Measures of Fit from AR(p)

- Residual Sum of Squared Errors
 \[SSR = \sum_{t=1}^{T} \hat{e}_t^2 \]

- Residual Mean Squared Error
 \[s^2 = \frac{1}{T - p - 1} \sum_{t=1}^{T} \hat{e}_t^2 \]

- Root MSE (Standard Error of Regression)
 \[SER = \sqrt{\frac{1}{T - p - 1} \sum_{t=1}^{T} \hat{e}_t^2} \]

- R-squared
 \[R^2 = \frac{\sum_{t=1}^{T} \hat{e}_t^2}{\sum_{t=1}^{T} (y_t - \bar{y})^2} \]

- R-bar-squared
 \[\overline{R}^2 = \frac{1}{T - p - 1} \sum_{t=1}^{T} \hat{e}_t^2 \]
 \[= \frac{1}{T - 1} \sum_{t=1}^{T} (y_t - \bar{y})^2 \]
Uses

• SSR is a direct measure of the fit of the regression
 – It decreases as you add regressors
• s^2 is an estimate of the error variance
• SER is an estimate of the error standard deviation
• R^2 and R-bar-squared are measures of in-sample forecast accuracy
Example

```
.reg gdp L(1/4).gdp
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>662.232234</td>
<td>4</td>
<td>165.558059</td>
</tr>
<tr>
<td>Residual</td>
<td>3518.78213</td>
<td>242</td>
<td>14.540422</td>
</tr>
<tr>
<td>Total</td>
<td>4181.01437</td>
<td>246</td>
<td>16.9959934</td>
</tr>
</tbody>
</table>

- SSR = 3518.78
- $s^2 = 14.54$
- $R^2 = 0.158$
- R-bar-squared = 0.144
- SER = 3.8132

Number of obs = 247
$F(4, 242) = 11.39$
Prob > F = 0.0000
R-squared = 0.1584
Adj R-squared = 0.1445
Root MSE = 3.8132
Access after estimation

- STATA stores many of these numbers in “_result”
- _result(1)=T
- _result(2)=MSS (model sum of squares)
- _result(3)=k (number of regressors)
- _result(4)=SSR
- _result(5)=T-k-1
- _result(6)=F-stat (all coefs=0)
- _result(7)=R^2
- _result(8)=R-bar-squared
- _result(9)=SER
Model Selection

• Take the GDP example. Should we use an AR(1), AR(2), AR(3),...?

• How do we pick a forecasting model from among a set of forecasting models?

• This problem is called *model selection*

• There are sets of tools and methods, but there is no universally agreed methodology.
Selection based on Fit

• You could try and pick the model with the smallest SSR or largest R^2.
• But the SSR decreases (and R^2 increases) as you add regressors.
• So this idea would simply pick the largest model.
• Not a useful method!
Selection Based on Testing

• You could test if some coefficients are zero.
• If the test accepts, then set these to zero.
• If the test rejects, keep these variables.
• This is called “selection based on testing”
• You could either use
 – Sequential t-tests
 – Sequential F-tests
Example: GDP

| gdp | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|--------|------------------|------|-------|----------------------|
| gdp | | | | | |
| L1. | .327656| .076895 | 4.26 | 0.000 | .1761871 | .479125 |
| L2. | .1466135| .0858808 | 1.71 | 0.089 | -.0225558 | .3157828 |
| L3. | -.0980287| .0728951 | -1.34| 0.180 | -.2416186 | .0455611 |
| L4. | -.0889209| .0790354 | -1.13| 0.262 | -.244606 | .0667641 |

- Sequential F tests do not reject 4th lag, 3rd+4th, and 2nd+3rd+4th
- Rejects 1st+ 2nd+3rd+4th
- Testing method selects AR(1)
Sequential t-tests

| gdp | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|--------|------------------|----|-----|----------------------|
| gdp | L1. | .3412071 | .0764232 | 4.46 | 0.000 | .1906738 | .4917405 |
| | L2. | .1327376 | .0826814 | 1.61 | 0.110 | -.0301228 | .2955981 |
| | L3. | -.1293765 | .0731709 | -1.77| 0.078 | -.2735037 | .0147508 |

| gdp | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|--------|------------------|----|-----|----------------------|
| | L1. | .3268403 | .076061 | 4.30 | 0.000 | .1770265 | .476654 |
| | L2. | .0870349 | .0742668 | 1.17 | 0.242 | -.059245 | .2333148 |

| gdp | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|--------|------------------|----|-----|----------------------|
| | L1. | .3604753 | .0690582 | 5.22 | 0.000 | .22446 | .4964907 |

- Sequential t-tests also select AR(1)
Select based on Tests?

