Threshold Autoregressions and NonLinear Autoregressions

Original Presentation: Central Bank of Chile October 29-31, 2013

Threshold Models

- A type of nonlinear time series models
- Strong nonlinearity
- Allows for switching effects
- Most typically univariate (for simplicity)

< 3 > < 3 >

Threshold Models

- Threshold Variable q_t
 - ▶ $q_t = 100(\log(GDP_t) \log(GDP_{t-4})) = \text{annual growth}$
- Threshold γ
- Split regression
 - Coefficients switch if $q_t \leq \gamma$ or $q_t > \gamma$
 - If growth has been above or below the threshold

$$\begin{array}{ll} y_{t+1} & = & \boldsymbol{\beta}_1' \mathbf{x}_t \mathbf{1} \left(q_t \leq \gamma \right) + \boldsymbol{\beta}_2' \mathbf{x}_t \mathbf{1} \left(q_t > \gamma \right) + \boldsymbol{e}_{t+1} \\ & = & \left\{ \begin{array}{ll} \boldsymbol{\beta}_1' \mathbf{x}_t + \boldsymbol{e}_t & q_t \leq \gamma \\ \boldsymbol{\beta}_2' \mathbf{x}_t + \boldsymbol{e}_t & q_t > \gamma \end{array} \right. \end{array}$$

通 ト イヨ ト イヨ ト

Partial Threshold Model

$$y_{t+1} = \boldsymbol{\beta}_0' \mathbf{z}_t + \boldsymbol{\beta}_1' \mathbf{x}_t \mathbf{1} (q_t \leq \gamma) + \boldsymbol{\beta}_2' \mathbf{x}_t \mathbf{1} (q_t > \gamma) + \boldsymbol{e}_{t+1}$$

- Coefficients on **z**_t do not switch
- More parsimonious

• • = • • = •

Estimation

 $y_{t+1} = \boldsymbol{\beta}_0' \mathbf{z}_t + \boldsymbol{\beta}_1' \mathbf{x}_t \mathbf{1} \left(q_t \leq \gamma \right) + \boldsymbol{\beta}_2' \mathbf{x}_t \mathbf{1} \left(q_t > \gamma \right) + \boldsymbol{e}_{t+1}$

- Least Squares $(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2, \widehat{\gamma})$ minimize sum-of-squared errors
- Equation is non-linear, so NLLS, not OLS
- Simple to compute by concentration method
 - Given γ , model is linear in β
 - Regressors are \mathbf{z}_t , $\mathbf{x}_t \mathbf{1} (q_t \leq \gamma)$ and $\mathbf{x}_t \mathbf{1} (q_t > \gamma)$
 - Estimate by least-squares
 - Save residuals, sum of squared errors
 - Repeat for all thresholds γ . Find value which minimizes SSE

イロト 不得下 イヨト イヨト 二日

Estimation Details

• For a grid on γ (can use sample values of q_t)

- Define dummy variables $d_{1t}(\gamma) = 1 (q_t \leq \gamma)$ and $d_{2t}(\gamma) = 1 (q_t > \gamma)$
- Define interaction variables $\mathbf{x}_{1t}(\gamma) = \mathbf{x}_t d_{1t}(\gamma)$ and $\mathbf{x}_{2t}(\gamma) = \mathbf{x}_t d_{2t}(\gamma)$
- Regress y_{t+1} on \mathbf{z}_t , $\mathbf{x}_{1t}(\gamma)$, $\mathbf{x}_{2t}(\gamma)$

$$\mathbf{y}_{t+1} = \widehat{\boldsymbol{\beta}}_0' \mathbf{z}_t + \widehat{\boldsymbol{\beta}}_1' \mathbf{x}_{1t}(\gamma) + \widehat{\boldsymbol{\beta}}_2' \mathbf{x}_{2t}(\gamma) + \widehat{\mathbf{e}}_{t+1}(\gamma)$$

