Volatility

• Many economic series, and most financial series, display conditional volatility
 – The conditional variance changes over time
 – There are periods of high volatility
 • When large changes frequently occur
 – And periods of low volatility
 • When large changes are less frequent
Weekly Stock Prices
Levels and Returns

Graph 1: Weekly Stock Prices (sp) over time (t) from 1950w1 to 2010w1.

Graph 2: Weekly Returns (r) over time (t) from 1950w1 to 2010w1.
Conditional Mean

• The conditional mean of y is

$$E(y_t \mid \Omega_{t-1})$$

• The regression error is mean zero and unforecastable

$$E(e_t \mid \Omega_{t-1}) = 0$$
Conditional Variance

• The conditional variance of y is

$$\text{var}(y_t \mid \Omega_{t-1}) = E\left((y_t - E(y_t \mid \Omega_{t-1}))^2 \mid \Omega_{t-1} \right)$$

$$= E\left(e_t^2 \mid \Omega_{t-1} \right)$$

• The squared regression error can be forecastable
Forecastable Conditional Variance

• If the squared error is forecastable, then the conditional variance is time-varying and correlated.
 – The magnitude of changes is predictable
 – The sign is not predictable
Stock returns are unpredictable

```
. reg r L(1/4).r r

Linear regression

Number of obs = 3120
F( 4, 3115) = 1.22
Prob > F = 0.3009
R-squared = 0.0033
Root MSE = 2.0793

Coef. Std. Err. t P>|t| [95% Conf. Interval]
_cons  .1337402 .0410395 3.26 0.001 .053273 .2142074
L1.  -.01737 .032557 -0.53 0.594 -.0812053 .0464653
L2.  .0466548 .0273551 1.71 0.088 -.0069811 .1002907
L3.  -.0044898 .0282283 -0.16 0.874 -.0598378 .0508581
L4.  -.0298138 .0264335 -1.13 0.259 -.0816427 .0220151

. testparm L(1/4).r

( 1)  L. r = 0
( 2)  L2. r = 0
( 3)  L3. r = 0
( 4)  L4. r = 0

F( 4, 3115) = 1.22
Prob > F = 0.3009
```
Squared Returns are predictable

```
. gen y=(r-.1334364)^2
(1 missing value generated)

. reg y L(1/4).y, r

Linear regression

|          | Coef.  | Std. Err. | t     | P>|t|     | [95% Conf. Interval]         |
|----------|--------|-----------|-------|---------|-----------------------------|
| y        |        |           |       |         |                             |
| L1.      | .2332184 | .1248813  | 1.87  | 0.062   | -.0116395                  | .4780763                          |
| L2.      | .0627729 | .0308486  | 2.03  | 0.042   | .0022873                   | .1232586                          |
| L3.      | .125441  | .0364307  | 3.44  | 0.001   | .0540103                   | .1968717                          |
| L4.      | .0517234 | .0506949  | 1.02  | 0.308   | -.0476755                 | .1511222                          |
| _cons    | 2.282243 | .3480455  | 6.56  | 0.000   | 1.599821                   | 2.964665                          |

. testparm L(1/4).y

( 1)  L. y = 0
( 2)  L2. y = 0
( 3)  L3. y = 0
( 4)  L4. y = 0

F(  4,  3115) =  9.72
Prob > F =  0.0000
```

Number of obs = 3120
F(4, 3115) = 9.72
Prob > F = 0.0000
R-squared = 0.1092
Root MSE = 11.618
Squared Returns

Bartlett's formula for MA(q) 95% confidence bands
ARCH

• Robert Engle (1982) proposed a model for the conditional variance
 – AutoRegressive Conditional Heteroskedasticity
 – “ARCH” now describes volatility models

• Nobel Prize 2003
ARCH(1) Model

\[y_t = \mu + e_t \]

\[\sigma_t^2 = \text{var}(e_t | \Omega_{t-1}) = \omega + \alpha e_{t-1}^2 \]

\[\omega > 0 \]

\[\alpha \geq 0 \]

- \(\alpha > 0\) means that the conditional variance is high when the lagged squared error is high.
- Large errors (either sign) today mean high expected errors (in magnitude) tomorrow.
- Small magnitude errors forecast next period small magnitude errors.
Unconditional variance

• A property of expectations is that expected (average) conditional expectations are unconditional expectations.