- Somewhat popular, but *testing* does not lead to good *forecasting* models
- Testing asks if there is strong statistical evidence against a restricted model
- If the evidence is not strong, testing selects the restricted model
- Testing does not attempt to evaluate which model will lead to a better forecast.
Bayes Criterion

- Thomas Bayes (1702-1761) is credited with inventing Bayes Theorem
 - \(M_1 = \text{model 1} \)
 - \(M_2 = \text{model 2} \)
 - \(D = \text{Data} \)

\[
P(M_1 | D) = \frac{P(D | M_1)P(M_1)}{P(D | M_1)P(M_1) + P(D | M_2)P(M_2)}
\]
Bayes Selection

• The probabilities $P(M_1)$ and $P(M_2)$ are "priors" believed by the user
• The probabilities $P(D|M_1)$ and $P(D|M_2)$ come from probability models.
• We can then compute the posterior probability of model 1

$$P(M_1 \mid D) = \frac{P(D \mid M_1)}{P(D \mid M_1)P(M_1) + P(D \mid M_2)P(M_2)}$$
Simplification

• AR(p) with normal errors and uniform priors

\[P(M_1 \mid D) \propto \exp \left(-\frac{BIC}{2} \right) \]

where

\[BIC = T \ln \left(\frac{SSR}{T} \right) + (p + 1) \ln(T) \]

is known as the Bayes Information Criterion or Schwarz Information Criterion (SIC). The number \(p+1 \) is the number of estimated coefficients, while \(T \) is the sample size. SSR/T is the same as the residual variance.
Alternative Versions

• BIC is also called SIC (Schwarz Information Criterion) by many authors, including Gonzalez-Rivera
• Our formula is a simplification. The correct formula is

\[BIC = -2L + (p + 1) \ln(T) \]

where \(L \) is the log-likelihood. This is the formula reported in Stata
• \(L \) is the joint density of the data. With normal errors, it equals

\[2L = -T(\ln(2\pi) + 1) + T \ln\left(\frac{SSR}{T}\right) \]

• The difference in definitions is just the first constant, which does not vary across models and is thus unimportant.
• Also, sometimes BIC is written as

\[BIC = \ln\left(\frac{SSR}{T}\right) + (p + 1) \frac{\ln(T)}{T} \]
Bayes Selection

- The Bayes method is to select the model with the highest posterior probability
 - the model with the smallest value of BIC
- Adding/subtracting constants, or multiplying/dividing by constants does not alter the selected model
- The different definitions select the same model
Trade-off

• When we compare models, the larger model (the AR with more lags) will have
 – Smaller SSR
 – Larger p

• The BIC trades these off.
 – The first term is decreasing in p
 – The second term is increasing in p

\[BIC = T \ln \left(\frac{SSR}{T} \right) + (p + 1) \ln(T) \]
Computation

- $T = \text{total number of observations}$
- For every AR(p) model

$$BIC(p) = T \ln\left(\frac{SSR}{T}\right) + (p + 1)\ln(T)$$

- You want to compute $BIC(p)$ for each model.
- Compare the values and select the model with smallest value of BIC
PROBLEM!

• As you vary the AR order p, the number of observations changes
 – The sample changes

• This invalidates the BIC comparison. You want only to compare BIC, or any other criterion, on exactly the same sample
Example: AR for GDP

- Available observations: 1947q2 : 2013q4
 - 267 time periods
- An AR(0) uses all T=267 observations
 - 1947q2 : 2013q4
- An AR(1) uses T=266 observations (omits first)
 - 1947q3 : 2013q4
- An AR(2) uses T=265 observations
 - 1947q4 : 2013q4
- An AR(p) uses T=267-p observations
- These are not directly comparable
Solution: Restrict Sample Periods

• First, determine the set of models to compare
 – E.g., AR(0), AR(1), AR(2), AR(3), AR(4)
• Determine a unified sample period where all can be estimated with same number of observations
• Available observations: 1947q2 : 2013q4
• Restricted sample period: 1948q2 : 2013q4
• Omits first 4 observations
 – Uses them only as initial conditions for the AR models
• Use the option “if time>=tq(1948q2)”
 – Where “time” is the time index
GDP Example: AR(1)

- Estimate AR(1) omitting first 4 observations, and save estimates as "ar1"