Sum of squared errors

$$S(\gamma) = \sum_{t=1}^{n} \hat{\mathbf{e}}_{t+1}(\gamma)^2$$

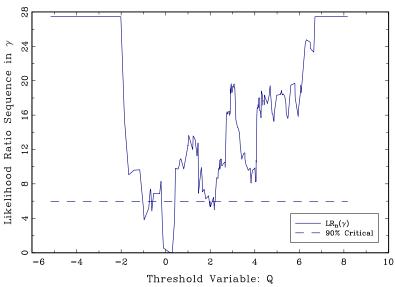
- \blacktriangleright Write this explicity as a function of γ as the estimates, residuals and SSE vary with γ
- Find $\hat{\gamma}$ which minimizes $S(\gamma)$
 - Useful to view plot of $S(\gamma)$ against γ
- Given $\hat{\gamma}$, repeat above steps to find estimates $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$
- Forecasts made from fitted model

イロト 不得下 イヨト イヨト 二日

Example: GDP Forecasting Equation

- $q_t = 100(\log(\textit{GDP}_t) \log(\textit{GDP}_{t-4})) = \text{annual growth}$
- Threshold estimate: $\hat{\gamma}=0.18$
 - \blacktriangleright Splits regression depend if past year's growth is above or below 0.18% $\approx 0\%$

ヘロト 人間 とくほ とくほ とう



Confidence Interval Construction for Threshold

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multi-Step Forecasts

- Nonlinear models (including threshold models) do not have simple iteration method for multi-step forecasts
- Option 1: Specify direct threshold model
- Option 2: Iterate one-step threshold model by simulation:

Multi-Step Simulation Method

Take fitted model

$$y_{t+1} = \widehat{\boldsymbol{\beta}}_0' \mathbf{z}_t + \widehat{\boldsymbol{\beta}}_1' \mathbf{x}_t \mathbf{1} \left(q_t \leq \widehat{\gamma} \right) + \widehat{\boldsymbol{\beta}}_2' \mathbf{x}_t \mathbf{1} \left(q_t > \widehat{\gamma} \right) + \hat{\mathbf{e}}_{t+1}$$

- Draw iid errors $\hat{e}^*_{n+1},...,\hat{e}^*_{n+h}$ from the residuals $\{\hat{e}_1,...,\hat{e}_n\}$
- Create $y_{n+1}^*(b), y_{n+2}^*(b), ..., y_{n+h}^*(b)$ forward by simulation
- b indexes the simulation run
- Repeat B times (a large number)
- $\{y_{n+h}^*(b) : b = 1, ..., B\}$ constitute an iid sample from the forecast distribution for y_{n+h}
 - Point forecast $f_{n+h} = \frac{1}{B} \sum_{b=1}^{B} y_{n+h}^{*}(b)$
 - Interval forecast: α and 1α quantiles of $y_{n+h}^*(b)$

<ロト <回ト < 回ト < 回ト < 回ト = 三日

Testing for a Threshold

- Null hypothesis: No threshold (linearity)
- Null Model: No threshold

$$\begin{array}{lll} y_{t+1} & = & \widehat{\boldsymbol{\beta}}_0' \mathbf{z}_t + \widehat{\boldsymbol{\beta}}_1' \mathbf{x}_t + \widehat{\mathbf{e}}_{t+1} \\ S_0 & = & \sum_{t=1}^n \widehat{\mathbf{e}}_{t+1}^2 \end{array}$$