• So the average conditional variance is the average variance – the variance of the regression error.

\[\sigma^2 = E\left(\sigma_t^2\right) = \omega + \alpha E\left(e_{t-1}^2\right) = \omega + \alpha \sigma^2 \]

• Solving for the variance:

\[\sigma^2 = \frac{\omega}{1 - \alpha} \]
• Rewriting, this implies
\[\omega = \sigma^2 (1 - \alpha) \]
• Substituting into ARCH(1) equation
\[\sigma_t^2 = (1 - \alpha) \sigma^2 + \alpha e_{t-1}^2 \]
or
\[\sigma_t^2 = \sigma^2 + \alpha (e_{t-1}^2 - \sigma^2) \]
• This shows that the conditional variance is a combination of the unconditional variance, and the deviation of the squared error from its average value.
ARCH(1) as AR(1) in squares

• The model

\[\text{var}(e_t \mid \Omega_{t-1}) = E(e_t^2 \mid \Omega_{t-1}) = \omega + \alpha e_{t-1}^2 \]

implies the regression

\[e_t^2 = \omega + \alpha e_{t-1}^2 + u_t \]

where \(u \) is white noise

• Thus e-squared is an AR(1)
Estimation

- `.arch r, arch(1)`

ARCH family regression

Sample: 1950w2 - 2010w5
Distribution: Gaussian
Log likelihood = -6525.268

| | Coef. | Std. Err. | z | P>| z| | [95% Conf. Interval] |
|--------|----------|-----------|------|-------|----------------------------|
| r | | | | | |
| _cons | .1996426 | .0314495 | 6.35 | 0.000 | .1380027 - .2612825 |
| ARCH | | | | | |
| arch | .3006982 | .0216209 | 13.91| 0.000 | .2583219 - .3430745 |
| L1. | | | | | |
| _cons | 2.926873 | .0686021 | 42.66| 0.000 | 2.792416 - 3.061331 |
Variance Forecast

• Given the parameter estimates, the estimated conditional variance for period t is

\[\hat{\sigma}_t^2 = \hat{\omega} + \hat{\alpha}\hat{e}_{t-1}^2 = \hat{\omega} + \hat{\alpha}(y_{t-1} - \hat{\mu})^2 \]

• The forecasted out-of-sample variance is

\[\hat{\sigma}_{n+1}^2 = \hat{\omega} + \hat{\alpha}(y_n - \hat{\mu})^2 \]
Forecast Interval for the mean

- You can use the estimated conditional standard deviation to obtain forecast intervals for the mean
 \[\hat{y}_{n+1|n} \pm Z_{\alpha/2} \hat{\sigma}_{n+1} \]

- These forecast intervals will vary in width depending on the estimated conditional variance.
 - Wider in periods of high volatility
 - More narrow in periods of low volatility
ARCH(p) model

• Allow p lags of squared errors

\[
y_t = \mu + e_t
\]

\[
\sigma_t^2 = \omega + \alpha_1 e_{t-1}^2 + \alpha_2 e_{t-2}^2 + \cdots + \alpha_p e_{t-p}^2
\]

• Similar to AR(p) in squares

• Estimation: ARCH(8)
 – .arch r, arch(1/8)
 – ARCH model with lags 1 through 8
ARCH(8) Estimates

- `.arch r, arch(1/8)`

ARCH family regression

Sample: 1950w2 - 2010w5
Distribution: Gaussian
Log likelihood = -6368.552

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|----------|-----------|-------|-------|-----------------------|
| r | | | | | |
| _cons | .2027503 | .0290226 | 6.99 | 0.000 | .1458671 .2596335 |
| ARCH | | | | | |
| arch | | | | | |
| L1. | .1867283 | .0163376 | 11.43 | 0.000 | .1547071 .2187495 |
| L2. | .1099957 | .0203355 | 5.41 | 0.000 | .0701388 .1498526 |
| L3. | .1541191 | .0225999 | 6.82 | 0.000 | .1098241 .1984142 |
| L4. | .0912413 | .0192753 | 4.73 | 0.000 | .0534625 .1290202 |
| L5. | .0284588 | .0171987 | 1.65 | 0.098 | -.0052501 .0621677 |
| L6. | .0811242 | .0192012 | 4.22 | 0.000 | .0434906 .1187578 |
| L7. | .041083 | .0147083 | 2.79 | 0.005 | .0122553 .0699107 |
| L8. | .0706622 | .0171741 | 4.11 | 0.000 | .0370015 .1043229 |
| _cons | 1.144063 | 1.1001062 | 11.43 | 0.000 | .9478582 1.340267 |
ARCH needs many lags

• Notice that we included 8 lags, and all appeared significant.