```
. reg gdp L(1/1).gdp if time>=tq(1948q2)
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 263</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>582.16758</td>
<td>1</td>
<td>582.16758</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>3573.75778</td>
<td>261</td>
<td>13.6925586</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4155.92537</td>
<td>262</td>
<td>15.8623106</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.1368</td>
</tr>
</tbody>
</table>

| gdp | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------------|---------|-----------|------|------|---------------------|
| gdp L1. | 0.3739473 | 0.0573494 | 6.52 | 0.000 | 0.261021 0.4868737 |
| _cons | 2.059374 | 0.2966818 | 6.94 | 0.000 | 1.47518 2.643569 |

. estimates store ar1
GDP Example: AR(2)

```
. reg gdp L(1/2).gdp if time>=tq(1948q2)

Source | SS        | df | MS       | Number of obs = 263
Model  | 617.767606 | 2  | 308.883803 | F(  2, 260) =  22.70
       | 3538.15776 | 260| 13.6082991 | Prob > F    = 0.0000
Residual|          |    |          | R-squared   = 0.1486
       | 4155.92537 | 262| 15.8623106 | Adj R-squared = 0.1421
       |            |    |          | Root MSE    = 3.6889

| gdp | Coef.    | Std. Err. | t    | P>|t|   | [95% Conf. Interval] |
|-----|----------|-----------|------|-------|---------------------|
| gdp |          |           |      |       |                     |
| L1. | .3364704 | .0616895  | 5.45 | 0.000 | .2149957            | .4579451 |
| L2. | .0996638 | .0616189  | 1.62 | 0.107 | -.0216719           | .2209994 |
| _cons| 1.852846 | .3221538  | 5.75 | 0.000 | 1.218483            | 2.487209 |
```

. estimates store ar2
GDP Example: AR(3)

```
. reg gdp L(1/3).gdp if time>=tq(1948q2)

Source | SS      | df | MS       | Number of obs = 263
-------|---------|----|---------|---------------------
Model  | 654.023965 | 3  | 218.007988 | F( 3, 259) = 16.12
Residual | 3501.9014   | 259 | 13.5208548 | Prob > F = 0.0000
         |          |    |          | R-squared = 0.1574
         |          |    |          | Adj R-squared = 0.1476
Total  | 4155.92537 | 262 | 15.8623106 | Root MSE = 3.6771

| gdp | Coef. | Std. Err. | t     | P>|t| | [95% Conf. Interval] |
-----|-------|-----------|------|------|----------------------|
 gdp |      |           |      |      |                      |
 L1.  | .3463131 | .0617841  | 5.61 | 0.000 | .22465  .4679762    |
 L2.  | .1334948 | .0648022  | 2.06 | 0.040 | .0058887 .261101    |
 L3.  | -.1007374 | .0615178  | -1.64 | 0.103 | -.2218761 .0204013  |
 _cons | 2.041025 | .3410599  | 5.98 | 0.000 | 1.369421 2.712628   |
```