• Alternative: Single Threshold

$$y_{t+1} = \widehat{\beta}'_{0} \mathbf{z}_{t} + \widehat{\beta}'_{1} \mathbf{x}_{1t}(\gamma) + \widehat{\beta}'_{2} \mathbf{x}_{2t}(\gamma) + \widehat{\mathbf{e}}_{t+1}(\gamma)$$

$$S_{1}(\gamma) = \sum_{t=1}^{n} \widehat{\mathbf{e}}_{t+1}(\gamma)^{2}$$

$$S_{1} = S_{1}(\widehat{\gamma}) = \min_{\gamma} S_{1}(\gamma)$$

• • = • • = •

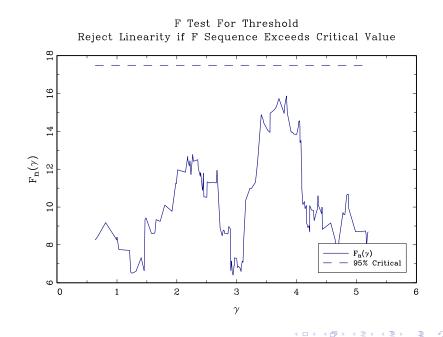
NonStandard Testing

- Test is non-standard.
- Similar to Structural Change Tests
- Examine all tests for each fixed threshold
- critical values & p-values obtained by simulation or bootstrap
- Plot sequence of tests; Reject if time plot exceeds critical value

Example: GDP Forecasting Equation

- $q_t = 100(\log(\textit{GDP}_t) \log(\textit{GDP}_{t-4})) = \text{annual growth}$
- Bootstrap p-value for threshold effect: 10.6%

イロト イポト イヨト イヨト



14 / 47

Inference in Threshold Models

- Threshold estimate has nonstandard distribution
- Confidence intervals by inverting statistic constructed from sum-of-squares

$$LR(\gamma) = n\left(\frac{S_1(\gamma) - S_1}{S_1}\right)$$

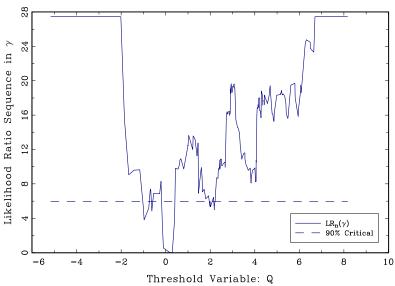
- Theory: [Hansen, 2000] $LR(\gamma) \rightarrow_d \xi$
- $P(\xi \le x) = (1 e^{-x/2})^2$
- Critical values:

$$\begin{array}{cccc} P(\xi \leq c) & 0.80 & .90 & .95 & .99 \\ c & 4.50 & 5.94 & 7.35 & 10.59 \end{array}$$

A B K A B K

Confidence Intervals for Threshold

- All γ such that $LR(\gamma) \leq c$ where c is critical value
- \bullet Easy to see in graph of $\mathit{LR}(\gamma)$ against γ



17 / 47

2

イロト イヨト イヨト イヨト

Threshold Estimates

- Estimate: $\hat{\gamma} = 0.18$
- Confidence Interval = [-1.0, 2.2]

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inference on Slope Parameters

- Conventional
- As if threshold is known

3

Threshold Model Estimates

$$q_t = 100(\log(\textit{GDP}_t) - \log(\textit{GDP}_{t-4}))$$

	$q_t \leq 0.18$	$q_t > 0.18$
Intercept	-10.3 (4.6)	-0.23 (1.11)
$\Delta \log(\textit{GDP}_t)$	0.36 (0.21)	0.16 (0.08)
$\Delta \log(GDP_{t-1})$	-0.22 (0.21)	0.20 (0.09)
$Spread_t$	1.3 (0.8)	0.71 (0.20)
Default Spread _t	-0.22 (1.26)	-2.3 (0.9)
Housing Starts _t	2.5 (10.6)	4.1 (2.3)
Building Permits _t	7.8 (10.5)	-2.2 (2.0)

2

イロト イヨト イヨト イヨト

NonParametric/NonLinear Autoregression

(人間) システン ステン

NonParametric/NonLinear Time Series Regression

Model

$$\begin{array}{rcl} y_{t+1} &=& g\left(\mathbf{x}_{t}\right) + e_{t+1} \\ E\left(e_{t+1} | \mathbf{x}_{t}\right) &=& 0 \end{array}$$