• This is commonly observed in estimated ARCH models
 – The conditional variance appears to be a function of many lagged past squares
GARCH Model

- Tim Bollerslev (1986)
 - A student of Engle
 - Current faculty at Duke

proposed the GARCH model to simplify this problem

\[
\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha e_{t-1}^2
\]

- \(\beta > 0 \)
- \(\omega > 0 \)
- \(\alpha \geq 0 \)
GARCH(1,1)

• This makes the variance a function of all past lags:
 \[\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha e_{t-1}^2 \]
 \[= \sum_{j=0}^{\infty} \beta^j \left(\omega + \alpha e_{t-1-j}^2 \right) \]

• It is also smoother than an ARCH model with a small number of lags
GARCH(p,q)

- p lags of squared error
- q lags of conditional variance

\[\sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \cdots + \beta_q \sigma_{t-q}^2 + \alpha_1 e_{t-1}^2 + \cdots + \alpha_p e_{t-p}^2 \]

- GARCH(1,1):
 - `.arch r, arch(1) garch(1)`
- GARCH(3,2):
 - `.arch r, arch(1/3) garch(1/2)`
GARCH(1,1)

ARCH family regression

Sample: 1950w2 - 2010w5
Distribution: Gaussian
Log likelihood = -6359.118

Number of obs = 3124

| r | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|--------|-----------|-------|------|----------------------|
| _cons | 0.1935287 | 0.0296365 | 6.53 | 0.000 | 0.1354421 - 0.2516152 |
| r | 0.1317621 | 0.0094385 | 13.96 | 0.000 | 0.113263 - 0.1502613 |
| arch | 0.8444868 | 0.0117076 | 72.13 | 0.000 | 0.8215404 - 0.8674333 |
| L1. | 0.1207574 | 0.0221764 | 5.45 | 0.000 | 0.0772924 - 0.1642223 |

Common GARCH features

- Lagged variance has large coefficient
- Sum of two coefficients very close to (but less than) one
GARCH(2,2) for Stock Returns

ARCH family regression

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|---------|-----------|--------|-------|---------------------|
| r | _cons | 0.1913999 | 0.0295859 | 6.47 | 0.000 | 0.1334126 to 0.2493872 |

ARCH

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-----------|-----------|--------|-------|---------------------|
| arch | L1. | 0.1658834 | 0.0149416 | 11.10 | 0.000 | 0.1365984 to 0.1951684 |
| | L2. | -0.0277704 | 0.042739 | -0.65 | 0.516 | -0.1115373 to 0.0559964 |
| garch | L1. | 0.5991681 | 0.2941188 | 2.04 | 0.042 | 0.227059 to 1.17563 |
| | L2. | 0.2373325 | 0.2478461 | 0.96 | 0.338 | -0.248437 to 0.7231021 |
| | _cons | 0.1233949 | 0.0428309 | 2.88 | 0.004 | 0.0394478 to 0.207342 |

Distribution: Gaussian

Log likelihood = -6356.166

Number of obs = 3124

Wald chi2(7) = .

Prob > chi2 = .

Sample: 1950w2 - 2010w5

Number of obs = 3124
GARCH(1,1)

- The GARCH(1,1) often fits well, and is a useful benchmark.
 - Daily, weekly, or monthly asset returns, exchange rates, or interest rates
Extensions

• There are many extensions of the basic GARCH model, developed to handle a variety of situations
 – Asymmetric Response
 – Garch-in-mean
 – Explanatory variables in variance
 – Non-normal errors
Asymmetric GARCH

• Threshold GARCH

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha e_{t-1}^2 + \gamma e_{t-1}^2 1(e_{t-1} > 0)$$