. estimates store ar3
GDP Example: AR(4)

```
. reg gdp L(1/4).gdp if time>=tq(1948q2)

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 263</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>674.83277</td>
<td>4</td>
<td>168.708192</td>
<td>F( 4, 258) = 12.50</td>
</tr>
<tr>
<td>Residual</td>
<td>3481.0926</td>
<td>258</td>
<td>13.492607</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>4155.92537</td>
<td>262</td>
<td>15.8623106</td>
<td>R-squared = 0.1624</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.1494</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 3.6732</td>
</tr>
</tbody>
</table>

gdp          | Coef.     | Std. Err. | t     | P>|t|  | [95% Conf. Interval] |
| gdp         | 0.3383899 | 0.0620484 | 5.45  | 0.000 | 0.2162042 - 0.4605757 |
| L1.         | 0.1434513 | 0.065229  | 2.20  | 0.029 | 0.0150023 0.2719004  |
| L2.         | -0.0739753| 0.0651224 | -1.14 | 0.257| -0.2022145 0.0542639 |
| L3.         | -0.0766854| 0.06175  | -1.24 | 0.215| -0.1982836 0.0449128 |
| _cons       | 2.198748  | 0.3636056 | 6.05  | 0.000| 1.482735 2.914761 |

. estimates store ar4
```
Display BIC (and AIC)

• For latest estimated model
 – .estimate stats

• For a set of estimated & stored models
 – .estimate stats ar1 ar2 ar3 ar4
GDP Example

• It is convenient to display all models together.
• BIC is displayed in the right column. The AR(1) has the smallest value

. estimates stats ar1 ar2 ar3 ar4

Akaike's information criterion and Bayesian information criterion

<table>
<thead>
<tr>
<th>Model</th>
<th>Obs</th>
<th>ll(null)</th>
<th>ll (model)</th>
<th>df</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar1</td>
<td>263</td>
<td>-736.1388</td>
<td>-716.2931</td>
<td>2</td>
<td>1436.586</td>
<td>1443.731</td>
</tr>
<tr>
<td>ar2</td>
<td>263</td>
<td>-736.1388</td>
<td>-714.9766</td>
<td>3</td>
<td>1435.953</td>
<td>1446.67</td>
</tr>
<tr>
<td>ar3</td>
<td>263</td>
<td>-736.1388</td>
<td>-713.6221</td>
<td>4</td>
<td>1435.244</td>
<td>1449.533</td>
</tr>
<tr>
<td>ar4</td>
<td>263</td>
<td>-736.1388</td>
<td>-712.8384</td>
<td>5</td>
<td>1435.677</td>
<td>1453.538</td>
</tr>
</tbody>
</table>

Note: N=Obs used in calculating BIC; see [R] BIC note
Check the Samples!

• All models should have the same number of observations (in this case 263)
• If not, you need to alter the samples

. estimates stats ar1 ar2 ar3 ar4

Akaike's information criterion and Bayesian information criterion

<table>
<thead>
<tr>
<th>Model</th>
<th>Obs</th>
<th>ll(null)</th>
<th>ll (model)</th>
<th>df</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar1</td>
<td>263</td>
<td>-736.1388</td>
<td>-716.2931</td>
<td>2</td>
<td>1436.586</td>
<td>1443.731</td>
</tr>
<tr>
<td>ar2</td>
<td>263</td>
<td>-736.1388</td>
<td>-714.9766</td>
<td>3</td>
<td>1435.953</td>
<td>1446.67</td>
</tr>
<tr>
<td>ar3</td>
<td>263</td>
<td>-736.1388</td>
<td>-713.6221</td>
<td>4</td>
<td>1435.244</td>
<td>1449.533</td>
</tr>
<tr>
<td>ar4</td>
<td>263</td>
<td>-736.1388</td>
<td>-712.8384</td>
<td>5</td>
<td>1435.677</td>
<td>1453.538</td>
</tr>
</tbody>
</table>

Note: N=Obs used in calculating BIC; see [R] BIC note
Problem with BIC

• This is the theory behind the BIC
• If one of the models is true, and the others false,
 – Then BIC selects the model most likely to be true
• If none of the models are true, all are approximations
 – BIC does not pick a good *forecasting* model
• **BIC selection is not designed to produce a good forecast**
Selection to Minimize MSFE

• Our goal is to produce forecasts with low MSFE (mean-square forecast error).