•
$$\mathbf{x}_t = (y_{t-1}, y_{t-2}, ..., y_{t-p})$$

- or any other variables
- $g(\mathbf{x}_t)$ is arbitrary non-linear function

• • = • • = •

Additively Separable Model

•
$$\mathbf{x}_t = (x_{1t}, ..., x_{pt})$$

 $g(\mathbf{x}_t) = g_1(x_{1t}) + g_2(x_{2t}) + \dots + g_p(x_{pt})$

Then

$$y_{t+1} = g_1(x_{1t}) + g_2(x_{2t}) + \cdots + g_p(x_{pt}) + e_{t+1}$$

• Greatly reduces degree of nonlinearity

・ 回 ト ・ ヨ ト ・ ヨ ト

Partially Linear Model

• Partition
$$\mathbf{x}_t = (x_{1t}, \mathbf{x}_{2t})$$

$$g(\mathbf{x}_t) = g_1(x_{1t}) + \boldsymbol{\beta}' \mathbf{x}_{2t}$$

- \mathbf{x}_{1t} main variables of importance
- For example, if primary dependence through first lag

$$y_{t+1} = g_1(y_t) + \beta_1 y_{t-1} + \dots + \beta_p y_{t-p} + e_{t+1}$$

副下 《唐下 《唐下

Sieve Models

- Approximate g(x) by a sequence g_m(x), m = 1, 2, ..., of increasing complexity
- Linear sieves

$$g_m(x) = Z_m(x)' \boldsymbol{\beta}_m$$

where $Z_m(x) = (z_{1m}(x), ..., z_{Km}(x))$ are nonlinear functions of x.

- "Series": $Z_m(x) = (z_1(x), ..., z_K(x))$
- "Sieves": $Z_m(x) = (z_{1m}(x), ..., z_{Km}(x))$

Polynomial (power series)

•
$$z_j(x) = x^j$$

$$g_m(x) = \sum_{j=1}^p \beta_j x^j$$

- Stone-Weierstrass Theorem: Any continuous function g(x) can be arbitrarily well approximated on a compact set by a polynomial of sufficiently high order
 - For any $\varepsilon > 0$ there exists coefficients p and β_i such that \mathcal{X}

$$\sup_{x\in\mathcal{X}}|g_m(x)-g(x)|\leq\varepsilon$$

• Runge's phenomenon:

Polynomials can be poor at interpolation (can be erratic)

Splines

- Piecewise smooth polynomials
- Join points are called knots
- Linear spline with one knot at au

$$g_m(x) = \begin{cases} \beta_{00} + \beta_{01} (x - \tau) & x < \tau \\ \\ \beta_{10} + \beta_{11} (x - \tau) & x \ge \tau \end{cases}$$

• To enforce continuity, $\beta_{00}=\beta_{10}$,

$$g_m(x) = \beta_0 + \beta_1 (x - \tau) + \beta_2 (x - \tau) \mathbf{1} (x \ge \tau)$$

or equivalently

$$g_m(x) = \beta_0 + \beta_1 x + \beta_2 (x - \tau) \mathbf{1} (x \ge \tau)$$

Quadratic Spline with One Knot

$$g_{m}(x) = \begin{cases} \beta_{00} + \beta_{01} (x - \tau) + \beta_{02} (x - \tau)^{2} & x < \tau \\ \\ \beta_{10} + \beta_{11} (x - \tau) + \beta_{12} (x - \tau)^{2} & x \ge \tau \end{cases}$$

- $\bullet~{\rm Continuous}$ if $\beta_{00}=\beta_{10}$
- $\bullet\,$ Continuous first derivative if $\beta_{01}=\beta_{11}$
- Imposing these constraints

$$g_m(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 (x - \tau)^2 \mathbf{1} (x \ge \tau).$$

イロン イ団と イヨン ト

Cubic Spline with One Knot

$$g_{m}(x) = \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3} + \beta_{4}(x - \tau)^{3} \mathbf{1}(x \ge \tau)$$

2

<ロ> (日) (日) (日) (日) (日)

