|Xt) =0

@ Xt = (}/t—ly}/t—2| ---.}/t—p)
@ or any other variables

@ g (x¢) is arbitrary non-linear function
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Additively Separable Model

@ Xy = (X]_t, ---1Xpt)

g (x:) = g1(x1t) + g2(xat) + - + gp(Xpt)

Then
Vi1 = g1(x1t) + & (x0e) + - - - + 8o (Xpt) + €141

@ Greatly reduces degree of nonlinearity
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Partially Linear Model

e Partition x; = (x1¢, X2¢)

g (xt) = g1(x1e) + B'xoe

@ X1 main variables of importance

@ For example, if primary dependence through first lag

Yt+1 = 81 ()/t) +Byi1 -+ ,prt—p + €rt1
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Sieve Models

@ Approximate g(x) by a sequence gn(x), m = 1,2, ..., of increasing
complexity

@ Linear sieves
gm(x) = Zn(x)'B,,
where Z,,(x) = (zim(x), ..., zkm(x)) are nonlinear functions of x.
o “Series”: Zn(x) = (z1(x), ..., zx (x))

o “Sieves”: Zy(x) = (zim(x), ..., Zkm(x))
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Polynomial (power series)

o zi(x)=x ,
gm(x) = ;:Bjxj

@ Stone-Weierstrass Theorem: Any continuous function g(x) can be
arbitrarily well approximated on a compact set by a polynomial of
sufficiently high order

> For any £ > 0 there exists coefficients p and §; such that X
sup |gm(x) —g(x)[ <e¢
xekX

@ Runge's phenomenon:

» Polynomials can be poor at interpolation (can be erratic)
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Splines

@ Piecewise smooth polynomials
@ Join points are called knots

@ Linear spline with one knot at T

Boo + Bor (x — T) x<T
8m (X) =
Bro+ By (x—7T) X2>T
@ To enforce continuity, 1300 = 1310'

gn(x) =By + B (x—T) + B (x—T)L(x > 1)

or equivalently

gm(x) = By +Pyx+ B, (x—T)1(x > 7)
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Quadratic Spline with One Knot

,300+ﬁ01(X—T)+.502(X—T)2 x<T
gm(x) = 2
Bio t B (x—7T) + B (x—71) xX>T

e Continuous if By, = By,
@ Continuous first derivative if ,301 = By

@ Imposing these constraints

8m(x) =B+ Bix+ X + B3 (x = 7)°1(x > 7).
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Cubic Spline with One Knot

8m(x) = By + Byx + BoxX* + B3 + B, (x = 1)° 1 (x > 1)
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General Case

o Knotsat 11 < 1o < -+ < Ty

P R
gm(x) = Py + ; IngJ + l;lﬁpﬂ (x = T)? 1 (x > 1¢)
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Uniform Approximation

@ Stone-Weierstrass Theorem: Any continuous function g(x) can be
arbitrarily well approximated on a compact set by a polynomial of
sufficiently high order

» For any & > 0 there exists coefficients p and ﬁj such that X

sup [gm(x) —g(x)| < e
xeX

@ Strengthened Form:

> if the s'th derivative of g(x) is continuous then the uniform
approximation error satisfies

sup |gn(x) —g(x)] = O (Kn®)

where K, is the number of terms in gn,(x)
@ This holds for polynomials and splines
@ Runge's phenomenon:
> Polynomials can be poor at interpolation (can be erratic)
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[llustration

o g(x) = xM4(1 - x)1/?
@ Polynomials of order K =3, K =4, and K =6

@ Cubic splines are quite similar
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Runge's Phenomenon
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Placement of Knots

o If support of x is [0, 1], typical to set 7; = j/(N + 1)

o If support of x is [a, b], canset Tj =a+ (b—a)/(N+1)

o Alternatively, can set T; to equal the j/(n+ 1) quantile of the
distribution of x
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Estimation

Fix number and location of knots

Estimate coefficients by least-squares

Quadratic spline
& 2
Y = Bo+ Bix+ By + Y B (x—TW) L (x> 1) Fe
k=1

o Linear model in x, x2, (x = T1)° 1 (x > T1), ..., (x — Tn)? 1 (x > Tp)
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Selection of Number of Knots

@ Model selection
@ Pick N to minimize AIC

> Or a similar criterion known as Cross-Validation (CV)
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Example: GDP Growth

y+ =GDP Growth

x; =Housing Starts

Partially Linear Model

Yer1 = &(Xe) + Byye—1 + Boye—2 + erq1

Polynomial
Cubic Spline
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Model Selection

Polynomial in Housing Starts

p 1 2 3 4 5 6
CV 104 105 106 9.9 10.0 10.0

Cubic Spline in Housing Starts

N 1 2 3 4 5 6
CV 997 10.0 10.0 10.0 10.1 10.2

Best fitting regression is quartic polynomial (p = 4)
Cubic spline with 1 knot is close
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Polynomial=solid line
Cubic Spline=dashed line

GDP Growth as a Nonparametric Function of Housing Starts
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Estimated Cubic Spline

Knot=1.5

Intercept
Ayt
Ayt
HS?
HS?

(HS; —1.5)%1(HS, > 1.5)
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New Example: Long and Short Rates

Bi-variate model of Long (10-year) and short (3-month) bond rates
Key variable: Spread: Long-Short

R: =Long Rate

r: =Short Rate

Z: = R, — r; =Spread

Model

ARt+1 = “0+DCPI(L)ARt+‘Bp1(L)Art+g1(Zt) +elt
Arev1 = Yo+ 7, (L)AR: +6p, (L)Are + g2(Z¢) + €2
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Model Selection

@ Separately for each equation

» Long Rate and Short Rate
» Select over number of lags
» Number of spline terms for nonlinearity in Spread
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CV Selection: Long Rate Equation

p=0 p=1 p=2 p=3 p=4 p=5 p=

Linear .0844 0782 .0760 .0757 .0757 .0766 .0736
Quadratic .0846 .0781 .0763 .0760 .0760 .0767 .0742
Cubic .0813 .0794 .0775 .0772 .0771 .0779 .0748

1 Knot .0821 .0758 .0741 .0739 .0739 .0746 .0719
2 Knots .0820 .0767 .0750 .0747 .0747 0754 0724
3 Knots .0828 .0774 .0758 .0755 .0755 .0762 .0730

Selected Model: p = 6, Cubic spline with 1 knot at 1.53
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CV Selection: Short Rate Equation

p=0 p=1
Linear .206 .183
Quadratic  .203 .178
Cubic .200 .16979
1 Knot .198 16977
2 Knots  .200 172

3 Knots .201

Selected Model: p = 1, Cubic spline with 1 knot at 1.53
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Long and Short Rate as a function of Spread
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Forecasting

For h > 1, need to use forecast simulation

Simulate Rp41, ra+1 forward using iid draws from residuals
Create time paths

Take means to estimate point forecasts

Take quantiles to construct forecast intervals
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