• If \(\hat{y} \) is a forecast for \(y \), the MSFE is

\[
R(\hat{y}) = E(y - \hat{y})^2
\]

• If we had a good estimate of the MSFE, we could pick the model (forecast) with the smallest MSFE.

• Consider the estimate: The in-sample sum of square residuals, SSR
SSR

- In-sample MSFE

\[SSR = \sum_{T=1}^{T} (y_t - \hat{y}_t)^2 \]

\[= \sum_{T=1}^{T} \hat{e}_t^2 \]

- Two troubles
 - It is a biased estimate (overfitting in-sample)
 - It decreases as you add regressors, it cannot be used for selection
Bias

• It can be shown that (approximately)

\[E(\text{SSR}) = E(\text{MSFE}) - 2\sigma^2(p + 1) \]

and

\[E(\text{MSFE}) = T\sigma^2 \]

• Shibata (1980) suggested the bias adjustment

\[S_p = \text{SSR} \cdot \left(1 + \frac{2(p + 1)}{N}\right) \]

• Known as the Shibata criteria.
Akaike

• If you take Shibata’s criterion, divide by T, take the log, and multiply by T, then

$$T \ln \left(\frac{S_p}{T} \right) = T \ln \left(\frac{SSR}{T} \right) + T \ln \left(1 + \frac{2(p+1)}{T} \right)$$

$$\approx T \ln \left(\frac{SSR}{T} \right) + 2(p+1)$$

$$= AIC$$

• This looks somewhat like BIC, but “2” has replaced “ln(T)”.

• Called the “Akaike Information criterion” (AIC)
Formulas and Comparison

\[
AIC = T \ln \left(\frac{SSR}{T} \right) + 2(p+1)
\]

\[
BIC = T \ln \left(\frac{SSR}{T} \right) + \ln(T)(p+1)
\]

• Intuitively, both make similar trade-offs
 – Larger models have smaller SSR, but larger \(p \)
 – The difference is that BIC puts a higher penalty on the number of parameters
 • The AIC penalty is 2
 • The BIC penalty is \(\ln(T) > 2 \) (if \(T > 7 \))
 • For example, if \(T = 240 \), \(\ln(T) = 5.5 \) is much larger than 2
Hirotugu Akaike

• 1927-2009
• Japanese statistician
• Famous for inventing the AIC
Motivation for AIC

• Motivation 1: The AIC is an approximately unbiased estimate of the MSFE

• Motivation 2 (Akaike’s): The AIC is an approximately unbiased estimate of the Kullback-Liebler Information Criterion (KLIC)
 – A loss function on the density forecast
 – Suppose $f(y)$ is a density forecast for y, and $g(y)$ is the true density. The KLIC risk is

\[
KLIC(f, g) = E \ln \left(\frac{f(y)}{g(y)} \right)
\]
Akaike’s Result

• Akaike showed that in a normal autoregression the AIC is an approximately unbiased estimator of the KLIC
• So Akaike recommended selecting forecasting models by finding the one model with the smallest AIC
• Unlike testing or BIC, the AIC is designed to find models with low forecast risk.
GDP Example

- Use the estimates stats command
- AIC is displayed in the next-to-last right column. The AR(3) has the smallest value

```
. estimates stats ar1 ar2 ar3 ar4
```

Akaike's information criterion and Bayesian information criterion

<table>
<thead>
<tr>
<th>Model</th>
<th>Obs</th>
<th>ll(null)</th>
<th>ll(model)</th>
<th>df</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar1</td>
<td>263</td>
<td>-736.1388</td>
<td>-716.2931</td>
<td>2</td>
<td>1436.586</td>
<td>1443.731</td>
</tr>
<tr>
<td>ar2</td>
<td>263</td>
<td>-736.1388</td>
<td>-714.9766</td>
<td>3</td>
<td>1435.953</td>
<td>1446.67</td>
</tr>
<tr>
<td>ar3</td>
<td>263</td>
<td>-736.1388</td>
<td>-713.6221</td>
<td>4</td>
<td>1435.244</td>
<td>1449.533</td>
</tr>
<tr>
<td>ar4</td>
<td>263</td>
<td>-736.1388</td>
<td>-712.8384</td>
<td>5</td>
<td>1435.677</td>
<td>1453.538</td>
</tr>
</tbody>
</table>