General Case

• Knots at $au_1 < au_2 < \dots < au_N$

$$g_m(x) = \beta_0 + \sum_{j=1}^p \beta_j x^j + \sum_{k=1}^N \beta_{p+k} (x - \tau_k)^p \mathbf{1} (x \ge \tau_k)$$

Uniform Approximation

- Stone-Weierstrass Theorem: Any continuous function g(x) can be arbitrarily well approximated on a compact set by a polynomial of sufficiently high order
 - For any $\varepsilon > 0$ there exists coefficients p and β_i such that \mathcal{X}

$$\sup_{x\in\mathcal{X}}|g_m(x)-g(x)|\leq\varepsilon$$

- Strengthened Form:
 - ▶ if the s'th derivative of g(x) is continuous then the uniform approximation error satisfies

$$\sup_{x\in\mathcal{X}}|g_m(x)-g(x)|=O\left(K_m^{-\alpha}\right)$$

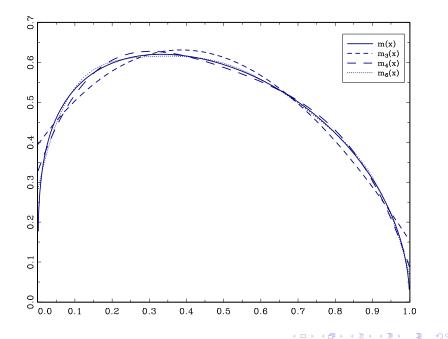
where K_m is the number of terms in $g_m(x)$

- This holds for polynomials and splines
- Runge's phenomenon:
 - Polynomials can be poor at interpolation (can be erratic)

Illustration

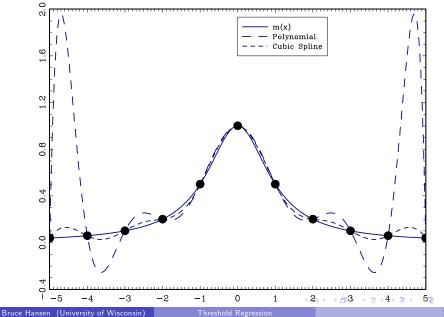
- $g(x) = x^{1/4}(1-x)^{1/2}$
- Polynomials of order K = 3, K = 4, and K = 6
- Cubic splines are quite similar

3



33 / 47

Runge's Phenomenon



34 / 47

Placement of Knots

- If support of x is [0, 1], typical to set $\tau_j = j/(N+1)$
- If support of x is [a, b], can set $\tau_j = a + (b a)/(N + 1)$
- Alternatively, can set τ_j to equal the j/(n+1) quantile of the distribution of x

・ 同 ト ・ ヨ ト ・ ヨ ト

Estimation

- Fix number and location of knots
- Estimate coefficients by least-squares
- Quadratic spline

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \sum_{k=1}^{N} \beta_{2+k} (x - \tau_k)^2 \mathbf{1} (x \ge \tau_k) + e$$

• Linear model in x, x^2 , $(x - \tau_1)^2 \mathbf{1} (x \ge \tau_1)$, ..., $(x - \tau_N)^2 \mathbf{1} (x \ge \tau_N)$

Selection of Number of Knots

- Model selection
- Pick N to minimize AIC
 - Or a similar criterion known as Cross-Validation (CV)

A B M A B M

Example: GDP Growth

- $y_t = \text{GDP Growth}$
- $x_t =$ Housing Starts
- Partially Linear Model

$$y_{t+1} = g(x_t) + \beta_1 y_{t-1} + \beta_2 y_{t-2} + e_{t+1}$$

- Polynomial
- Cubic Spline

A B M A B M

Model Selection

Polynomial in Housing Starts

Cubic Spline in Housing Starts

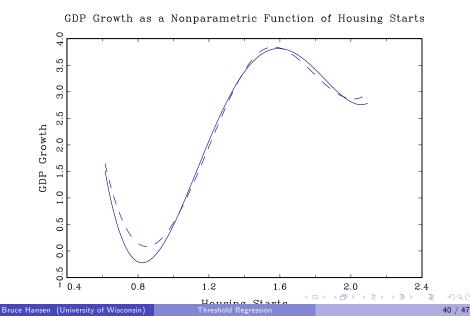
 N
 1
 2
 3
 4
 5
 6

 CV
 9.97
 10.0
 10.0
 10.0
 10.1
 10.2

Best fitting regression is quartic polynomial (p = 4)Cubic spline with 1 knot is close