• The last term is dummy variable for positive lagged errors

• This model specifies that the ARCH effect depends on whether the error was positive or negative
 – If the error is negative, the effect is α
 – If the error is positive, the full effect is $\alpha + \gamma$
TARCH estimation

- `.arch r, arch(1) tarch(1) garch(1)`
- Negative errors have coefficient of 0.19
- Positive errors have coefficient of 0.05
- Negative returns increase volatility much more than positive returns

ARCH family regression

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|--------|-----------|--------|------|---------------------|
| r | | | | | |
| _cons | 0.1474826 | 0.0313132 | 4.71 | 0.000 | [0.0861099, 0.2088552] |
| ARCH | | | | | |
| arch L1. | 0.1879679 | 0.0154078 | 12.20 | 0.000 | [0.1577692, 0.2181665] |
| tarch L1.| -0.1408097 | 0.0160892 | -8.75 | 0.000 | [-0.1723439, -0.1092754] |
| garch L1.| 0.8437111 | 0.0132294 | 63.78 | 0.000 | [0.817782, 0.8696403] |
| _cons | 0.1540714 | 0.0219836 | 7.01 | 0.000 | [0.1109843, 0.1971585] |
Leverage Effect

• This model describes what is called the “leverage effect”
 – A negative shock to equity increases the ratio debt/equity of investors
 – This increases the leverage of their portfolios
 – This increases risk, and the conditional variance
 – Negative shocks have stronger effect on variance than positive shocks
GARCH-in-mean

• If investors are risk averse, risky assets will earn higher returns (a risk premium) in market equilibrium

• If assets have varying volatility (risk), their expected return will vary with this volatility
 – Expected return should be positively correlated with volatility
GARCH-M model

\[y = \beta_1 + \beta_1 \sigma_{t-1}^2 + e_t \]

\[\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha e_{t-1}^2 \]

• .arch arch(1) garch(1) archm
GARCH-M for Stock Returns

- Marginally positive effect

ARCH family regression

Sample: 1950w2 - 2010w5
Distribution: Gaussian
Log likelihood = -6357.259
Number of obs = 3124
Wald chi2(1) = 2.96
Prob > chi2 = 0.0853

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|----------|-----------|-------|------|----------------------|
| r | .1211625 | .0512489 | 2.36 | 0.018| .0207165 -.2216085 |
| _cons | | | | | |
| ARCHM | | | | | |
| sigma2| .024739 | .0143783 | 1.72 | 0.085| -.003442 .0529199 |
| ARCH | | | | | |
| arch | .1315334 | .0096454 | 13.64 | 0.000| .1126287 .1504381 |
| L1. | | | | | |
| garch | .8450762 | .0118319 | 71.42 | 0.000| .8218862 .8682662 |
| L1. | | | | | |
| _cons | .1193442 | .022376 | 5.33 | 0.000| .075488 .1632004 |
TARCH and GARCH-M

- `.arch arch(1) tarch(1) garch(1) archm`
- archm term appears insignificant

ARCH family regression

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|----------|-----------|------|------|----------------------|
| _r_ | 0.1309694| 0.0512904 | 2.55 | 0.011| 0.030442 - 0.2314967 |
| _cons| | | | | |
| ARCH | | | | | |
| _arch_ | 0.1872044| 0.0155283 | 12.06| 0.000| 0.1567694 - 0.2176393 |
| L1. | | | | | |
| _tarch_ | -.1391533| 0.0161185 | -8.63| 0.000| -.1707449 - -.1075617 |
| L1. | | | | | |
| _garch_ | .8425617 | 0.0137719 | 61.18| 0.000| .8155693 - .8695542 |
| L1. | | | | | |
| _cons| .1565728 | 0.0228305 | 6.86 | 0.000| 0.1118259 - 0.2013197 |

OPG

Log likelihood = -6332.324 Prob > chi2 = 0.6776
Distribution: Gaussian Wald chi2(1) = 0.17
Sample: 1950w2 - 2010w5 Number of obs = 3124
Log likelihood = -6332.324 Prob > chi2 = 0.6776
Number of obs = 3124

Distribution: Gaussian

Sample: 1950w2 - 2010w5
Estimated standard deviation

• Estimated TARCH model
• `.predict v, variance`
• `.gen s=sqrt(v)`
• Unconditional variance is 2.1
S&P, returns, and standard deviation
2006-2010