Note: N=Obs used in calculating BIC; see [R] BIC note
Comments

• BIC picks AR(1), AIC picks AR(3)
• This is common
 – AIC typically selects a larger model than BIC
 – Mechanically, it is because BIC puts a larger penalty on the dimension of the model
 • ln(T) versus 2
 – Conceptually, it is because
 • BIC assumes that there is a true finite model, and is trying to find the true model
 • AIC assumes all models are approximations, and is trying to find the model which makes the best forecast.
 – Extra lags are included if (on balance) they help to forecast
Selection based on Prediction Errors

• A sophisticated selection method is to compute true out-of-sample forecasts and forecast errors, and pick the model with the smallest out-of-sample forecast variance
 – Instead of forecast variance, you can apply any loss function to the forecast errors
Forecasts

- Your sample is \([y_1, y_T]\) for observations \([1, ..., T]\)
- For each \(y_t\), you construct an out-of-sample forecast \(\hat{y}_t\).
 - This is typically done on the observations \([R+1, ..., T]\)
 - \(R\) is a start-up number
 - \(P = T - R\) is the number of out-of-sample forecasts
Out-of-Sample Forecasts

• By out-of sample, \hat{y}_t must be computed using only the observations $[1,...,t-1]$.

• In an AR(1)
 \[\hat{y}_t = \hat{\alpha}_{t-1} + \hat{\beta}_{t-1} y_{t-1} \]

• Where the coefficients are estimated using only the observations $[1,...,t-1]$.

• Also called “Pseudo Out-of-Sample” forecasting
 — Gonzalez-Rivera, Section 9.2

• The out-of-sample forecast error is
 \[\tilde{e}_t = y_t - \hat{y}_t \]
Forecast error

• The out-of-sample (OOS) forecast error is different than the full-sample least-squares residual

• It is a true forecast error

• An estimate of the mean-square forecast error is the sample variance of the OOS errors

\[\hat{\sigma}^2 = \frac{1}{P} \sum_{t=R+1}^{T} \hat{e}_t^2 \]
Selection based on pseudo OOS MSE

• The predictive least-squares (PLS) criterion is the estimated MSFE using the OOS forecast errors

\[PLS = \sqrt{\frac{1}{P} \sum_{t=R+1}^{T} \tilde{e}_t^2} \]

• PLS selection picks the model with the smallest PLS criterion

• This is very popular in applied forecasting
Comments on PLS

• PLS has the advantage that it does not depend on approximations or distribution theory
• It can be computed for any forecast method
 – You just need a time-series of actual forecasts
 – You can use it to compare published forecasts
• Disadvantages
 – It requires the start-up number of observations R
 – The forecasts in the early part of the sample will be less precise than in the later part
 • Averaging over these errors can be misleading
 • Will therefore tend to select smaller models than AIC
 – Less strong theoretical foundation for PLS than for AIC
Jorma Rissanen

• The idea of PLS is due to Jorma Rissanen, a Finnish information theorist
Computation

- Numerical computation of PLS in STATA is unfortunately tricky
- We will discuss it later when we discuss recursive estimation
PLS picks AR(2) for GDP Growth

<table>
<thead>
<tr>
<th>AR order</th>
<th>PLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P=0 (no lag)</td>
<td>3.58</td>
</tr>
<tr>
<td>P=1</td>
<td>3.435</td>
</tr>
<tr>
<td>P=2</td>
<td>3.432*</td>
</tr>
<tr>
<td>P=3</td>
<td>3.47</td>
</tr>
<tr>
<td>P=4</td>
<td>3.53</td>
</tr>
<tr>
<td>P=5</td>
<td>3.52</td>
</tr>
</tbody>
</table>