A B F A B F

Polynomial=solid line Cubic Spline=dashed line



Estimated Cubic Spline

Knot=1.5

	\widehat{eta}	$m{s}(\widehat{m{eta}})$
Intercept	29	(8)
Δy_t	0.18	(0.08)
Δy_{t-1}	0.10	(0.08)
HS_t	-86	(26)
HS_t^2	79	(23)
HS_t^3	-22	(6)
$(HS_t - 1.5)^2 1 (HS_t > 1.5)$	43	(13)

æ

イロト イヨト イヨト イヨト

New Example: Long and Short Rates

- Bi-variate model of Long (10-year) and short (3-month) bond rates
- Key variable: Spread: Long-Short
- $R_t =$ Long Rate
- $r_t = \text{Short Rate}$
- $Z_t = R_r r_t =$ Spread
- Model

$$\begin{aligned} \Delta R_{t+1} &= \alpha_0 + \alpha_{p_1}(L)\Delta R_t + \beta_{p_1}(L)\Delta r_t + g_1(Z_t) + e_{1t} \\ \Delta r_{t+1} &= \gamma_0 + \gamma_{p_2}(L)\Delta R_t + \delta_{p_2}(L)\Delta r_t + g_2(Z_t) + e_{2t} \end{aligned}$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Model Selection

- Separately for each equation
 - Long Rate and Short Rate
 - Select over number of lags
 - Number of spline terms for nonlinearity in Spread

A B K A B K

CV Selection: Long Rate Equation

	p = 0	p=1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
Linear	.0844	.0782	.0760	.0757	.0757	.0766	.0736
Quadratic	.0846	.0781	.0763	.0760	.0760	.0767	.0742
Cubic	.0813	.0794	.0775	.0772	.0771	.0779	.0748
1 Knot	.0821	.0758	.0741	.0739	.0739	.0746	.0719
2 Knots	.0820	.0767	.0750	.0747	.0747	.0754	.0724
3 Knots	.0828	.0774	.0758	.0755	.0755	.0762	.0730

Selected Model: p = 6, Cubic spline with 1 knot at 1.53

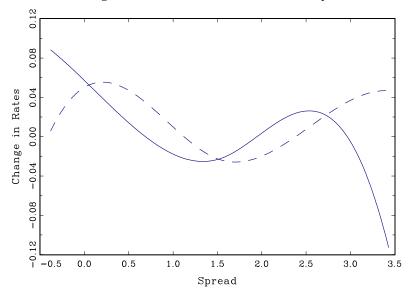
・ 同 ト ・ ヨ ト ・ ヨ ト

CV Selection: Short Rate Equation

	p = 0	p=1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	p = 5	<i>p</i> = 6
Linear	.206	.183	.181	.186	.189	.193	.186
Quadratic	.203	.178	.177	.181	.185	.187	.183
Cubic	.200	.16979	.172	.176	.179	.181	.179
1 Knot	.198	.16977	.172	.176	.179	.180	.179
2 Knots	.200	.172	.174	.178	.182	.183	.181
3 Knots	.201	.171	.174	.179	.182	.183	.181

Selected Model: p = 1, Cubic spline with 1 knot at 1.53

(本部)と 本語 と 本語を



∃ >

Forecasting

- For h > 1, need to use forecast simulation
- Simulate R_{n+1} , r_{n+1} forward using iid draws from residuals
- Create time paths
- Take means to estimate point forecasts
- Take quantiles to construct forecast intervals